首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Flush osteochondral plugs can reduce contact pressure compared with an empty defect in the articular cartilage. However, incongruities such as graft angulation have an unknown effect. HYPOTHESIS: Incongruity of the articular cartilage after osteochondral transplantation affects articular surface contact pressure. STUDY DESIGN: Controlled laboratory study. METHODS: An 80-N load was applied with a material testing system for 120 seconds to the femoral condyles of 50 fresh swine knees. Contact pressures were measured using Prescale super low film. Five conditions were tested: (1) intact articular surface; (2) surface with 4.5-mm-diameter circular defect; (3) defect grafted with a flush 4.5-mm-diameter plug from the contralateral condyle; (4) defect grafted with a 30 degrees angled 4.5-mm-diameter plug, with lower edge flush (tip elevated with respect to the adjacent surface); and (5) defect grafted with a 30 degrees plug, with tip flush to the adjacent surface (lower edge sunk). Angled grafts were obtained using a rotational bearing vise aligned with a 30 degrees fixed-angle track. The film was digitally scanned and analyzed, and standard statistical tests were performed. RESULTS: Mean peak pressures of intact cartilage (8.57 kg/cm2), flush graft (9.81 kg/cm2), and sunk and angled graft (9.15 kg/cm2) were not significantly different (P < .5). The mean pressures for defects (12.01 kg/cm2) and the elevated angled graft (14.50 kg/cm2) were significantly (P < .05) higher than that of intact cartilage. CLINICAL RELEVANCE: Slightly sunk grafts were still able to reduce elevated contact pressures to normal levels. However, elevated angled grafts increased contact pressure. These results suggest that it is preferable to leave an edge slightly sunk rather than elevated.  相似文献   

2.
BACKGROUND: The use of osteochondral autograft plugs can be restricted because of limited amount of donor material. HYPOTHESIS: A small osteochondral autograft plug placed in the center of a large defect in a sheep femoral condyle will yield results superior to either an untreated or a bone-grafted defect. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve adult sheep underwent bilateral hindlimb surgery. On 1 limb, a 6-mm circular osteochondral autograft plug was placed in the center of a 10-mm circular defect in the medial femoral condyle. The gap between the plug and the condyle was filled with bone graft. On the contralateral side, the defect was either left untreated or filled with bone graft (control specimens). Animals were studied at 6 and 12 months under gross examination, high-resolution radiography, and histologic evaluation. RESULTS: At 6 months, 4 of 6 plugs healed and showed good maintenance of the joint surface and cartilage viability in the plugs. One plug fractured and resorbed, and 1 plug settled but healed. At 1 year, all 5 plugs healed, 1 having settled slightly (1 animal died earlier). The plug specimens showed better maintenance of the condyle contour at both times, and the central plug had hyaline-appearing cartilage. The control specimens were more irregular, had a fibrocartilage fill, and appeared flatter, although no gross cavitation or collapse was indicated. Composite cartilage scores on histologic evaluation were significantly higher for the plug specimens after 6 months (P = .02) and 1 year (P = .036) compared with controls. CONCLUSION: At 6 months and 1 year, a 6-mm osteochondral plug placed in a 10-mm defect better preserved the articular surface and contour of the condyle compared to untreated or bone-grafted defects. CLINICAL RELEVANCE: Osteochondral autograft plugs may be able to treat larger articular lesions without complete fill of the defect.  相似文献   

3.
Osteochondral transplantation is a successful treatment for full-thickness cartilage defects, which without treatment would lead to early osteoarthritis. Restoration of surface congruency and stability of the reconstruction may be jeopardized by early mobilization. To investigate the biomechanical effectiveness of osteochondral transplantation, we performed a standardized osteochondral transplantation in eight intact human cadaver knees, using three cylindrical plugs on a full-thickness cartilage defect, bottomed on one condyle, unbottomed on the contralateral condyle. Surface pressure measurements with Tekscan pressure transducers were performed after five conditions. In the presence of a defect the border contact pressure of the articular cartilage defect significantly increased to 192% as compared to the initially intact joint surface. This was partially restored with osteochondral transplantation (mosaicplasty), as the rim stress subsequently decreased to 135% of the preoperative value. Following weight bearing motion two out of eight unbottomed mosaicplasties showed subsidence of the plugs according to Tekscan measurements. This study demonstrates that a three-plug mosaicplasty is effective in restoring the increased border contact pressure of a cartilage defect, which may postpone the development of early osteoarthritis. Unbottomed mosaicplasties may be more susceptible for subsidence below flush level after (unintended) weight bearing motion.  相似文献   

4.
PURPOSE: To analyze the mechanical effects of autogenous osteochondral grafting procedures on articular cartilage. METHODS: The intensity, duration, and interval (indexes of stiffness, surface irregularity, and thickness) of the cartilage were assessed in a porcine model using an ultrasonic measurement system. In 7 of 12 knees, 6-mm-diameter plugs were harvested from the donor knees and grafted into 5-mm recipient holes at 3 different points per knee (21 plugs). In the remaining 5 knees, 5-mm plugs were harvested and returned to their original position (28 plugs). RESULTS: No significant differences in the intensity, duration, and interval of the cartilage were observed with the plugs before harvesting and after grafting by the paired t test. The 3 indexes of the 6- and 5-mm plugs that were grafted correlated significantly with those before they were. CONCLUSIONS: These results suggest that osteochondral graft surgery does not affect the stiffness, surface irregularity, and thickness of the cartilage of the plugs at time zero.  相似文献   

5.
6.
BACKGROUND: Biomechanical and histological properties of osteochondral transplantation have not been extensively examined. HYPOTHESIS: Osteochondral grafts have properties similar to native articular cartilage. STUDY DESIGN: Controlled laboratory study. METHODS: A 2.7 mm (diameter) x 4.0 mm (depth) osteochondral defect was created in 17 New Zealand white rabbit knees. An osteochondral graft, harvested from the contralateral knee, was transplanted into the defect. Eight rabbits were sacrificed each at 6 and 8 weeks. RESULTS: The 12-week grafts (1213.6 +/- 309.0 N/mm) had significantly higher stiffness than the 6-week grafts (483.1 +/- 229.1 N/mm; P <.001) and of normal cartilage (774.8 +/- 117.1 N/mm; P <.003). Stiffness of the 6-week grafts was significantly lower than normal cartilage (P <.036). At all time points, full-thickness defects had significantly lower stiffness than normal cartilage (P <.001). Histologically, transplanted grafts scored significantly higher than the full-thickness defects (P <.001). The defects showed inconsistent, fibrocartilage healing. The grafts demonstrated cartilage viability, yet with a persistent cleft between the graft and host. CONCLUSIONS: Osteochondral transplants undergo increased stiffness in the short term, with evidence of structurally intact grafts. Clinical Relevance: Osteochondral transplantation may be a viable treatment option; however, long-term investigation on graft function is necessary.  相似文献   

7.
PURPOSE: To describe the magnetic resonance imaging (MRI) signs of technically successful osteochondral plug transfer and to correlate the findings with histology using the Mankin score. MATERIAL AND METHODS: The study was done in a prospective animal experiment: 11 adult black-head sheep underwent surgical treatment with osteochondral plug transfer of a knee joint. The animals were killed 6 months later and MRI of the joints was done immediately. MRI was applied with a 1.5T MR scanner using a spin-echo (SE) T1-weighted, turbo spin-echo (TSE) T2-weighted with spectral fat suppression and a fat-suppressed 3D-spoiled gradient echo (GRE) sequence (manufacturer's acronym: FLASH) (TR 50.0 ms, TE 11.0 ms, flip 35 degrees). After MRI, all knee joints were dissected and a biopsy of the plug and the adjacent cartilage was taken. Classification of the cartilage biopsies was carried out in accordance with a modified Mankin score. RESULTS: Cartilage repairs with a hypointense cartilage signal in the FLASH 3D sequence were correlated with poor histological results (lower Mankin score). Histologically, the regions of cartilage with a hypointense signal showed a fibrocartilage-like repair tissue. Hyaline cartilage with well-defined layers had the same signal intensity in the FLASH sequence relative to adjacent hyaline cartilage. There were two plugs with a surface defect, graded as Outerbridge grade 1 in MRI and histology. Both had a poor outcome in the histologic Mankin score. Grade 2-4 lesions were not observed in the MRI study nor in the histologic study. CONCLUSION: MRI is a useful non-invasive tool for evaluating the morphologic status of osteochondral plug transfers. A good postoperative result of the cartilage repair was found histologically if an isointense cartilage signal of the graft was documented in the FLASH 3D sequence, and the graft had good congruity with the articular surface without defects.  相似文献   

8.
BACKGROUND: Exact reconstruction of an osteochondral defect by autogenous transplantation (mosaicplasty) is difficult given the variation in joint surface contour. Clinical and experimental studies do not show the extent to which incongruity can be tolerated in autografting. HYPOTHESIS: Grafted articular cartilage will hypertrophy to correct the incongruity created by recession of the transplanted surface. STUDY DESIGN: Controlled laboratory study. METHODS: To test the response of grafts to incongruities, osteochondral autografts were transplanted from the trochlea to the femoral condyle in adult male sheep stifle joints. In groups of 6 animals, graft surfaces were placed flush, countersunk 1 mm or countersunk 2 mm, then histologically analyzed 6 weeks after surgery. Cartilage thickness, condition of the articular surfaces, and preservation of hyaline characteristics were the primary features compared. RESULTS: Bony union, vascularization, and new bone formation were present in all grafts. Cartilage-to-cartilage healing did not occur. In flush specimens, cartilage changed minimally in thickness and histologic architecture. The specimens countersunk 1 mm demonstrated significant cartilage thickening (54.7% increase, P <.05). Chondrocyte hyperplasia, tidemark advancement, and vascular invasion occurred at the chondroosseous junction, and the surface remained smooth. Cartilage necrosis and fibrous overgrowth were observed in all grafts countersunk 2 mm. CONCLUSIONS: Minimally countersunk autografts possess a capacity for remodeling that can correct initial incongruities while preserving hyaline characteristics. Grafts placed deeper do not restore the contour or composition of the original articular surface. CLINICAL RELEVANCE: If preservation of normal hyaline cartilage is the objective, thin grafted articular cartilage can remodel, but the tolerance for incongruity is limited and probably less than that reported for an intra-articular fracture.  相似文献   

9.
BACKGROUND: The lowest contact pressure point is presumed to be the best site to harvest an osteochondral plug and minimize morbidity. HYPOTHESIS: Patellofemoral contact pressures are not uniform and are lowest along the medial patellofemoral articulation. STUDY DESIGN: Controlled laboratory study. METHODS: Seven cadaveric knees were tested with an electroresistive, dynamic pressure sensor placed onto the femoral side of the patellofemoral joint. The extensor mechanism was loaded with 89.1 N and 178.2 N, and the knee was manually cycled 3 times (0 degrees -105 degrees ) per load. Mean trochlear pressures were calculated. RESULTS: Mean contact pressures were greatest in the central trochlea (5.80 kgf/cm(2)), followed by the lateral (2.56 kgf/cm(2)) and medial trochlea (1.60 kgf/cm(2)) at 89.1 N (P <.05). At 178.2 N, pressures increased to 9.47, 5.81, and 2.75 kgf/cm(2), respectively (P <.05). Lateral trochlear pressures decreased moving distally from 1.25 to 0.50 kgf/cm(2) at 89.1 N and 4.57 to 1.29 kgf/cm(2) at 178.2 N. CONCLUSIONS: Contact pressures are lowest along the medial trochlea and decrease distally along the lateral trochlea. CLINICAL RELEVANCE: Osteochondral plugs from the medial femoral trochlea may be desirable if trochlear size permits. If harvesting from the lateral femoral trochlea, consider harvesting distally near the sulcus terminalis.  相似文献   

10.
Many middle-aged patients are affected by localized cartilage defects that are neither appropriate for primary, nor repeat biological repair methods, nor for conventional arthroplasty. This in vitro study aims to determine the peak contact pressure in the tibiofemoral joint with a partial femoral resurfacing device (HemiCAP®, Arthrosurface Inc., Franklin, MA, USA). Peak contact pressure was determined in eight fresh-frozen cadaveric specimens using a Tekscan sensor placed in the medial compartment above the menisci. A closed loop robotic knee simulator was used to test each knee in static stance positions (5°/15°/30°/45°) with body weight ground reaction force (GRF), 30° flexion with twice the body weight (2tBW) GRF and dynamic knee-bending cycles with body weight GRF. The ground reaction force was adjusted to the living body weight of the cadaver donor and maintained throughout all cycles. Each specimen was tested under four different conditions: Untreated, flush HemiCAP® implantation, 1-mm proud implantation and 20-mm defect. A paired sampled t test to compare means (significance, P ≤ 0.05) was used for statistical analysis. On average, no statistically significant differences were found in any testing condition comparing the normal knee with flush device implantation. With the 1-mm proud implant, statistically significant increase of peak contact pressures of 217% (5° stance), 99% (dynamic knee bending) and 90% (30° stance with 2tBW) compared to the untreated condition was seen. No significant increase of peak contact pressure was evaluated with the 20-mm defect. The data suggests that resurfacing with the HemiCAP® does not lead to increased peak contact pressure with flush implantation. However, elevated implantation results in increased peak contact pressure and might be biomechanically disadvantageous in an in vivo application.  相似文献   

11.
BACKGROUND: Grafting of autologous hyaline cartilage and bone for articular cartilage repair is a well-accepted technique. Although encouraging midterm clinical results have been reported, no information on the mechanical competence of the transplanted joint surface is available. HYPOTHESIS: The mechanical competence of osteochondral autografts is maintained after transplantation. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were filled with autografts (7.45 mm in diameter) in one femoral condyle in 12 mature sheep. The ipsilateral femoral condyle served as the donor site, and the resulting defect (8.3 mm in diameter) was left empty. The repair response was examined after 3 and 6 months with mechanical and histologic assessment and histomorphometric techniques. RESULTS: Good surface congruity and plug placement was achieved. The Young modulus of the grafted cartilage significantly dropped to 57.5% of healthy tissue after 3 months (P < .05) but then recovered to 82.2% after 6 months. The aggregate and dynamic moduli behaved similarly. The graft edges showed fibrillation and, in some cases (4 of 6), hypercellularity and chondrocyte clustering. Subchondral bone sclerosis was observed in 8 of 12 cases, and the amount of mineralized bone in the graft area increased from 40% to 61%. CONCLUSIONS: The mechanical quality of transplanted cartilage varies considerably over a short period of time, potentially reflecting both degenerative and regenerative processes, while histologically signs of both cartilage and bone degeneration occur. CLINICAL RELEVANCE: Both the mechanically degenerative and restorative processes illustrate the complex progression of regeneration after osteochondral transplantation. The histologic evidence raises doubts as to the long-term durability of the osteochondral repair.  相似文献   

12.
Osteochondral autograft transplantation in the porcine knee   总被引:1,自引:0,他引:1  
BACKGROUND: Knee articular cartilage defects are not an uncommon problem. Because articular cartilage is limited in its ability to heal, these defects are difficult to manage. HYPOTHESIS: Osteochondral autografts will provide less of a cavitary defect and more viable hyaline articular cartilage than will control knees. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral autografts were grossly and microscopically evaluated in the porcine knee and compared with a control at 6 weeks, 3 months, and 6 months. In 18 porcine specimens, a 1-stage surgical procedure was performed to harvest an osteochondral graft from a nonweightbearing articular cartilage surface, and the graft was transplanted into a defect created in the weight-bearing region of the medial femoral condyle. In the opposite control knee, a similar defect was created in the medial femoral condyle; an osteochondral transplant was not performed. Six pigs each were sacrificed at 6 weeks, 3 months, and 6 months. RESULTS: Gross inspection of the control knees showed a cavitary defect. The defect grossly decreased in size with fibrous ingrowth seen on microscopic analysis. An increasing amount of fibrous tissue and fibrocartilage was present at the 3 time periods. Gross inspection of the graft knee showed a healed osteochondral plug with no obvious displacement, cavitary defects, or surrounding necrotic tissue at each time interval. Microscopic analysis revealed the graft knee contained viable hyaline cartilage and healed viable subchondral bone. At all time intervals, 75% to 100% of the hyaline cartilage was viable in all specimens. In 6-month specimens, bridging cartilage at the autograft-host junction was incomplete in 50%, partial in 33%, and complete in 17%. CONCLUSION: Osteochondral autografts in the porcine knee resulted in viable hyaline cartilage for up to 6 months; there was inconsistent bridging hyaline cartilage at the periphery. Grafts appeared to heal into existing subchondral bone without displacement or evidence of necrosis. CLINICAL RELEVANCE: This type of osteochondral transplant can be used as a reliable reconstructive alternative for osteochondral defects.  相似文献   

13.
Although grafted osteochondral plugs should ideally have a smooth surface for mosaicplasty, surface incongruity is sometimes evident at the time of surgery. There may be no problem if there is depression of the grafted plugs, but graft protuberance may have an adverse effect. We studied five knees in five patients who had incongruity (protuberance or depression) of grafted osteochondral plugs at the time of mosaicplasty. The mean age at surgery was 36.6 years (range, 15–65 years), and the mean follow-up period was 32.9 months (range, 24–49 months). All patients underwent second-look arthroscopy after a mean post-surgical period of 14.8 months (range, 3–18 months). We divided the cases so that there were two in the protuberant group (P) and three in the depressed group (D). In P, all patients had a catching sensation about 4 months after surgery, and sometimes pain in the knee joint. Second-look arthroscopy revealed fissuring of the plugs and fibrillation around the recipient site. In D, there were no symptoms due to the depressed plugs. Second-look arthroscopy showed that the depressed areas were covered with fibrocartilage-like tissue, and that the joint surface was smooth. In conclusion, our clinical results and second-look arthroscopic evaluation suggest that isolated osteochondral plug depressions of not greater than 1 mm could still promote acceptable cartilage healing leading to good clinical outcomes. However, plug protuberance at mosaicplasty should always be avoided.  相似文献   

14.
Autologous osteochondral grafting (mosaicplasty) was performed on 18 patients with grade IV cartilage defects of the knee joint. The average age of these 12 men and 6 women was 36 years, follow-up time was 27.2 months and defect size was 252 mm2 (18×14 mm). After plain anteroposterior and lateral radiographs and MRI (STIR sequence) examination, diagnostic arthroscopy was performed, followed by autologous osteochondral grafting, avoidance of weight bearing for 6–8 weeks, physiotherapy and continuous passive motion. All patients showed, radiologically (MRI), a full coverage of the defect with articular surface congruity postoperatively. The postoperative ICRS score was normal for 12 and nearly normal for 6 patients. Seven patients showed early persistent joint effusion for an average of 5.3 months. Hyaline-like cartilage coverage was found in four patients on second-look arthroscopy. The transplantation of autologous osteochondral grafts is being applied in an effort to reconstruct the affected articular surface with properties similar to those of hyaline cartilage. This method retains the integrity and function of a damaged joint, providing promising results in terms of preventing the development of early arthritis in young patients.  相似文献   

15.
The purpose of this study was to examine the in vitro effects of three radiofrequency energy devices (two bipolar devices and one monopolar device) for the performance of thermal chondroplasty. Thirty-two fresh bovine femoral osteochondral sections (approximately 3 x 4 x 5 cm) from eight cows were divided into four groups (three treatment patterns and one sham-operated group with eight specimens per group). The three treatment patterns consisted of 1) radiofrequency energy delivered by a mechanical jig at 1 mm/sec in a contact mode (50 g of pressure), 2) radiofrequency energy delivered by a mechanical jig at 1 mm/sec in a noncontact mode (1 mm between probe tip and articular cartilage surface), and 3) radiofrequency energy smoothing of abraded cartilage during arthroscopic visualization. Thermal smoothing of the abraded cartilage surface was accomplished with all three devices. Significant chondrocyte death, as determined by confocal laser microscopy and cell viability staining, was observed with each device. The bipolar radiofrequency systems penetrated 78% to 92% deeper than the monopolar system. The bipolar systems penetrated to the level of the subchondral bone in all osteochondral sections during arthroscopically guided paintbrush pattern treatment. Radiofrequency energy should not be used for thermal chondroplasty until further work can establish consistent methods for limiting the depth of chondrocyte death while still achieving a smooth articular for thermal chondroplasty until further work can establish consistent methods for limiting the depth of chondrocyte death while still achieving a smooth articular surface.  相似文献   

16.
OBJECTIVE: To analyse the early effect of colloidal 90Y beta irradiation, as used for radiation synovectomy (RSV), on the viability of human chondrocytes in an ex-vivo model. METHODS: Twenty osteochondral plugs (6 mm in diameter) were procured from femoral condyles of an adult male donor and stored in normal saline at 4 degrees C. The cartilage surfaces of 10 plugs were contaminated with colloidal 90Y citrate corresponding to the standard knee RSV dose (185 MBq) matched for the sample size (430 kBq). The remaining 10 plugs served as controls. At days 1, 2, 3, 6 and 13, two osteochondral plugs from each group were stained for viability with live/dead probes and scanned under a confocal laser microscope. The ratios of viable (green channel) and non-viable (red channel) pixels were acquired in four cartilage depth regions and statistically analysed with a regression model. RESULTS: The irradiation did not significantly alter the viable/non-viable pixel ratio during the first 2 days, but longer exposures led to a significant and time progressive reduction from 8.7% (day 3) to 12.5% (day 13). The ratio was less affected deeper in the cartilage, where it increased about 1% for every 100 microm from the surface. CONCLUSIONS: Surface exposure of human cadaveric cartilage to a therapeutic dose of colloidal 90Y decreased chondrocyte viability, expressed as the viable/non-viable pixel ratio, in the early post-irradiation period. The findings established in the ex-vivo simulation may reflect the changes in knee cartilage occurring after RSV therapy.  相似文献   

17.
PURPOSE: To determine the influence of osteochondral defect size on defect rim stress concentration, peak rim stress, and load redistribution to adjacent cartilage over the weightbearing area of the medial and lateral femoral condyles in the human knee. METHODS: Eight fresh-frozen cadaveric knees were mounted at 30 degrees of flexion in a materials testing machine. Digital electronic pressure sensors were placed in the medial and lateral compartments of the knee. Each intact knee was first loaded to 700 N and held for 5 seconds. Dynamic pressure readings were recorded throughout the loading and holding phases. Loading was repeated over circular osteochondral defects (5, 8, 10, 12, 14, 16, 18, and 20 mm) in the 30 degrees weightbearing area of the medial and lateral femoral condyles. RESULTS: Stress concentration around the rims of defects 8 mm and smaller was not demonstrated, and pressure distribution in this size range was dominated by the menisci. For defects 10 mm and greater, distribution of peak pressures followed the rim of the defect with a mean distance from the rim of 2.2 mm on the medial condyle and 3.2 mm on the lateral condyle. An analysis of variance with Bonferroni correction revealed a statistically significant trend of increasing radius of peak pressure as defect size increased for defects from 10 to 20 mm (P = .0011). Peak rim pressure values did not increase significantly as defects were enlarged from 10 to 20 mm. Load redistribution during the holding phase was also observed. CONCLUSIONS: Rim stress concentration was demonstrated for osteochondral defects 10 mm and greater in size. This altered load distribution has important implications relating to the long-term integrity of cartilage adjacent to osteochondral defects in the human knee. Although the decision to treat osteochondral lesions is certainly multifactorial, a size threshold of 10 mm, based on biomechanical data, may be a useful adjunct to guide clinical decision making.  相似文献   

18.
To localize optimal donor regions for osteochondral graft transplantation, the chondral thickness and the radii of curvature of femoral condyles and the talar trochlea were determined. Optosil impressions of the articular surfaces of ten formalin fixed distal femora and talar domes were prepared. Therefrom, 5-mm thick frontal sections were made in order to measure the radii of curvature. Femoral condyles and talar trochleas were sliced sagittally into 2-mm thick sections. Chondral thickness was measured on x-rays. Talar cartilage thickness measured 0.7 to 2.0 mm. Cartilage thickness of the femoral condyles was 0.7 mm to 3.1 mm. The smallest radial values of the talar surface were proximal and distal. Flattening of the medial and lateral talar margins and of the central articular surface was evident. For the femur, the curvature was greater in the edge areas than in the central region. For talar defects, the grafts should be taken from the condylar edges, where the chondral thickness is decreased.  相似文献   

19.
This study characterizes the donor and recipient sites involved in osteochondral autograft surgery of the knee with respect to articular cartilage contact pressure, articular surface curvature, and cartilage thickness. Five cadaveric knees were tested in an open chain activity simulation and kinematic data were obtained at incremental knee flexion angles from 0 degrees to 110 degrees. Surface curvature, cartilage thickness, and contact pressure were determined using a stereophotogrammetry method. In all knees, the medial trochlea, intercondylar notch, and lateral trochlea demonstrated nonloadbearing regions. Donor sites from the distal-medial trochlea were totally nonloadbeadng. For the intercondylar notch, lateral trochlea, and proximal-medial trochlea, however, the nonloadbearing areas were small, and typical donor sites in these areas partially encroached into adjacent loadbearing areas. The lateral trochlea (77.1 m(-1)) was more highly curved than the typical recipient sites of the central trochlea (23.3 m(-1)), medial femoral condyle (46.8 m(-1)), and lateral femoral condyles (42.9 m(-1)) (P < 0.05). Overall, the donor sites had similar cartilage thickness (average, 2.1 mm) when compared with the typical recipient sites (average, 2.5 mm). The lateral trochlea and medial trochlea curvatures were found to better match the recipient sites on the femoral condyles, while the intercondylar notch better matched the recipient sites of the central trochlea. The distal-medial trochlea was found to have the advantage of being nonloadbearing. Preoperative planning using the data presented will assist in more conforming, congruent grafts, thereby maximizing biomechanical function.  相似文献   

20.
The present study was conducted to evaluate the influence of bone-plug length on the primary stability of patellar tendon-bone grafts, using a femoral press-fit fixation technique. Forty-eight human PTB grafts with a patellar bone-plug length of 15 mm and 25 mm were obtained from 24 human cadavers (mean age 72 years) and implanted to porcine femora in a press-fit fixation technique. Tensile loading was performed at 10 mm/s until failure at varying loading angles of 0°, 30° and 60°. Compared to 25 mm, a significant decrease of primary graft stability was recorded in the testing of 15-mm bone plugs. For both plug lengths, the ultimate load to failure increased with rising the loading angles. While axial graft loading exclusively caused plug dislocation, the predominant mode of failure was tendon rupture at 60° loading angle. We conclude that 15-mm bone plugs do not result in a sufficient stability for early aggressive rehabilitation and therefore 25-mm bone plugs are recommended for the femoral press-fit technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号