首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox(R) were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site. Though the sediments were generally not lethal, there were still sublethal effects of contaminants in sediments at this site observed on amphipods in long-term exposures (associated with elevated concentrations of metals, PCBs, and PAHs).  相似文献   

2.
This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to sediment-dwelling organisms. An erratum to this article can be found at  相似文献   

3.
A Sediment Quality Triad (SQT) study consisting of chemical characterization in sediment, sediment toxicity and bioaccumulation testing, and benthic community assessments was performed in the Lower Hackensack River, New Jersey. Chemistry data in sediment and porewater were evaluated based on the equilibrium partitioning approach and other published information to investigate the potential for chemical effects on benthic organisms and communities. Relationships were supported by laboratory toxicity and bioaccumulation experiments to characterize chemical effects and bioavailability. Benthic community results were evaluated using a regional, multimetric benthic index of biotic integrity and four heterogeneity indices. Evidence of slight benthic community impairment was observed in five of nine sediment sample stations. Severe lethal toxicity to amphipods (Leptocheirus plumulosus) occurred in four of these five stations. Although elevated total chromium concentrations in sediment (as high as 1900 mg/kg) were the rationale for conducting the investigation, toxicity was strongly associated with concentrations of polycyclic aromatic hydrocarbons (PAHs) rather than total chromium. PAH toxic units (ΣPAH TU) in sediment and ΣPAH concentrations in laboratory organisms from the bioaccumulation experiment showed a clear dose–response relationship with toxicity, with 0% survival observed in sediments in which ΣPAH TU > 1–2 and ΣPAH concentrations in Macoma nasuta were >2 μmol/g, lipid weight. Metals detected in sediment and porewater, with the possible exception of copper, did not correlate with either toxicity or levels in tissue, likely because acid-volatile sulfide levels exceeded concentrations of simultaneous extracted metals at all sample locations. The study reinforces the value of using multiple lines of evidence approaches such as the SQT and the importance of augmenting chemical and biological analyses with modeling and/or other approaches to evaluate chemical bioavailability and toxicity of sediments.  相似文献   

4.
We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as part of an ongoing ecological risk assessment to determine remedial actions for contaminated sediments in Lake Roosevelt.  相似文献   

5.
A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.  相似文献   

6.
From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States-Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM - AVS); and (3) ∑SEM - AVS normalized to the fractional organic carbon (f(oc)) (i.e., ∑SEM - AVS/f(oc)). The most highly metal-contaminated sample (∑PEQ(TRM) = 132; ∑PEQ(SEM) = 54; ∑SEM - AVS = 323; and ∑SEM - AVS/(foc) = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate colonization studies in an experimental pond (8-week duration) indicated that two of the most metal-contaminated UCR sediments (dominated by high levels of sand-sized slag particles) exhibited decreased invertebrate colonization compared with sand-based reference sediments. Field-exposed SIR-300 resin samples also exhibited decreased invertebrate colonization numbers compared with reference materials, which may indicate behavioral avoidance of this material under field conditions. Multiple lines of evidence (analytical chemistry, laboratory toxicity, and field colonization results), along with findings from previous studies, indicate that high metal concentrations associated with slag-enriched sediments in the UCR are likely to adversely impact the growth and survival of native benthic invertebrate communities. Additional laboratory toxicity testing, refinement of the applications of sediment benchmarks for metal toxicity, and in situ benthic invertebrate studies will assist in better defining the spatial extent, temporal variations, and ecological impacts of metal-contaminated sediments in the UCR system.  相似文献   

7.
Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS.  相似文献   

8.
To assess the extent of sediment contamination in the Upper Mississippi River (UMR) system after the flood of 1993, sediment samples were collected from 24 of the 26 navigational pools in the river and from one site in the Saint Croix River in the summer of 1994. Whole-sediment tests were conducted with the amphipod Hyalella azteca for 28 days measuring the effects on survival, growth, and sexual maturation. Amphipod survival was significantly reduced in only one sediment (13B) relative to the control and reference sediments. Body length of amphipods was significantly reduced relative to the control and reference sediments in only one sample (26C). Sexual maturation was not significantly reduced in any treatment when compared to the control and reference sediments. No significant correlations were observed between survival, growth, and maturation to either the physical or chemical characteristics of the sediment samples from the river. When highly reliable effect range medians (ERMs) were used to evaluate sediment chemistry, 47 of 49 (96%) of the samples were correctly classified as nontoxic. These results indicate that sediment samples from the Upper Mississippi River are relatively uncontaminated compared to other areas of known contamination in the United States. Received: 6 July 1997/Accepted: 3 January 1998  相似文献   

9.
Sediment acid volatile sulfide (AVS) concentrations were measured in wadeable streams of a wide variety of ecoregions of western Europe (84 sites in 10 countries and nine ecoregions) to better understand spatial distribution and ecoregion relationships. Acid volatile sulfide has been shown to be a major factor controlling the bioavailability and toxicity of many common trace metals, such as Cd, Cu, Ni, Pb, and Zn. Sediment characteristics varied widely. The ratio of the sum of the simultaneously extracted metals (SEM) to AVS ranged from 0.03 to 486.59. The sigmaSEM-AVS ranged from -40.02 to 17.71 micromol/g. On a regional scale, sediment characteristics such as dominant parent soil material showed significant trends in AVS distribution and variation by ecoregion. Total Fe and Mn were correlated weakly with SEM concentrations. Three AVS model approaches (i.e., the SEM:AVS ratio, SEM-AVS difference, and carbon normalization) were compared at threshold exceedance levels of SEM/AVS > 9, SEM-AVS > 2, and SEM-AVS/foc > 150 micromol/g organic carbon (OC). Only 4.76% of the sediments exceeded all three AVS thresholds; 22.6% of the sediments exceeded two models; and 13% of the sediments exceeded one model only. Using the SEM:AVS, SEM-AVS, and fraction of organic carbon models, and including site-specific data and regional soil characteristics, ecoregions 1 (Portugal), 3 (Italy), 4 (Switzerland), and 9 (Belgium/Germany) had the highest potential metals toxicity; ecoregions 13 and 8 (Belgium/France) showed the lowest potential toxicity. However, because AVS can vary widely spatially and temporally, these data should not be considered as representative of the sampled ecoregions. The general relationship between AVS levels and sediment characteristics provides some predictive capability for wadeable streams in the European ecoregions.  相似文献   

10.
The feasibility of using lab-cultured amphipods Corophium multisetosum (Stock 1952) to evaluate the toxicity of contaminants present within marine sediments was studied. This was done by comparing the sensitivity of lab-cultured amphipods in a cadmium toxicity test and to toxic sediment samples, during a 10-days bioassay, with field collected individuals. Different responses were observed between field and cultured individuals. Cadmium test indicated high temporal variability in the LC50 values of field amphipods (2.40–6.55 mg L−1). Sensitivity of cultured amphipods was within the seasonal range of the field individuals (5.81 mg L−1, LC50). However, culture amphipods showed much lower sensitivity in toxic sediment samples. Our results indicate that sensitivity should be determined using a sediment matrix, if the assessment of toxicity is based upon bioassays performed with cultured burrower-amphipods.  相似文献   

11.
The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3.4 (based on concentrations of metals, PAHs, and PCBs) was exceeded in 33% of the sediment samples and a mean quotient of 0.63 was exceeded in 70% of the thirty sediment samples from the assessment area. A 50% incidence of toxicity has been previously reported in a database for sediment tests with H. azteca at a mean quotient of 3.4 in 10-day exposures and at a mean quotient of 0.63 in 28-day exposures. Among the Indiana Harbor samples, most of the samples with a mean PEC quotient above 0.63 ( i.e., 15 of 21; 71%) and above 3.4 ( i.e., 10 of 10; 100%) were toxic to amphipods. Results of this study and previous studies demonstrate that sediments from this assessment area are among the most contaminated and toxic that have ever been reported.  相似文献   

12.
Mean sediment quality guideline quotients (mean SQGQs) were developed to represent the presence of chemical mixtures in sediments and are derived by normalizing a suite of chemicals to their respective numerical sediment quality guidelines (SQGs). Mean SQGQs incorporate the number of SQGs exceeded and the degree to which they are exceeded and are used for comparison with observed biological effects in the laboratory or field. The current research makes it clear, however, that the number and type of SQGs used in the derivation of these mean quotients can influence the ability of mean SQGQ values to correctly predict acute toxicity to marine amphipods in laboratory toxicity tests. To determine the optimal predictive ability of mean SQGQs, a total of 18 different chemical combinations were developed and compared. The ability of each set of mean SQGQs to correctly predict the presence and absence of acute toxicity to amphipods was determined using three independent databases (n = 605, 2753, 226). Calculated mean SQGQ values for all chemical combinations ranged from 0.002 to 100. The mean SQGQ that was most predictive of acute toxicity to amphipods is calculated as SQGQ1 = ((sigma ([cadmium]/4.21 )([copper]/270)([lead]/ 12.18)([silver]/1.77)([zinc]/ 410)([total chlordane]/6)([dieldrin]/8)([total PAHoc]/1,800)([total PCB]/400))/9). Both the incidence and magnitude of acute toxicity to amphipods increased with increasing SQGQI values. To provide better comparability between regions and national surveys, SQGQ1 is recommended to serve as the standard method for combination of chemicals and respective SQGs when calculating mean SQGQs.  相似文献   

13.
The phototoxicity potential of PAH-contaminated field sediment was evaluated and compared to standard sediment toxicity test results. Marine sediments were collected from 30 sites along a presumed PAH sediment pollution gradient in Elliot Bay, WA. Standard 10-day acute and 28-day chronic sediment toxicity tests were conducted with the infaunal amphipods Rhepoxynius abronius and Leptocheirus plumulosus using mortality and the ability to rebury as endpoints. The survivors of these tests were then subjected to 1-h exposures to UV radiation with mortality and reburial again determined. The most highly toxic sediments identified in these experiments were evaluated further for toxicity and phototoxicity by serially diluting them with uncontaminated sediment and repeating the toxicity tests. Standard 10-day toxicity test results indicated that over 70% of the sites sampled in Elliot Bay exhibited measurable toxicity with nine sites being highly toxic to both species of amphipods. Results of standard 28-day chronic sediment toxicity tests were similar. In contrast, almost all of the sites were found to be highly phototoxic. Results indicated that exposure to UV increased toxicity five- to eightfold. This suggests that standard toxicity tests underestimate the potential ecological risk of PAH-contaminated sediments in animals exposed to sunlight. However, only when PAH contamination was between 0.05 and 1.0 toxic units would conducting a phototoxicity evaluation add information to that gained from conducting a standard sediment toxicity test alone. Received: 12 July 1999/Accepted: 18 October 1999  相似文献   

14.
The lethal and sublethal toxicity of dichlorodiphenyltrichloroethane (DDT) to the estuarine amphipod Leptocheirus plumulosus was determined using sediment spiked with 14C-labeled compound. Juvenile amphipods were exposed to concentrations up to 9.9 nmol/g dry weight (3.5 μg/g). Acute effects on survival were determined in a 10-day experiment. Chronic effects on survival, growth, and reproduction were assessed in a 28-day experiment. The DDT in the sediments transformed to dichlorodiphenyldichloroethane (DDD), dichlorodiphenyldichloroethylene (DDE), and polar metabolites during the 14-day sediment storage prior to exposing the amphipods. The mixture of DDT and its breakdown products (tDDT) was comprised mostly of DDT at the beginning of the exposures. DDD was the prevalent compound at termination of the 28-day exposure. Complete mortality occurred at sediment concentrations of tDDT as low as 7 nmol/g (2.3 μg/g) in both acute and chronic experiments. Most of the mortality appeared to have occurred within the first 4 days of exposure. No sublethal reductions in growth or reproduction were observed in the 28-day experiment. In the 10-day experiment, where amphipods did not receive supplemental food, growth was significantly increased in DDT treatments where survival was not affected. The concentration of tDDT in amphipod tissues was determined at exposure termination. In the 10-day experiment, a mean body residue of 14 nmol/g wet weight was associated with significant mortality (30%). Lower critical body residues were observed in the 28-day experiment, where the median lethal tissue residue (LR50) was 7.6 (6.8–8.4, 95% confidence interval) nmol/g wet weight. Based on previous studies, the lethal critical body residue for L. plumulosus is similar to those determined for freshwater amphipods and substantially lower than those determined for cladocerans and polychaetes. Received: 8 November 2000/Accepted: 19 March 2001  相似文献   

15.
The community structure of a benthic macroinvertebrate assemblage in a contaminated salt marsh was evaluated as part of an ecological characterization of a former chloralkali production facility in Georgia. Sample locations were chosen based on a gradient of the primary contaminants of concern, total mercury and polychlorinated biphenyls (PCBs), primarily Aroclor 1268. Sediment concentrations of Aroclor 1268 ranged from 2.3 to 150 mg/kg dry weight, while mercury concentrations ranged from 15 to 170 mg/kg dry weight in the study area. Mercury and PCBs were determined to be co-located in the sediments. Total organic carbon composition of the sediments was negatively associated with PCB and mercury concentrations. A total of 29 benthic taxa was identified in 49 samples; replicate samples were taken at each of five sampling locations. Mean infaunal density across all sampling locations was estimated at approximately 61,000 to 234,000 organisms m−2. Overall, polychaetes comprised 57% of the infaunal community with Manayunkia aestuarina as the dominant species. Oligochaetes, nematodes, crustacea, insects, and gastropods comprised 23.0, 18.0, 1.0, 0.7, and 0.2% of the overall benthic community, respectively. Density estimates of individual species between sampling locations showed no consistent patterns in response to pollutants. However, an analysis of higher taxonomic levels revealed some general trends. In uncontaminated areas, the benthic community was dominated by nematodes and oligochaetes, whereas moderate to highly contaminated areas were dominated by polychaetes and a smaller percentage of oligochaetes and nematodes. A trophic analysis of the same data set revealed that the community shifted from an evenly distributed percentage of surface and subsurface feeders in the uncontaminated areas to a community dominated by surface feeders in the more contaminated locations. Carnivores comprised from 0.13 to 0.90% of the trophic structure, with the percentage of carnivores generally decreasing with increasing contamination. Mercury and PCBs were bioaccumulating in representative marsh benthic invertebrates, presenting a potential source of contaminants to marsh consumers. Tissue PCB and tissue mercury concentrations were positively related to sediment PCB and mercury concentrations, respectively. A standard 14-day toxicity test using the amphipod Leptocheirus plumulosus showed no acute toxicity across the sampling locations. Received: 29 October 1998/Accepted: 3 May 1999  相似文献   

16.
The aim of this study was to evaluate sediments of the Dniester River, in the former Soviet republic of Moldova, for the occurrence of agricultural pesticides, polychlorinated biphenyls (PCBs), and heavy metals. In October 2001, sediment samples were collected at three locations of the Dniester River: upstream, downstream, and at the tributary of the River Byk. DDT and its metabolites were observed most frequently. Total DDT sediment concentrations ranged from 8.2 to 34.7 ng/g dry weight with the highest average concentration detected at the tributary location. Heptachlor epoxide (< 0.2–3.0 ng/g dry weight), chlordane (< 0.1–6.1 ng/g dry weight), endrin (< 0.2–2.5 ng/g dry weight), phosalone (< 0.2–1.1 ng/g dry weight), and methylparathion (< 0.2–16.8 ng/g dry weight) were also detected. Total PCB concentrations observed in sediments ranged from 68 to 763 ng/g dry wt. Total average PCB concentrations were significantly (p ≤ 0.004) higher for sediments from the downstream sampling sites compared to the upstream samples. Tetra- and trichlorobiphenyls accounted for 84 and 88% of the total residues measured in the downstream and tributary locations, respectively. In contrast, heptachlorobiphenyls were the prevailing homologues in sediments from the upstream sampling site, contributing 51% of the total PCB concentration. Predominant PCB homologues were: trichlorobiphenyl congener 28 and 37, tetrachlorobiphenyl congeners 44, 49, 52, 74, 77, and 81, and heptachlorobiphenyl congener 170. Sediment concentrations of ΣDDE (19.7 ng/g dry weight) in the tributary, heptachlor epoxide (3.0 ng/g dry weight) in the downstream, and nickel (128–170 μg/g dry weight) in all locations exceeded Probable Effect Levels (PELs) established for sediment quality in fresh water, indicating probable environmental stress and the potential for adverse effects to benthic organisms in the Dniester River.  相似文献   

17.
This study examined the uptake and effects of copper (Cu) from flooded agricultural soils to epibenthic amphipods (Hyalella azteca) using 10-day sediment toxicity tests. Soils were collected from 10 citrus agricultural sites in South Florida. One sediment toxicity test was conducted with one flooding of the 10 soils, and based on the results of this test a second sediment toxicity test was conducted with 4 of the soils, after four 14-day flooding and four 14-day drying intervals over 4 months. Sediment toxicity tests were conducted under flow-through conditions using U.S. EPA methodology. Effects on survival, dry weight, and whole-body Cu concentrations of H. azteca were determined. Cu concentrations in overlying water and sediment of both sediment toxicity tests exceeded regulatory criteria for aquatic organisms. Although survival of H. azteca was not consistently affected from the first to the second sediment toxicity tests, dry weight was consistently reduced and related to Cu concentrations in soil, overlying water, and pore water. Furthermore, whole-body tissue Cu concentrations were significantly higher in H. azteca in all 10 soil-water treatments in the first sediment toxicity test and in all 4 soil-water treatments in the second sediment toxicity test compared to controls. Whole-body tissue concentrations and effects on dry weight were related to Cu exposures in soil, overlying water, and pore water. In these managed soil-water systems, small fish consuming H. azteca with high concentrations of Cu may be at risk.  相似文献   

18.
High concentrations of Hg, Cd, Pb, Cu, and Zn were found in the euxinic sediment of the inner archipelago of Stockholm. In the sulfide-rich sediment, they are precipitated as metal sulfides with low dissolving capacity and bioavailability. In two experiments, the significance of acid-volatile sulfide (AVS) and dissolved sulfides for mobility, bioavailability, and toxicity of metals were studied by oxygenation of intact sediment cores. Influence of bioturbating deposit-feeding amphipods, that is, Monoporeia affinis, was examined on studied sediment processes. Results showed a low mobility of most metals except Cd and Zn. Bioturbation did not enhance mobility. Cd and Zn, released from the sediment, were not bioaccumulated in amphipods. In contrast, the less mobile metals Hg and Pb were bioaccumulated. A low toxicity of contaminated sediments, in terms of mortality and embryonic malformations of amphipods, was recorded. Results indicate that Cd, Zn, and Cu are comparatively unavailable after oxygenation of the metal sulfides. Similar results were recorded in contaminated sediments differing in redox potential, AVS, dissolved sulfides, and organic contents, suggesting that other metal ligands, in addition to AVS, are important for metal bioavailability and toxicity in anoxic and suboxic environments.  相似文献   

19.
The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and chemical partitioning in the sediment cores of the Pearl River Estuary (PRE) were studied. The concentrations of total metals, AVS, and SEM in the sediment cores were generally low in the river outlet area, increased along the seaward direction, and decreased again at the seaward boundary of the estuary. The amounts of AVS were generally greater in deeper sediments than in surface sediments. SEM/AVS was >1 in the surface sediments and in the river outlet cores. The ratio was <1 in the sediments down the profiles, suggesting that AVS might play a major role in binding heavy metals in the deep sediments of the PRE. The SEM may contain different chemical forms of trace metals in the sediments, depending on the metal reaction with 1M cold HCl in the AVS procedure compared with the results of the sequential chemical extraction. The SEM/AVS ratio prediction may overestimate trace metal availability even in the sediments with high AVS concentrations.  相似文献   

20.
This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of these organic compounds, are important to identify the causes of toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号