首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity is poorly defined. To track and discriminate LCs from dermal DCs in vivo, we developed knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene. By using vital imaging, we showed that most EGFP(+) LCs were sessile under steady-state conditions, whereas skin inflammation induced LC motility and emigration to lymph nodes (LNs). After skin immunization, dermal DCs arrived in LNs first and colonized areas distinct from slower migrating LCs. LCs reaching LNs under steady-state or inflammatory conditions expressed similar levels of costimulatory molecules. Langerin and EGFP were also expressed on thymic DCs and on blood-derived, CD8alpha(+) DCs from all secondary lymphoid organs. By using a similar knockin strategy involving a diphtheria toxin receptor (DTR) fused to EGFP, we demonstrated that LCs were dispensable for triggering hapten-specific T cell effectors through skin immunization.  相似文献   

2.
Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter   总被引:11,自引:0,他引:11  
Mohrs M  Shinkai K  Mohrs K  Locksley RM 《Immunity》2001,15(2):303-311
Effector T cells mediate adaptive immunity and immunopathology, but methods for tracking such cells in vivo are limited. We engineered knockin mice expressing IL-4 linked via a viral IRES element with enhanced green fluorescent protein (EGFP). Reporter T cells primed under Th2 conditions showed sensitive and faithful EGFP expression and maintained endogenous IL-4. After Nippostrongylus infection, reporter expression demonstrated the evolution of type 2 immunity from tissue lymphocytes and thence to lymph node CD4(+) T cells, which subsequently migrated into tissue. The appearance of EGFP(+) CD4(+) T cells in tissue, but not in lymph nodes, was Stat6-dependent. Transferred EGFP(+) CD4(+) T cells from infected animals conferred protection against Nippostrongylus to immunodeficient mice. These mice will provide a valuable reagent for assessing immunity in vivo.  相似文献   

3.
Langerhans cells (LCs) represent a special subset of immature dendritic cells (DCs) that reside in epithelial tissues at the environmental interfaces. Although dynamic interactions of mature DCs with T cells have been visualized in lymph nodes, the cellular behaviours linked with the surveillance of tissues for pathogenic signals, an important function of immature DCs, remain unknown. To visualize LCs in situ, bone marrow cells from C57BL/6 mice expressing the enhanced green fluorescent protein (EGFP) transgene were transplanted into syngeneic wild-type recipients. Motile activities of EGFP(+) corneal LCs in intact organ cultures were then recorded by time lapse two-photon microscopy. At baseline, corneal LCs exhibited a unique motion, termed dendrite surveillance extension and retraction cycling habitude (dSEARCH), characterized by rhythmic extension and retraction of their dendritic processes through intercellular spaces between epithelial cells. Upon pinpoint injury produced by infrared laser, LCs showed augmented dSEARCH and amoeba-like lateral movement. Interleukin (IL)-1 receptor antagonist completely abrogated both injury-associated changes, suggesting roles for IL-1. In the absence of injury, exogenous IL-1 caused a transient increase in dSEARCH without provoking lateral migration, whereas tumour necrosis factor-alpha induced both changes. Our results demonstrate rapid cytokine-mediated behavioural responses by LCs to local tissue injury, providing new insights into the biology of LCs.  相似文献   

4.
Because of their anatomical distribution epidermal Langerhans cells (LCs) are discussed to be crucial for antigen uptake and subsequent presentation to naïve T cells in skin-draining lymph nodes. The use of LC-specific markers like Langerin or knock-in mice expressing green fluorescent protein under the control of the Langerin promotor now facilitates the dissection of LCs from other dendritic cell (DC) subsets. Surprisingly, current data indicate that LCs are not generally involved in the induction of cellular immune responses. Moreover, the widely accepted paradigm postulating that LCs in principle act as T cell activators is contested by recent publications. Consequently, the biological role of LCs, in particular in cutaneous immune responses, needs to be revisited. The experimental model of leishmaniasis represents a suitable model to study the origin of an antigen-specific T cell response in mice. With this model the transport and presentation of skin derived Leishmania (L.) major antigens can be monitored in vivo. Furthermore, the quality of T cell-DC interactions can be determined. Considering recent progress in LC research we propose a novel concept of LCs in T cell meditated immunity against L. major parasites.  相似文献   

5.
Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.  相似文献   

6.
This study tested the hypothesis that Vγ3 TCR-bearing T cells are influenced by LCs. Vγ3 T cells and LCs are located in the epidermis of mice. Vγ3 T cells represent the main T cell population in the skin epithelium and play a crucial role in maintaining the skin integrity, whereas LCs are professional APCs. Although Vγ3 T cells and LCs form an interdigitating network in the epidermis, not much is known about their reciprocal influence and/or interdependence. We used two different LC-deficient mouse models, in which LCs are constitutively or inducibly depleted, to investigate the role of LCs in maturation, homeostasis, and function of Vγ3 T cells. We show that Vγ3 T cell numbers are unaltered by LC deficiency, and Vγ3 T cells isolated from LC-deficient mice are phenotypically and upon in vitro stimulation, functionally indistinguishable from Vγ3 T cells isolated from WT mice based on their cytotoxic potential and cytokine production. Additionally, in vivo skin-wounding experiments show no major difference in response of Vγ3 T cells to wounding in the absence or presence of LCs. These observations indicate that Vγ3 T cells develop and function independently of LCs.  相似文献   

7.
Validated gene transfer and expression tracers are essential for elucidating functions of mammalian genes. Here, we have determined the suitability and unintended side effects of enhanced green fluorescent protein (EGFP) and DsRed-Express fluorescent protein as expression tracers in long-term hematopoietic stem cells (HSCs). Retrovirally transduced mouse bone marrow cells expressing either EGFP or DsRed-Express in single or mixed dual-color cell populations were clearly discerned by flow cytometry and fluorescence microscopy. The results from in vivo competitive repopulation assays demonstrated that EGFP-expressing HSCs were maintained nearly throughout the lifespan of the transplanted mice and retained long-term multilineage repopulating potential. All mice assessed at 15 months post-transplantation were EGFP positive, and, on average, 24% total peripheral white blood cells expressed EGFP. Most EGFP-expressing recipient mice lived at least 22 months. In contrast, Discosoma sp. red fluorescent protein (DsRed)-expressing donor cells dramatically declined in transplant-recipient mice over time, particularly in the competitive setting, in which mixed EGFP- and DsRed-expressing cells were cotransplanted. Moreover, under in vitro culture condition favoring preservation of HSCs, purified EGFP-expressing cells grew robustly, whereas DsRed-expressing cells did not. Therefore, EGFP has no detectable deteriorative effects on HSCs, and is nearly an ideal long-term expression tracer for hematopoietic cells; however, DsRed-Express fluorescent protein is not suitable for these cells.  相似文献   

8.
9.
Dendritic cells (DCs), as specialized APCs, play a key role in the induction of anti-tumor immunity. They originate from bone marrow (BM) progenitors, which are frequently the targets of chromosomal translocations leading to development of leukemia. Aberrant DC differentiation and functions have been observed and are widely reported in patients with leukemia. It is not clear, however, whether such defects are a direct effect of a leukemic fusion gene or simply an outcome of the clinical disease. In this study, we demonstrate for the first time that knockin of the Mll-Een fusion gene can affect myeloid DC differentiation and functions directly, independent of the leukemic disease activities. We showed that the Mll-Een-expressing BM cells [enhanced green fluorescent protein+ (EGFP+)] from leukemic and nonleukemic mice had similarly impaired DC differentiation capacities with functional abnormalities. In contrast, BM cells without Mll-Een expression (EGFP(-)) showed normal DC differentiation and functions. A reduction in the frequency of CD11c+ DCs was also observed within the EGFP+ population in spleen and lymph nodes, and these cells were dysfunctional. Taken together, our findings suggest that the Mll-Een fusion gene can affect myeloid DC differentiation directly and functions in a cell-autonomous manner, where fully leukemic transformation of the hematopoietic progenitors is not required exclusively. Therefore, the study provides evidence for a direct causal relationship between leukemic gene fusion and abnormal DC differentiation, possibly contributing to the development of leukemia.  相似文献   

10.
Signal regulatory protein α (SIRPα) is an immunoglobulin superfamily protein that is predominantly expressed in dendritic cells (DCs). Its cytoplasmic region binds SHP-1 or SHP-2 protein tyrosine phosphatases, while its extracellular region interacts with CD47, another immunoglobulin superfamily protein, constituting cell-cell signaling. SIRPα was previously shown to be important for development of contact hypersensitivity, likely as a result of its positive regulation of the priming by DCs of CD4(+) T cells. However, the mechanism by which SIRPα regulates DC functions remains unknown. Here we found that the number of I-A(+) cells, which represent migratory DCs such as Langerhans cells (LCs) or dermal DCs from the skin, in the peripheral lymph nodes (LNs) was markedly decreased in mice expressing a mutant form of SIRPα that lacks the cytoplasmic region compared with that of wild-type (WT) mice. In addition, an increase of fluorescein isothiocyanate (FITC)-bearing I-A(+) cells in the draining lymph nodes (LNs) after skin-painting with FITC was markedly blunted in SIRPα mutant mice. However, migratory ability, as well as expression of CCR7, of bone marrow-derived DCs prepared from SIRPα mutant mice were not impaired. By contrast, the number of I-A(+) LCs in the epidermis of SIRPα mutant mice was markedly decreased compared with that of WT mice. In addition, the mRNA expression of transforming growth factor-β receptor II in LCs of SIRPα mutant mice was markedly decreased compared with that of WT mice. These results suggest that SIRPα is important for homeostasis of LCs in the skin, as well as of migratory DCs in the LNs, but unlikely for migration of these cells from the skin to draining LNs.  相似文献   

11.
12.
Neural stem cells (NSCs) were widely used for studying the cell's replacement after transplantation in nervous system because of its specific characteristics. However, Stracing the cells after transplantation was still a problem. In the present study, we isolated and cultured the neural stem cells from the C57BL/6J EGFP transgenic mouse (EGFP mice), and identified the capacity for self-renewal and differentiation into the three CNS lineages (neurons, astrocytes, and oligodendrocytes). Then we transplanted the single neural stem cell into the lesion spinal cord. Expression of GFP and differentiation was evaluated at two weeks post-transplantation. The data showed that these neural stem cells derived from the EGFP mice could maintain transgene expression and could differentiate into the MAP2 positive cells after transplantation into the injured spinal cord. The results suggested that NSC expressing EGFP was a useful marker for tracing the cells after transplantation in vivo and functional in the treatment to spinal cord injury.  相似文献   

13.
Transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of a cell-specific promoter have been used with great success to identify and label specific cell types of the retina. We studied the expression of EGFP in the retina of mice making use of four transgenic mouse lines. Expression of EGFP driven by the calretinin promoter was found in amacrine, displaced amacrine and ganglion cells. Comparison of the EGFP expression and calretinin immunolabeling showed that many but not all cells appear to be double labeled. Expression of EGFP under the control of the choline acetyltransferase promoter was found in amacrine cells; however, the cells did not correspond to the well known cholinergic (starburst) cells of the mouse retina. The expression of EGFP under the control of the parvalbumin promoter was restricted to amacrine cells of the inner nuclear layer and to cells of the ganglion cell layer (displaced amacrine cells and ganglion cells). Most of the cells were also immunoreactive for parvalbumin, however, differences in labeling intensity were observed. The expression of EGFP driven by the promoter for the 5-HT3 A receptor (5-HTR3A) was restricted to type 5 bipolar cells. In contrast, immunostaining for 5-HTR3A was found in synaptic hot spots in sublamina 1 of the inner plexiform layer and was not related to type 5 bipolar cells. The results show that these transgenic mice are very useful for future electrophysiological studies of specific types of amacrine and bipolar cells that express EGFP and thus permit directed microelectrode targeting under microscopic control.  相似文献   

14.
Skin is an immunological organ consisting of epidermal cells, i.e. keratinocytes and Langerhans cells (LCs, antigen-presenting dendritic cells), and both innate and acquired immune systems operate upon exposure of the skin to various external microbes or their elements. To explore the relationship between innate and acquired immunities in the skin, we investigated whether Toll-like receptor (TLR) ligation of epidermal cells enhances the ability of LCs to present a specific antigen to T cells in mice. LC-containing epidermal cells were incubated with CpG oligonucleotide (TLR9 ligand) modified with trinitrophenyl hapten, and cultured with hapten-primed CD4(+) T cells. TLR9 ligand was capable of enhancing the hapten-presenting ability of LCs when LC-enriched epidermal cells, but not purified LCs, were used as the LC source, suggesting that bystander keratinocytes play a role in the enhancement of LC function. Cultivation of freshly isolated epidermal cells with CpG promoted the expression of major histocompatibility complex (MHC) class II and CD86 molecules on LCs. CpG enhanced the production of interleukin (IL)-1alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor (TNF)-alpha by primarily cultured keratinocytes. The addition of a cocktail of neutralizing antibodies against these cytokines abrogated the CpG-promoted, antigen-presenting ability of LC-enriched epidermal cells. Moreover, the addition of culture supernatants from CpG-stimulated keratinocytes restored the ability of purified LCs. Our study demonstrated that although the direct effect of CpG on LCs is minimal, LC function can be up-regulated indirectly by cytokines released by CpG-stimulated keratinocytes. This also implies that innate immunity evoked by TLR ligation of keratinocytes enhances acquired immunity comprising LCs and T cells.  相似文献   

15.
AIMS: The transgenic enhanced green fluorescent protein (EGFP) expressing 'green' mouse (C57BL/6-TgN(ACTbEGFP)1Osb) is a widely used tool in stem cell research, where the ubiquitous nature of EGFP expression is critical to track the fate of single or small groups of transplanted haematopoietic stem cells (HSC). Our aim was to investigate this assumed ubiquitous expression by performing a detailed histological survey of EGFP expression in these mice. METHODS: Fluorescent microscopy of frozen tissue sections was used to perform a detailed histological survey of the pattern of EGFP expression in these mice. Flow cytometry was also used to determine the expression pattern in blood and bone marrow. RESULTS: Three patterns of EGFP expression were noted. In most tissues there was an apparently stochastic variegation of the transgene, with individual cell types demonstrating highly variable rates of EGFP expression. Certain specific cell types such as pancreatic ductal epithelium, cerebral cortical neurones and glial cells and glomerular mesangial cells consistently lacked EGFP expression, while others, including pancreatic islet cells, expressed EGFP only at extremely low levels, barely distinguishable from background. Lastly, in the colon and stomach the pattern of EGFP expression was suggestive of clonal inactivation. Only cardiac and skeletal muscle showed near ubiquitous expression. CONCLUSIONS: These findings raise questions regarding the 'ubiquitous' expression of EGFP in these transgenic mice and suggest caution in relying overly on EGFP alone as an infallible marker of donor cell origin.  相似文献   

16.
Human skin contains the following two distinct DC subsets: (i) Langerhans cells (LCs), expressing Langerin but not DC‐specific intercellular adhesion molecule‐3‐grabbing nonintegrin (DC‐SIGN), are predominantly localized in the epidermis; and (ii) dermal DCs, expressing DC‐SIGN but not Langerin, are observed mainly in the dermis. It is not known whether localization in the epidermis provides cues for LC differentiation. Here, we show that E‐cadherin expressed by epidermal keratinocytes (KCs) is crucial for differentiation of LCs. Monocytes differentiated into LC‐like cells in presence of IL‐4, GM‐CSF, and TGF‐β1. However, these LC‐like cells expressed not only Langerin but also DC‐SIGN. Notably, co‐culturing of these LC‐like cells with KCs expressing E‐cadherin or recombinant E‐cadherin strongly decreased expression of DC‐SIGN and further induced a phenotype similar to purified epidermal LCs. Moreover, pretreatment of LC‐like cells with anti‐E‐cadherin‐specific antibody completely abolished their Langerin expression, indicating the requirement of E‐cadherin–E‐cadherin interactions for the differentiation into Langerin+ cells. These findings suggest that E‐cadherin expressed by KCs provide environmental cues that induce differentiation of LCs in the epidermis.  相似文献   

17.
Choroidal neovascularization is provided by bone marrow cells   总被引:3,自引:0,他引:3  
Choroidal neovascularization (CNV) is a known cause of age-related macular degeneration (ARMD). Moreover, the most common cause of blindness in the elderly in advanced countries is ARMD with CNV. It has recently been shown that bone marrow cells (BMCs) can differentiate into various cell lineages in vitro and in vivo. Adults maintain a reservoir of hematopoietic stem cells included in BMCs that can enter the circulation to reach various organs in need of regeneration. It has recently been reported that endothelial progenitor cells (EPCs) included in BMCs are associated with neovascularization. We examine the role of BMCs in CNV using a model of CNV in adult mice. Using methods consisting of fractionated irradiation (6.0 Gy x 2) followed by bone marrow transplantation (BMT), adult mice were engrafted with whole BMCs isolated from transgenic mice expressing enhanced green fluorescent protein (EGFP). Three months after BMT, we confirmed that the hematopoietic cells in the recipients had been completely replaced with donor cells. We then carried out laser photocoagulation to induce CNV in chimeric mice (donor cells >95%). Two weeks after the laser photocoagulation, by which time CNV had occurred, immunohistochemical examination was carried out. The vascular wall cells of the CNV expressed both EGFP and CD31. These findings indicate that newly developed blood vessels in the CNV are derived from the BMCs and suggest that the inhibition of EPC mobilization from the bone marrow to the eyes could be a new approach to the fundamental treatment of CNV in ARMD.  相似文献   

18.
The skin is at the forefront of environmental exposures, such as ultraviolet radiation and a myriad of chemicals, and is at risk for malignant transformation. The skin is a highly responsive immunological organ that contains a unique population of immature intraepidermal dendritic cells (DCs) called Langerhans cells (LCs). Although LCs show morphological and migratory changes in response to epidermal perturbation, and can function as antigen-presenting cells to activate T cells, their role in carcinogenesis is unknown. Here we review recent studies that have provided clues to the potential roles that LCs might play in the pathogenesis of skin cancer, beyond their stimulation or regulation of adaptive immunity. Understanding this role of LCs might provide new perspectives on the relevance of DC populations that are resident within other epithelial tissues for cancer.  相似文献   

19.
Dendritic cells (DCs) can capture apoptotic cells and present them to immune competent cells as self-antigens (Ags). Langerhans cells (LCs), DCs in the epidermis, are capable of presenting tissue-associated Ags in the steady state, suggesting that LCs may also capture apoptotic cells and transport them to skin regional lymph nodes (LNs). However, to what extent LCs utilize apoptotic cells as self-Ags in vivo is still unclear. To clarify this point, we examined the contribution of milk fat globule EGF factor 8 (MFG-E8), a secreted glycoprotein, to capturing skin Ags. MFG-E8 is expressed in several subsets of macrophages (M phi s) and DCs, including LCs, and crucial for recognizing and engulfing apoptotic cells. Using a skin-hyperpigmented KRT14-Kitl-Tg (Kitl-Tg) mouse system, we measured the accumulation of melanin granules (MGs), a marker of skin Ags, transported from the skin to regional LNs in Mfge8-deficient mice. Unexpectedly, their accumulation in Mfge8-deficient Kitl-Tg mice was comparable to that in Mfge8-heterozygous littermates. Mfge8-deficient DCs engulfed skin-derived MGs efficiently in vitro. The results indicate that MFG-E8 does not contribute critically or functions redundantly to capturing and trafficking of skin Ags in the steady state, and suggest a possibility that LCs may capture skin Ags in forms other than apoptotic cells in vivo.  相似文献   

20.
In intestinal and pyloric epithelia, leucine‐rich repeat‐containing G protein‐coupled receptor 5 (Lgr5)‐expressing cells represent long‐lived adult stem cells that give rise to all epithelial cell types, including endocrine cells. Ablation of the Apc gene in Lgr5‐expressing cells leads to intestinal and pyloric adenomas. To assess whether all epithelial tumours of the gastrointestinal tract are derived from LGR5‐positive stem cells, we crossed Lgr5–EGFP–IRES–creERT2 mice, which express EGFP and Cre recombinase driven by the Lgr5 promoter, with CEA424–SV40–TAg mice, which develop pyloric neuroendocrine carcinomas of epithelial origin. In 19 day‐old mice, single SV40 T antigen (TAg)‐positive cells were identified preferentially at the the bases of pyloric glands, close to the stem cell compartment. However, contrary to previous publications describing subpopulations of LGR5‐positive cells in gastrointestinal neoplasia, we could not detect Lgr5–EGFP‐positive tumour cells in malignant lesions. The lack of expression of the Wnt target gene Lgr5 is probably not caused by suppression of Wnt signalling by TAg, since β‐catenin‐mediated Wnt signalling, as measured by the TOPflash assay, was not inhibited. To determine the cellular origin of CEA424–SV40–TAg tumours, we performed tracing experiments using Lgr5–EGFP–IRES–creERT2:CEA424–SV40–TAg:ROSA26–tdRFP mice. Following tamoxifen induction, it was possible to efficiently trace the progeny of Lgr5‐expressing cells in gastrointestinal tissue via red fluorescent protein (RFP) expression. No RFP‐positive tumour cells were detected, even when RFP gene activation occurred in 7 day‐old mice well before the appearance of TAg‐positive tumour cells. Hence, we conclude that Lgr5‐expressing stem cells probably do not constitute the cells of origin in CEA424–SV40–TAg mice. Consequently, not all epithelial tumours in the pyloric region are initiated by transformation of LGR5‐positive stem cells. Thus, additional long‐lived LGR5‐negative stem cells or progenitor cells with a low turnover rate might exist in the pyloric region, which could give rise to tumours. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号