首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
In chronic inflammatory reactions such as rheumatoid arthritis and multiple sclerosis, T cells in the inflamed tissue express the chemokine receptors CXCR3 and CCR5, and the chemokine ligands (CCL) of these receptors are present in the inflammatory lesions. However, the contribution of these chemokines to T cell recruitment to sites of inflammation is unclear. In addition, the relative roles of the chemokines that bind CXCR3 (CXCL9, CXCL10, CXCL11) and CCR5 (CCL3, CCL4, CCL5) in this process are unknown. The in vitro chemotaxis and in vivo migration of antigen-activated T lymphoblasts and unactivated spleen T cells to chemokines were examined. T lymphoblasts migrated in vitro to CXCR3 ligands with a relative potency of CXCL10 > CXCL11 > CXCL9, but these cells demonstrated much less chemotaxis to the CCR5 ligands. In vivo, T lymphocytes were recruited in large numbers with rapid kinetics to skin sites injected with CXCL10 and CCL5 and less to CCL3, CCL4, CXCL9, and CXCL11. The combination of CCL5 with CXCL10 but not the other chemokines markedly increased recruitment. Coinjection of interferon-gamma, tumor necrosis factor alpha, and interleukin-1alpha to up-regulate endothelial cell adhesion molecule expression with CXCL10 or CCL5 induced an additive increase in lymphoblast migration. Thus, CXCR3 ligands are more chemotactic than CCR5 ligands in vitro; however, in vivo, CXCL10 and CCL5 have comparable T cell-recruiting activities to cutaneous sites and are more potent than the other CXCR3 and CCR5 chemokines. Therefore, in vitro chemotaxis induced by these chemokines is not necessarily predictive of their in vivo lymphocyte-recruiting activity.  相似文献   

2.
Latta M  Mohan K  Issekutz TB 《Immunology》2007,121(4):555-564
Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4-6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6(+) T cells to 35-50% and anti-T-cell receptor (TCR) activation to 60-80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6(+) T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6(+) in virus-induced peritoneal exudates (approximately 47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6(+), whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6(+), but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge.  相似文献   

3.
One of the most important functions of chemokines and their receptors is the regulation of directional migration of leukocytes within tissues. In specific tissue compartments, cells are exposed to multiple chemokines presented in complex dimensional and temporal patterns. Therefore, a leukocyte requires the mechanisms to integrate the various directional signals it receives from different chemoattractants. In this study, we report that CCL3, CCL5, and CCL8, three potent mononuclear cell chemoattractants, are able to synergize with the homeostatic chemokine CXCL12 in the migration of CD14(+) monocytes, CD3(+) T-lymphocytes, or PHA-activated lymphoblasts. In addition, CCL5 augmented the CXCR4 ligand-driven ERK phosphorylation in mononuclear cells. Furthermore, the synergistic effect between CCL5 and CXCL12 in monocyte chemotaxis is inhibited in the presence of specific CCR1 antibody and AMD3100, but not by maraviroc. In HIV-1 infection assays, a combination of CXCL12 and CCL5 cooperated to inhibit the replication of the dual-tropic (R5/X4) HIV-1 HE strain. Finally, although the dual-tropic HIV-1 strain was barely suppressed by AMD3100 or maraviroc alone, HIV-1 infection was completely blocked by the combination of these two receptor antagonists. Our data demonstrate the cooperation between CCL5 and CXCL12, which has implications in migration of monocytes/lymphocytes during inflammation and in HIV-1 infection.  相似文献   

4.
In an attempt to clarify how cells integrate the signals provided by multiple chemokines expressed during inflammation, we have uncovered a novel mechanism regulating leukocyte trafficking. Our data indicate that the concomitant exposure to CCR4 agonists and CXCL10/IP-10 strongly enhances the chemotactic response of human T lymphocytes. This enhancement is synergistic rather than additive and occurs via CCR4 since it persists after CXCR3 blockade. Besides chemotaxis, other cellular responses are enhanced upon stimulation of CCR4-transfected cells with CCL22/MDC plus CXCL10. Several other chemokines in addition to CXCL10 were able to increase CCL22-mediated chemotaxis. The first beta-strand of the chemokine structure is highly and specifically implicated in this phenomenon, as established using synergy-inducing and non-synergy-inducing chimeric chemokines. As shown in situ for skin from atopic and allergic contact dermatitis patients, this organ becomes the ideal environment in which skin-homing CCR4(+) T lymphocytes can accumulate under the stimulus offered by CCR4 agonists, together with the synergistic chemokines that are concomitantly expressed. Overall, our results indicate that chemokine-induced synergism strengthens leukocyte recruitment towards tissues co-expressing several chemokines.  相似文献   

5.
Lymphocytes in inflamed tissues express numerous chemokine receptors. The relative importance of these receptors for migration in inflammation is unclear. The role of CXCR3 in T cell subset migration was examined using monoclonal antibodies developed to rat CXCR3. CXCR3 was expressed on sixfold more CD8(+) ( approximately 30%) than CD4(+) ( approximately 5%) T cells in spleen, lymph nodes and blood, and on approximately 10% of CD4(+)CD45RC(-) (memory) and approximately 50% of CD8(+)CD45RC(+) spleen T cells. After immunization, CXCR3 increased tenfold on CD4(+) lymph node lymphoblasts ( approximately 55%), and >90% of inflammatory exudate T cells were CXCR3(+). CXCR3(+) T cells migrated significantly better than CXCR3(-) T cells to all dermal inflammatory stimuli tested in vivo, even though these T cells are a minority of the memory T cells. Blocking CXCR3 inhibited recruitment of 60-85% of unstimulated T cells and up to 90% of CD8(+)CD45RC(+) effector T cells, but caused <50% inhibition of CD4(+) and CD8(+) memory (CD45RC(-)) T cells. About 90% of T lymphoblast migration to IFN-gamma, IFN-gamma plus TNF-alpha, polyinosinic polycytidylic acid, lipopolysaccharide, and delayed-type hypersensitivity (DTH)-induced inflammation was inhibited. Blockade also reduced DTH-induced induration. Thus, CXCR3 has a non-redundant role in T cell migration to dermal inflammation and is critical for activated T lymphoblast recruitment, but memory T cells are less dependent on CXCR3 for their infiltration.  相似文献   

6.
IBDs are characterized by increased influx of immune cells to the mucosa of genetically susceptible persons. Cellular migration to injury sites is mediated by chemokines. CXCL12 is a ubiquitous, constitutive chemokine that participates in stem cell proliferation and migration and mediates T lymphocyte migration to inflamed tissues. We have recently reported that CXCL12 and its receptor, CXCR4, are expressed in normal and more prominently, inflamed human intestinal mucosa. However, the interactions and roles of CXCL12 and its receptors, CXCR4 and the recently discovered CXCR7, in intestinal inflammation have not been defined. In the present study, we further dissected the effects of CXCL12 on lymphocytes in intestinal homeostasis and inflammation and delineated the interplay between CXCL12 and its receptors CXCR4 and CXCR7. To that end, fresh mononuclear cells were isolated from mucosa and PB of healthy or IBD patients. Phenotypical and functional assays were conducted using flow cytometry, Transwell migration chambers, and ELISA. The data show that CXCL12-mediated migration of T cells is CXCR4- but not CXCR7-dependent. T cell activation reciprocally regulates CXCR7 and CXCR4 expression and migratory capacity. IBD PBTs expressed more CXCR7 than normal PBTs. Finally, T cells attracted by CXCL12 are mostly of a memory phenotype. In conclusion, the present study suggests that the interplay between CXCL12 and its receptors affects homeostasis and inflammation in the intestinal mucosa.  相似文献   

7.
CXCR4 plays significant roles in immune and inflammatory responses and is important for selective recruitment of leukocytes. We previously showed that CXCR4 surface expression of human lymphocytes was affected by sulfatide, an in vivo ligand for L-selectin. Increased CXCR4 expression was shown to promote biologically relevant functions such as integrin-dependent adhesion and transmigration. Here, we show that sulfatide-induced CXCR4 up-regulation also occurs on other leukocyte subsets in humans and mice. B cells and CD4(+)CD25(+) T cells had the highest CXCR4 up-regulation after sulfatide stimulation. Transfection of L-selectin was sufficient for K562 cells to acquire sulfatide-induced CXCR4 up-regulation, while analysis of L-selectin knockout mice revealed that this response was critically L-selectin dependent only for CD4(+) T cells, suggesting an alternative pathway in CD8(+) T cells and B cells. Sulfatide triggered several intracellular signaling events in CD4(+) T cells, but only tyrosine kinase activation, including members of the Src family, were essential for L-selectin to CXCR4 signaling. CXCR4 up-regulation was rapid, enhanced CXCL12-induced signaling and increased chemotaxis toward CXCL12, and therefore has potentially important roles in vivo. Thus, the response to CXCL12 depends in part on tissue expression of sulfatide and, specifically in CD4(+) T cells, also depends on the surface level of L-selectin.  相似文献   

8.
Although the role of the T cell-mediated autoimmune reaction in type 1 diabetes (T1D) is conclusive, studies including data from human circulating CD4(+) and CD8(+) lymphocytes subsets during the disease onset and posterior development are scarce. Further, chemokines and chemokine receptors are key players in the migration of pathogenic T cells into the islets of non-obese diabetic mice developing T1D, but few studies have investigated these markers in human T1D patients. We studied the expression of T helper 1 (Th1)- and Th2-associated chemokine receptors, and the two isoforms of CD45 leucocyte antigen on CD4(+) and CD8(+) lymphocytes from T1D and healthy children, as well as the secretion of chemokines in cell supernatants in peripheral blood mononuclear cells. Our results showed increased expression of CCR7 and CD45RA and reduced CD45RO on CD8(+) cells among recent-onset T1D patients. The percentages of CD4(+) cells expressing CXC chemokine receptor 3 (CXCR3), CXCR6 and CCR5, and the secretion of interferon-gamma-induced protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1alpha and MIP-1beta was lower among diabetics. Low expression of Th1-associated receptors and secretion of chemokines, together with an increased amount of CD8(+) cells expressing CD45RA and CCR7 in T1D patients therefore might represent suboptimal Th function in T1D, leading to impaired T cytotoxic responses or alternatively reflect a selective recruitment of Th1 cells into the pancreas.  相似文献   

9.
Recently, certain chemokines and chemokine receptors have been preferentially associated with the selective recruitment in vitro of type 1 T cells, such as IP-10 and its receptor CXCR3, or type 2 T cells such as monocyte-derived chemokine (MDC) and eotaxin and their receptors CCR4 and CCR3. Very few models have provided confirmation of these findings in vivo. Taking advantage of the humanized SCID mouse model grafted with autologous human skin, the ability of the chemokines IP-10, MDC, eotaxin, and RANTES to stimulate cell recruitment was investigated. Intradermal IP-10 injection resulted in an influx of CD4+ T lymphocytes but also surprisingly in the recruitment of dendritic cells. MDC recruited mainly CD8+ T lymphocytes, and had little effect on eosinophils. As predicted, eotaxin was a potent inducer of eosinophil and basophil migration, also recruiting CD4+ T cells. RANTES, a ubiquitous chemokine associated with both type 1 and type 2 profiles, was able to recruit all cell types. CXCR3-positive cells were preferentially recruited by IP-10, whereas CCR3- and CCR4-positive cells were predominantly found after injection of eotaxin and MDC. Thus, in a human environment in vivo, some chemokines have the ability to recruit cells expressing chemokine receptors preferentially expressed on type 1 or type 2 cells. Further investigations revealed that MDC and eotaxin induced the recruitment of type 2, but not type 1, cytokine-producing cells. RANTES, on the other hand, induced the migration of both type 1 and type 2 cytokine-secreting cells, whereas IP-10 did not induce the recruitment of either subtype. These studies provide detailed information on the properties of MDC, eotaxin, IP-10, and RANTES as chemotactic molecules in skin in vivo. The use of the humanized SCID mouse model grafted with human skin is validated as a useful model for the evaluation of chemokine function in the inflammatory reaction, and suggests that therapeutic targeting of certain chemokines might be of interest in diseases associated preferentially with a type 1 or type 2 profile.  相似文献   

10.
I-TAC/CXCL11 is a natural antagonist for CCR5   总被引:5,自引:0,他引:5  
The selective CXC chemokine receptor 3 (CXCR3) agonists, monokine induced by interferon-gamma (IFN- gamma)/CXC chemokine ligand 9 (CXCL9), IFN-inducible protein 10/CXCL10, and IFN-inducible T cell alpha chemoattractant (I-TAC)/CXCL11, attract CXCR3+ cells such as CD45RO+ T lymphocytes, B cells, and natural killer cells. Further, all three chemokines are potent, natural antagonists for chemokine receptor 3 (CCR3) and feature defensin-like, antimicrobial activities. In this study, we show that I-TAC, in addition to these effects, acts as an antagonist for CCR5. I-TAC inhibited the binding of macrophage-inflammatory protein-1alpha (MIP-1alpha)/CC chemokine ligand 3 (CCL3) to cells transfected with CCR5 and to monocytes. Furthermore, cell migration evoked by regulated on activation, normal T expressed and secreted (RANTES)/CCL5 and MIP-1beta/CCL4, the selective agonist of CCR5, was inhibited in transfected cells and monocytes, respectively. In two other functional assays, namely the release of free intracellular calcium and actin polymerization, I-TAC reduced CCR5 activities to minimal levels. Sequence and structure analyses indicate a potential role for K17, K49, and Q51 of I-TAC in CCR5 binding. Our results expand on the potential role of I-TAC as a negative modulator in leukocyte migration and activation, as I-TAC would specifically counteract the responses mediated by many "classical," inflammatory chemokines that act not only via CCR3 but via CCR5 as well.  相似文献   

11.
目的 探讨趋化因子受体CXCR3与其配体(CXCL9/Mig,CXCL10/IP-10)在小鼠暴发性肝炎淋巴细胞迁移和急性肝衰竭中的作用.方法 6~8周龄雌性BALB/cJ小鼠腹腔注射100 PFU 3型鼠肝炎病毒(MHV-3),采用流式细胞术检测感染MHV-3后的BALB/cJ小鼠肝脏、脾脏和外周血T细胞和NK细胞的比例、数量以及其表面趋化因子受体CXCR3的表达频率.实时定量PCR技术检测感染MHV-3后的BALB/cJ小鼠肝内趋化因子CXCL9和CXCL10 mRNA的表达水平.Transwell细胞迁移试验评估病毒感染的肝细胞及CXCL10对脾脏淋巴细胞的趋化作用.结果 BALB/cJ小鼠感染MHV-3后,肝脏T细胞和NK细胞的数量及CXCR3的表达频率均显著增加,然而在脾脏和外周血均显著减少.实时定量PCR检测证实,感染MHV-3 48 h后,肝内趋化因子CXCL9和CXCL10 mRNA的表达比感染前分别上升了15.6和98.8倍.体外Transwell试验表明,病毒感染的肝细胞及重组CXCL10/IP-10蛋白对脾脏T细胞和NK细胞具有明显的趋化作用,并且这种趋化作用能被抗-CXCL10抗体显著阻断.结论 趋化因子受体CXCR3与其配体(CXCL9和CXCL10),尤其是CXCL10的相互作用在小鼠暴发性肝炎肝内淋巴细胞的募集及随后的坏死性炎症和急性肝衰竭中可能发挥着重要作用.
Abstract:
Objective To investigate the role of the chemokine receptor CXCR3 and its ligands in the migration of lymphocytes and acute hepatic failure. Methods BALB/cJ mice (6-8 weeks, female) were intraperitoneally injected with 100 PFU mouse hepatitis virus-3(MHV-3). The proportions and numbers of T cells and NK cells in liver, spleen, and blood as well as the expression of CXCR3 in T cells, and NK cells post MHV-3 infection was analyzed by flow cytometry. The hepatic mRNA level of the CXCR3-associated chemokines(CXCL9 and CXCL10) was detected by real-time PCR. A transwell migration assay was used to assess the chemotactic effect of MHV-3-infected hepatocytes and CXCL10 on the splenic lymphocytes. Results Following MHV-3 infection, the number of hepatic NK cells and T cells and the frequencies of hepatic NK cells and T cells expressing CXCR3 increased markedly; however, in the spleen and peripheral blood, they both decreased significantly. Moreover, the hepatic mRNAs levels of CXCL9 and CXCL10 were significantly elevated post infection. The transwell migration assay demonstrated that MHV-3-infected hepatocytes have the capacity to attract and recruit the splenic NK cells and T cells, and CXCL10 plays a key role in lymphocyte mobilization from the spleen. Conclusion Interactions between CXCR3 and its ligands (CXCL9 and CXCL10),especially CXCL10 may play a key role in the recruitment of intrahepatic lymphocytes and subsequent necroinflammation and acute hepatic failure in MHV-3 infection.  相似文献   

12.
BACKGROUND: CXCL12, a constitutive chemokine (ligand of CXCR4 and CXCR7), is expressed in the skin and airway epithelium and plays a significant role in allergic airway diseases. The pleiotropic effects of CXCL12 are enhanced by cofactors specific to the target cell. OBJECTIVE: We hypothesized that histamine, a major mediator of allergic reactions, could interact with CXCL12 to promote human mast cell (MC) migration. METHODS: The chemotactic effects of CXCL12 alone or in combination with histamine were evaluated on human precursor and mature MCs by using in vitro migration assays. RESULTS: CXCL12 exerts a chemotactic activity on both precursor and fully mature MCs. Histamine and supernatants from IgE-activated MCs enhanced CXCL12 chemotactic activity on the precursor MC population. The synergy between histamine and CXCL12 was not observed with mature MCs, CD4(+) T cells, and monocytes. Inhibition of histamine receptors pharmacologically or with specific small interfering RNA (siRNA) indicated that synergy between histamine and CXCL12 required the H(4) receptor. CONCLUSION: Histamine released by allergen-activated mature MCs might promote MC-rich allergic inflammation by enhancing recruitment of their precursors in tissues constitutively expressing CXCL12, including skin and airways. CLINICAL IMPLICATIONS: This work highlights a novel role of the H(4) receptor in the perpetuation of allergic responses and provides evidence for the utility of H(4) receptor antagonists in the treatment of allergic diseases.  相似文献   

13.
Treatment with interferon (IFN)-beta reduces clinical disease activity in multiple sclerosis (MS). Using flow cytometry, an enzyme-linked immunosorbent assay and a real-time polymerase chain reaction, we studied in vivo IFN-beta-induced effects on CD4(+) T-lymphocyte chemokine receptor expression as these influence central nervous system (CNS) transmigration and inflammation. At 'steady state' (>/=1 day after the most recent IFN-beta injection), IFN-beta treatment increased CD4(+) T-cell surface expression of CC chemokine receptor (CCR)4, CCR5 and CCR7 after 3 months of treatment, whereas that of CXC chemokine receptor (CXCR)3 was unaltered. Conversely, at 9-12 h after the most recent IFN-beta injection, CCR4, CCR5 and CCR7 expressions were unaltered, while CXCR3 expression was reduced. CD4(+) T-cell surface expression of CCR4 was significantly lower in untreated MS patients compared with healthy volunteers. Of the plasma chemokines, only CXCL10 was increased by IFN-beta treatment; CCL3, CCL4, CCL5 and CXCL9 were unaltered. CCR5 mRNA expression in blood mononuclear cells correlated with the expression of T-helper type 1 (Th1)-associated genes whereas CCR4 and CCR7 mRNA expression correlated with Th2 and immunoregulatory genes. In conclusion, IFN-beta treatment caused 'steady-state' increases of several chemokine receptors relevant for CD4(+) T-lymphocyte trafficking and function, possibly facilitating lymphocyte migration into the CNS. An important therapeutic effect of IFN-beta treatment may be the normalization of a decreased Th2-related CD4(+) T-cell CCR4 expression in MS patients. Surface chemokine receptor expression and CXCL10 varied according to the timing of blood sampling in relation to the most recent IFN-beta injection. Thus, it is imperative to distinguish acute effects of IFN-beta from steady-state effects.  相似文献   

14.
Lichen planus is a chronic inflammatory disease of the skin and oral mucosa in which the cell-mediated cytotoxicity is regarded as a major mechanism of pathogenesis. To understand its pathophysiology further, the present study examined the in situ expression of chemokines and chemokine receptors in oral lichen planus. Immunohistochemical analysis of 15 cases has consistently revealed that infiltrating CD4(+) and CD8(+) T cells in the submucosa predominantly expressed CCR5 and CXCR3. Furthermore, infiltrating T cells, particularly CD8(+) T cells, were positive for RANTES/CCL5 and IP-10/CXCL10, the ligands of CCR5 and CXCR3, respectively. By immunoelectron microscopy, these chemokines were localized in the cytolytic granules of CD8(+) T cells. Lesional keratinocytes also overexpressed the ligands of CXCR3, namely, MIG/CXCL9, CXCL10, and I-TAC/CXCL11. Our data suggest that the chemokines signaling via CCR5 and CXCR3, which are known to be selectively expressed by type 1 T cells, are predominantly involved in T-cell infiltration of oral lichen planus. Furthermore, the presence of CCL5 and CXCL10 in the cytolytic granules of tissue-infiltrating CD8(+) T cells expressing CCR5 and CXCR3 reveals a potential self-recruiting mechanism involving activated effector cytotoxic T cells.  相似文献   

15.
The chemokine CXCL12 promotes migration of human leukocytes, hematopoietic progenitors, and tumor cells. The binding of CXCL12 to its receptor CXCR4 triggers Gi protein signals for motility and integrin activation in many cell types. CXCR7 is a second, recently identified receptor for CXCL12, but its role as an intrinsic G-protein-coupled receptor (GPCR) has been debated. We report that CXCR7 fails to support on its own any CXCL12-triggered integrin activation or motility in human T lymphocytes or CD34(+) progenitors. CXCR7 is also scarcely expressed on the surface of both cell types and concentrates right underneath the plasma membrane with partial colocalization in early endosomes. Nevertheless, various specific CXCR7 blockers get access to this pool and attenuate the ability of CXCR4 to properly rearrange by surface-bound CXCL12, a critical step in the ability of the GPCR to trigger optimal CXCL12-mediated stimulation of integrin activation in T lymphocytes as well as in CD34(+) cells. In contrast, CXCL12-triggered CXCR4 signaling to early targets, such as Akt as well as CXCR4-mediated chemotaxis, is insensitive to identical CXCR7 blocking. Our findings suggest that although CXCR7 is not an intrinsic signaling receptor for CXCL12 on lymphocytes or CD34(+) cells, its blocking can be useful for therapeutic interference with CXCR4-mediated activation of integrins.  相似文献   

16.
17.
Influenza A virus replicates in the respiratory epithelium and induces an inflammatory infiltrate comprised of mononuclear cells and neutrophils. To understand the development of the cell-mediated immune response to influenza and how leukocyte trafficking to sites of inflammation is regulated, we examined the chemokine expression pattern in lung tissue from A/PR/8/34-infected C57BL/6 mice using an RNase protection assay. Monocyte chemoattractant protein 1, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, MIP-3alpha, regulated on activation, normal T expressed and secreted (RANTES), MIP-2, and interferon-inducible protein 10 (IP-10) mRNA expression was up-regulated between days 5 and 15 after infection, consistent with a role for these chemokines in leukocyte recruitment to the lung. Low levels of expression were detected for the CC chemokine receptors (CCR)2 and CCR5, whereas CXC chemokine receptor (CXCR)3 was significantly up-regulated by day 10 after infection, coinciding with peak inflammatory cell infiltration in the airways. As RANTES, IP-10, and their receptors were up-regulated during influenza virus infection, we investigated leukocyte recruitment and viral clearance in mice deficient in RANTES or CXCR3, the receptor for IP-10. Leukocyte recruitment and viral replication in influenza-infected RANTES knockout(-/-) mice were similar to that in control mice, showing that RANTES is not essential for the immune response to influenza infection. Similarly, leukocyte recruitment and viral replication in CXCR3-/- mice were identical to control mice, except at day 8 postinfection, where fewer lymphocytes, neutrophils, and eosinophils were detected in the bronchoalveolar lavage of CXCR3-/- mice. These studies suggest that although the chemokines detected may play a role in regulating leukocyte trafficking to the lung during influenza infection, some may be functionally redundant.  相似文献   

18.
T(h)1- and T(h)2-polarized human T cell clones display distinct patterns of chemokine receptor expression and selective chemokine responsiveness in vitro. We hypothesized that natural exposure to environmental grass pollen would induce differential systemic chemokine and chemokine receptor expression patterns in individuals with allergic rhinitis compared to healthy controls with type 2- and type 1-dominated responses to allergen respectively. To this end, we compared chemokine receptor expression on peripheral blood T cells directly ex vivo and plasma chemokine levels between these two groups of study participants prior to and during the grass pollen season. T(h)1-associated CXC chemokine receptor (CXCR) 3 was strongly expressed on >50% CD4(+)/CD45RO(+) cells of all subjects. When examined longitudinally, CXCR3 expression increased over the grass pollen season (P < 0.0001), solely in non-allergic subjects. In contrast, for both allergic and non-allergic subjects, CC chemokine receptor (CCR) 5 (T(h)1-associated) and CCR3 (T(h)2-associated) were weakly expressed on <10% of CD4(+)/CD45RO(+) cells both prior to and during the grass pollen season. Type 1 chemokines CXC chemokine ligand (CXCL) 9 and CXCL10 (monokine induced by IFN-gamma and IFN-gamma-inducible protein of 10 kDa: CXCR3 ligands), and type 2 chemokines CC chemokine ligand (CCL) 11 (eotaxin: CCR3 ligand), CCL17 (thymus and activation-regulated chemokine: CCR4 ligand) and CCL22 (monocyte-derived chemokine: CCR4 ligand) were readily detectable in the plasma of most participants. Systemic CXCL9 levels decreased from pre- to grass pollen season in allergics (P < 0.05), whereas CCL17 decreased in non-allergics (P < 0.05) over the same period. Taken together, these longitudinal data suggest a systemic shift to more intensely type 1-dominated responses in non-allergic individuals and, conversely, to more type 2-dominated responses in allergic individuals upon natural re-exposure to grass pollen.  相似文献   

19.
Chronic obstructive pulmonary disease (COPD) is a progressive disease associated with a cellular inflammatory response. CD8(+) T cells are implicated in COPD pathogenesis, and their numbers significantly correlate with the degree of airflow limitation. Dendritic cells (DCs) are important sentinel immune cells, but little is known about their role in initiating and maintaining the CD8 T-cell response in COPD. To investigate the mechanisms for CD8(+) T-cell recruitment to the lung, we used resected human lung tissue to analyze chemokine receptor expression by CD8(+) T cells and chemokine production by CD1a(+) DCs. Among 11 surveyed chemokine receptors, only CC chemokine receptor (CCR5), CXC chemokine receptor (CXCR) 3, and CXCR6 correlated with COPD severity as defined by criteria from the Global Initiative for Chronic Obstructive Lung Disease. The CD8(+) T cells displayed a Tc1, CD45RA(+) effector memory phenotype. CD1a(+) DCs produced the respective ligands for CCR5 and CXCR3, CCL3 and CXCL9, and levels correlated with disease severity. CD1a(+) DCs also constitutively expressed the CXCR6 ligand, CXCL16. In conclusion, we have identified major chemokine elements that potentially mediate CD8(+) T-cell infiltration during COPD progression and demonstrated that CD1a(+) mucosal-associated DCs may sustain CD8(+) T-cell recruitment/retention. Chemokine targeting may prove to be a viable treatment approach.  相似文献   

20.
The chemokine CXCL4/platelet factor-4 is released by activated platelets in micromolar concentrations and is a chemoattractant for leukocytes via an unidentified receptor. Recently, a variant of the human chemokine receptor CXCR3 (CXCR3-B) was described, which transduced apoptotic but not chemotactic signals in microvascular endothelial cells following exposure to high concentrations of CXCL4. Here, we show that CXCL4 can induce intracellular calcium release and the migration of activated human T lymphocytes. CXCL4-induced chemotaxis of T lymphocytes was inhibited by a CXCR3 antagonist and pretreatment of cells with pertussis toxin (PTX), suggestive of CXCR3-mediated G-protein signaling via Galphai-sensitive subunits. Specific binding by T lymphocytes of the CXCR3 ligand CXCL10 was not effectively competed by CXCL4, suggesting that the two are allotopic ligands. We subsequently used expression systems to dissect the potential roles of each CXCR3 isoform in mediating CXCL4 function. Transient expression of the CXCR3-A and CXCR3-B isoforms in the murine pre-B cell L1.2 produced cells that migrated in response to CXCL4 in a manner sensitive to PTX and a CXCR3 antagonist. Binding of radiolabeled CXCL4 to L1.2 CXCR3 transfectants was of low affinity and appeared to be mediated chiefly by glycosaminoglycans (GAGs), as no specific CXCL4 binding was observed in GAG-deficient 745-Chinese hamster ovary cells stably expressing CXCR3. We suggest that following platelet activation, the CXCR3/CXCL4 axis may play a role in T lymphocyte recruitment and the subsequent amplification of inflammation observed in diseases such as atherosclerosis. In such a setting, antagonism of the CXCR3/CXCL4 axis may represent a useful, therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号