首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The organization of the synaptic pathways underlying midbrain tegmentum influence over the facial musculature was studied with the use of an acute electrophysiological approach in the cat. Under pentobarbital sodium anesthesia, synaptic potentials were recorded intracellularly in antidromically identified facial motoneurons following electrical stimulation of the paralemniscal zone. The cells of origin and the pathways responsible for the potentials evoked from the paralemniscal zone were defined with the use of retrograde transport of horseradish peroxidase (HRP). The putative role of the paralemniscal zone with regard to the production of disynaptic, tectally evoked potentials in facial motoneurons was investigated both by inactivating this nucleus with injections of lidocaine and by making acute brain stem lesions to sever the paralemniscal-facial and other afferent pathways. 2. Following paralemniscal stimulation, monosynaptic, excitatory postsynaptic potentials (EPSPs) with latencies ranging from 0.6 to 0.9 ms, steep rising phases, and amplitudes in excess of 4.0 mV were recorded in motoneurons of the temporal and auriculoposterior subdivisions, which supply the pinna muscles. Smaller amplitude EPSPs (less than 1.0 mV) with monosynaptic latencies were observed in the zygomatic subdivision. Polysynaptic EPSPs with latencies ranging from 1.0 to 1.8 ms were also observed in all three of these subdivisions. However, only long-latency EPSPs, arriving at 2.0 ms or later, were present in ventral subdivision motoneurons. 3. Inhibitory postsynaptic potentials (IPSPs) were also frequently recorded in facial motoneurons after paralemniscal stimulation. Monosynaptic IPSPs with latencies ranging from 0.8 to 1.2 ms and amplitudes in excess of 4.0 mV were recorded in facial motoneurons of the temporozygomatic and auriculoposterior subdivisions, as were polysynaptic IPSPs with latencies ranging from 1.2 to 1.8 ms. IPSPs were sometimes observed in combination with a smaller, shorter latency EPSPs. Only long-latency IPSPs of greater than 2.0 ms were recorded in ventral subdivision motoneurons. In all cases, both the EPSPs and the IPSPs were graded in character and could be augmented by multiple stimuli. 4. The contralateral paralemniscal zone and the supraoculomotor area, bilaterally, represented the two most prominent afferent sources labeled after HRP injection of the facial nucleus. The superior colliculus and numerous reticular formation regions were also identified as facial nucleus afferents by the presence of retrogradely labeled cells. The retrogradely labeled cells in the paralemniscal zone exhibited heterogeneous soma size. HRP-labeled axons of the paralemniscal-facial pathway were observed to cross the midline by traveling ventral to the brachium conjunctivum in the caudal mesencephalon.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Summary Intra- and extra-cellular responses were recorded with glass microelectrodes from motoneurons in the VIth cranial nuclei of anesthesized rabbits. VIth nucleus motoneurons were identified by their antidromic activation from the VIth nerve. In these motoneurons stimulation of the ipsilateral VIIIth nerve produced IPSPs with disynaptic latencies (mean and S.D., 1.08 ± 0.1 msec) while stimulation of the contralateral VIIIth nerve produced EPSPs with disynaptic latencies (mean and S.D., 1.20 ± 0.18 msec). Correspondingly, direct stimulation of the ipsilateral medial vestibular nucleus (MV), produced IPSPs with monosynaptic latencies (mean and S.D., 0.61±0.15 msec) while direct stimulation of the contralateral MV produced EPSPs with monosynaptic latencies (mean and S.D., 0.61±0.09 msec). Further, with the recording electrode placed within the VIth nucleus to observe the extracellular potentials corresponding to the intracellularly recorded IPSPs and EPSPs, the medulla was systematically tracked with a monopolar stimulating electrode. It was demonstrated that the inhibitory relay cells could be effectively stimulated in the rostral half of the ipsilateral MV and the excitatory relay cells in the rostral half of the contralateral MV.Pharmacological investigation suggested that the inhibitory transmitter involved in the vestibular inhibition is gamma amino-butyric acid or a related substance.Electric stimulation of the flocculus produced a prominant depression in the inhibitory vestibulo-ocular reflex pathway to the VIth nucleus, while the excitatory pathway was free of any similar flocculus inhibition.  相似文献   

3.
The neural organization of the pathways from the superior colliculus (SC) to trochlear motoneurons was analyzed in anesthetized cats using intracellular recording and transneuronal labeling techniques. Stimulation of the ipsilateral or contralateral SC evoked excitation and inhibition in trochlear motoneurons with latencies of 1.1-2.3 and 1.1-3.8 ms, respectively, suggesting that the earliest components of excitation and inhibition were disynaptic. A midline section between the two SCs revealed that ipsi- and contralateral SC stimulation evoked disynaptic excitation and inhibition in trochlear motoneurons, respectively. Premotor neurons labeled transneuronally after application of wheat germ agglutinin-conjugated horseradish peroxidase into the trochlear nerve were mainly distributed ipsilaterally in the Forel's field H (FFH) and bilaterally in the interstitial nucleus of Cajal (INC). Consequently, we investigated these two likely intermediaries between the SC and trochlear nucleus electrophysiologically. Stimulation of the FFH evoked ipsilateral mono- and disynaptic excitation and contralateral disynaptic inhibition in trochlear motoneurons. Preconditioning stimulation of the ipsilateral SC facilitated FFH-evoked monosynaptic excitation. Stimulation of the INC evoked ipsilateral monosynaptic excitation and inhibition, and contralateral monosynaptic inhibition in trochlear motoneurons. Preconditioning stimulation of the contralateral SC facilitated contralateral INC-evoked monosynaptic inhibition. These results revealed a reciprocal input pattern from the SCs to vertical ocular motoneurons in the saccadic system; trochlear motoneurons received disynaptic excitation from the ipsilateral SC via ipsilateral FFH neurons and disynaptic inhibition from the contralateral SC via contralateral INC neurons. These inhibitory INC neurons were considered to be a counterpart of inhibitory burst neurons in the horizontal saccadic system.  相似文献   

4.
Summary In the anesthetized cat, the posterior canal nerve (PCN) was stimulated by electric pulses and synaptic responses were recorded intracellularly in the three antagonistic pairs of extraocular motoneurons. Pure reciprocal effects were obtained in the motoneurons innervating the antagonistic pair of ipsilateral oblique muscles and the antagonistic pair of contralateral vertical rectus muscles. These responses consisted of low threshold disynaptic excitatory postsynaptic potentials (EPSPs) in either the contralateral superior oblique (c-SO) (trochlear) or contralateral inferior rectus (c-IR) motoneurons and of disynaptic inhibitory postsynaptic potentials (IPSPs) in either the ipsilateral inferior oblique (i-IO) or ipsilateral superior rectus (i-SR) motoneurons. In addition, disynaptic IPSPs were also found in (i-SO) motoneurons. Mixtures of low threshold (dior trisynaptic) EPSPs and IPSPs were found in all other extraocular motoneurons except for the contralateral lateral rectus (c-LR) motoneurons. These results may afford a basis for the characteristic eye movements induced by vertical canal nerve stimulation.  相似文献   

5.
Summary Field potentials and postsynaptic potentials were recorded in the vestibular and abducens nuclei and neurons following vestibular nerve stimulation in anesthetized newborn kittens (within 72 h after birth). Stimulation of the ipsilateral vestibular nerve evoked an initial P wave and an N1 field potential in the vestibular nuclei. No N2 potential was evoked. Latencies of the peak of the P wave, the onset and the peak of the N1 potential were 0.99±0.16 ms, 1.66±0.18 ms, and 2.51±0.23 ms, respectively. Ipsilateral vestibular nerve stimulation evoked monosynaptic excitatory postsynaptic potentials (EPSPs) and polysynaptic inhibitory postsynaptic potentials (IPSPs) in vestibular nuclear neurons. Stimulation of the contralateral vestibular nerve evoked polysynaptic IPSPs in vestibular nuclear neurons. In abducens motoneurons, ipsilateral vestibular nerve stimulation evoked monosynaptic EPSPs and disynaptic IPSPs; contralateral vestibular nerve stimulation produced disynaptic EPSPs. We conclude that short circuit pathways of the vestibul-ovestibular and vestibulo-ocular reflex arc are present in the kitten already at birth.Supported by the Japanese Ministry of Education, Science, and Culture Grants-in-Aid for Scientific Research nos. 572 140 30 and 575 700 53  相似文献   

6.
Postsynaptic potentials were recorded from motoneurons in the facial nucleus in response to stimulation of the vestibular and trigeminal nerves. The motoneurons were identified by antidromic activation from their peripheral axons. Disynaptic excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) and mixed EPSP/IPSPs were recorded in response to vestibular nerve stimulation, ranging in latency from 0.9 to 2.1 ms, with most at 1.5 ms. Activity in secondary vestibular axons recorded within the facial nucleus occurred at a latency of 0.7-1.1 ms. The amplitudes of the vestibular postsynaptic potentials were small, generally less than a millivolt, but double shocks produced marked summation. The average time to peak of ipsilateral vestibular EPSPs, 1.1 ms, was faster than that of either ipsilateral IPSPs, 1.6 ms, or contralateral EPSPs, 1.4 ms. The double-spiked vestibular activity was detectable in double-peaked PSPs. Disynaptic EPSPs, ranging in latency from 2.0 to 3.0 ms, were recorded in response to trigeminal nerve stimulation. The average time to peak was 1.3 ms. The multiple-spiked activity of the trigeminal neurons was detectable in multipeaked EPSPs. Inhibitory ipsilateral effects (Vi IPSPs) were recorded twice as often as excitatory ipsilateral effects (Vi EPSPs), being found in 29% versus 15% of the motoneurons. Contralateral effects were found in 13% of the motoneurons studied, and almost all were excitatory. Analysis of synaptic potential shapes suggested that the excitatory and inhibitory vestibular synapses probably contact distal dendrites preferentially, with the excitatory connections being somewhat closer to the soma. The trigeminal inputs probably contact the facial motoneurons more extensively near the soma. Horseradish peroxidase was injected into the facial nucleus, and retrograde uptake by vestibular neurons was studied. The majority of filled vestibular neurons was ipsilateral to the injection site, especially in the medial vestibular nucleus, ventral y group, and supravestibular nucleus. On the contralateral side, filled vestibular cells were found almost exclusively in the medial nucleus. Filled cells were also noted in the trigeminal nucleus, predominantly ipsilaterally at all rostrocaudal levels. We have demonstrated monosynaptic projections to facial motoneurons from both vestibular and trigeminal nuclei. The trigeminal input is likely to be involved in facial reflexes, especially blinking and grimacing. The afferent vestibular population overlaps that going to the oculomotor and cervical motoneurons; these projections may be collaterals of single vestibular neurons.4+.  相似文献   

7.
Synaptic effects of superior colliculus stimulation on medial rectus motoneurons were studied in encéphale isolé cats. Excitatory postsynaptic potentials were observed in all medial rectus motoneurons located on the side of stimulation, whereas contralateral motoneurons received mainly inhibition. The latencies of stimulus-locked excitatory and inhibitory postsynaptic potentials were in the ranges of 1.3–2.6 and 2.0–3.5 ms. respectively, i.e. on the average longer than in abducens motoneurons. Acute lesions of paramedian structures at bulbar levels did not affect the excitatory responses. Pontine transection at the level of the abducens nucleus reduced the mass response of medial rectus motoneurons, but failed to abolish short latency excitatory potentials in motoneurons studied intracellularly.The present data suggest that the shortest excitatory pathway from the superior colliculus to medial rectus motoneurons is disynaptic. The inhibitory pathway appears to contain at least one additional interneuron. The reciprocal pattern of synaptic action on antagonistic (left and right) medial rectus motoneurons indicates that collicular stimulation activated connections responsible for conjugate contraversive eye movements. According to the results of transection experiments. bulbar structures cannot be regarded as the main relay site of tectofugal effects on ocular motoneurons. Although the exact location of relay neurons could not he at present established. the observed timing of synaptic events is not inconsistent with the idea that tectal influences on medial rectus and abducens motoneurons are mediated by common internuncial cells in the parabducens region.  相似文献   

8.
Stimulation of the contralateral red nucleus evoked monosynaptic EPSPs in 14 of 82 ventral spinocerebellar tract neurones. In some of these cells the monosynaptic EPSP was followed by a disynaptic IPSP. The remaining cell population received di- or polysynaptic PSPs from the rubrospinal tract, either EPSPs or IPSPs or both. Convergence of the rubrospinal tract onto interneurones of the segmental pathways projecting to VSCT cells was demonstrated. Rubrospinal volleys facilitated disynaptic Ia IPSPs evoked in VSCT neurones from both flexors and extensors, as well as disynaptic Ib IPSPs. Facilitation of the Ia interneurones was disynaptic whereas facilitation of Ib interneurones was monosynaptic. Disynaptic rubrospinal EPSPs and IPSPs were facilitated by volleys in ipsi- as well as in contralateral cutaneous and high threshold muscle afferents. The complex pattern of projections from the rubrospinal tract onto VSCT neurones and the related reflex pathways gives further support to the hypothesis that these tract cells convey information on transmission through interneurones of the spinal segmental mechanisms.  相似文献   

9.
Summary Synaptic potentials were recorded in identified extraocular motoneurons in anesthetized cats, following stimulation of ampullary nerves of the anterior and posterior semicircular canals.Superior rectus motoneurons received disynaptic EPSPs and IPSPs following stimulation of the two ampullary nerves of the anterior and posterior semicircular canals, respectively. In the inferior rectus motoneurons, the effects of anterior and posterior semicircular canal stimulation were a mirror image of those on superior rectus motoneurons.Inferior oblique motoneurons developed disynaptic EPSPs and IPSPs following stimulation of the ampullary nerves of the contralateral anterior and ipsilateral posterior semicircular canals, respectively. In addition, some inferior oblique motoneurons displayed disynaptic IPSPs following stimulation of the contralateral ampullary nerve of the posterior semicircular canal. In the superior oblique (trochlear) motoneurons, disynaptic EPSPs and IPSPs were recorded after stimulation of the contralateral posterior and ipsilateral anterior semicircular canals, respectively.There was no significant connection between the ampullary nerves of the vertical semicircular canals and motoneurons innervating lateral and medial rectus muscles.Abbreviations i- Ipsilateral to the recorded motoneuron - c- Contralateral to the recorded motoneuron - ACN Ampullary nerve of the anterior semicircular canal - HCN Ampullary nerve of the horizontal semicircular canal - PCN Ampullary nerve of the posterior semicircular canal - IO Inferior oblique - IR Inferior rectus - LR Lateral rectus - MR Medial rectus - SO Superior oblique - SR Superior rectus - EPSP Excitatory postsynaptic potential - IPSP Inhibitory postsynaptic potential - PSP Postsynaptic potential - MLF Medial longitudinal fasciculus  相似文献   

10.
Summary Field and intracellular potentials evoked in the trochlear nucleus (TN) of the cat following stimulation of the ipsi and contralateral vestibular nerves (Vi, Vc) and the vestibular nuclei (VN) were recorded with microelectrodes.Single shock stimulation of either Vc or Vi evokes in the TN the presynaptic potentials, n1 and n2, which are generated by the action currents of repetitively firing axons of vestibular neurons reaching the TN via the medial longitudinal fascicle (MLF). In the case of Vc stimulation a slow negative potential (n3) follows the presynaptic components of the field complex while a slow positive potential (p-wave) is evoked by Vi stimuli. The n3 wave is composed of the excitatory synaptic and action currents generated in trochlear motoneurons (TMns) while the p-wave is produced by the inhibitory synaptic current. Disynaptic EPSPs and IPSPs are recorded intracellularly in TMns following Vc and Vi stimulation, respectively. Each synaptic potential shows a biphasic rising phase due to the synchronous n1 and n2 presynaptic barrage.On stimulation of the ipsilateral superior and contralateral medial vestibular nuclei, the latencies of the IPSPs and EPSPs, respectively, are reduced to the monosynaptic range. Thus, it has been directly demonstrated that the VN are the mediating links for both the short latency excitatory and inhibitory vestibuloocular reflexes. The above data suggest that IPSPs are for the most part generated at or near the soma of the motoneurons. As for the site of generation of the EPSPs, a predominantly dendritic origin is suggested.The organization of the neuronal circuitry is discussed in relation to the vestibular induced eye movements.  相似文献   

11.
Summary Stimulation of the brain stem in cats anesthetized with pentobarbital evoked short-latency IPSPs in many neck motoneurons. From the segmental delay of these IPSPs, and from comparison of their latencies with those of monosynaptic EPSPs evoked in the same motoneuron population by stimulation of the brain stem, it is concluded that the IPSPs are monosynaptic and are produced by descending inhibitory fibers.As many as thirteen electrodes were inserted into the medulla and pons to compare threshold stimuli required to evoke monosynaptic IPSPs from different locations. The points with the lowest threshold were in the medial vestibular nucleus and the medial longitudinal fasciculus. The IPSPs are apparently produced by fibers that originate in the medial vestibular nucleus and reach the upper cervical segments via the MLF.Electrical stimulation of the ipsilateral labyrinth often produces disynaptic IPSPs in neck motoneurons, very probably by means of a relay in the medial nucleus. This inhibitory pathway between labyrinth and neck motoneurons, together with the previously described excitatory pathway relaying in Deiters' nucleus, provides some of the pathways utilized by the labyrinth in regulation of head position.  相似文献   

12.
Stimulation of the contralateral red nucleus evoked monosynaptic EPSPs in 14 of 82 ventral spinocerebellar tract neurones. In some of these cells the monosynaptic EPSP was followed by a disynaptic IPSP. The remaining cell population received di- or polysynaptic PSPs from the rubrospinal tract, either EPSPs or IPSPs or both. Convergence of the rubrospinal tract onto interneurones of the segmental pathways projecting to VSCT cells was demonstrated. Rubrospinal volleys facilitated disynaptic Ia IPSPs evoked in VSCT neurones from both flexors and extensors, as well as disynaptic Ib IPSPs. Facilitation of the Ia interneurones was disynaptic whereas facilitation of Ib interneurones was monosynaptic. Disynaptic rubrospinal EPSPs and IPSPs were facilitated by volleys in ipsi- as well as in contralateral cutaneous and high threshold muscle afferents. The complex pattern of projections from the rubrospinal tract onto VSCT neurones and the related reflex pathways gives further support to the hypothesis that these tract cells convey information on transmission through interneurones of the spinal segmental mechanisms.  相似文献   

13.
Summary The external urethral sphincter (EUS) and external anal sphincter (EAS) are striated muscles that function to maintain urinary and fecal continence respectively. This study examines the short-latency synaptic input from a variety of cutaneous perineal and muscle/cutaneous hindlimb afferents to the motoneurons innervating these muscles. Intracellular recordings from anti dromically identified EUS and EAS motoneurons provided records of the postsynaptic potentials (PSPs) produced by electrical stimulation of peripheral afferents in decerebrate or chloralose anesthetized cats. Excitatory postsynaptic potentials (EPSPs) were produced in most EUS and EAS motoneurons by stimulation of ipsilateral and contralateral sensory pudendal (SPud) and superficial perineal (SPeri) cutaneous nerves. The shortest cen tral latencies in the study (1.5 ms) suggest that there are disynaptic excitatory, in addition to tri-and oligosynap tic, connections within these reflex pathways. EPSPs mixed with longer latency inhibitory potentials (E/I PSPs) were observed in both motoneuron populations but were found more frequently in EAS motoneurons. These E/I PSPs were evoked more often from contralat eral afferents than from ipsilateral afferents. Cutaneous nerves innervating the hindlimb had weaker if any synaptic effects on sphincter motoneurons. Stimulation of ipsilateral hindlimb muscle nerves rarely produced PSPs in EUS motoneurons and had weak synaptic actions on EAS motoneurons. In 2 of 22 animals (both decerebrate), large inhibitory potentials predominated over early small EPSPs suggesting that inhibitory pathways from these afferents to sphincter motoneurons can be released under certain circumstances. The relation between the segmental afferents to EUS and EAS motoneurons and the neural circuitry influencing them during micturition and defecation are discussed.  相似文献   

14.
Coupling between pyramidal tract (PT) neurones and ipsilateral hindlimb motoneurones was investigated by recording from commissural interneurones interposed between them. Near maximal stimulation of either the left or right PT induced short latency EPSPs in more than 80% of 20 commissural interneurones that were monosynaptically excited by reticulospinal tract fibres in the medial longitudinal fascicle (MLF). The EPSPs were evoked at latencies that were only 1–2 ms longer than those of EPSPs evoked from the MLF, compatible with a disynaptic coupling between PT fibres and these commissural interneurones. EPSPs evoked by PT stimulation were frequently associated with IPSPs which either followed or preceded the EPSPs. The latencies of the IPSPs (on average about 1 ms longer than latencies of the earliest EPSPs) indicated that they were mediated via single additional inhibitory interneurones. Records from a sample of nine commissural interneurones from a different population (with monosynaptic input from group I and/or II muscle afferents, and disynaptically excited from the MLF) suggest that actions of PT fibres on such interneurones are weaker because only four of them were excited by PT stimuli and at longer latencies. By demonstrating disynaptic coupling between PT neurones and commissural interneurones via reticulospinal fibres, the results provide a direct demonstration of trisynaptic coupling in the most direct pathways between PT neurones and ipsilateral motoneurones, and thereby strengthen the proposal that the double crossed pathways between PT neurones and ipsilateral motoneurones might be used to replace crossed actions of damaged PT neurones.  相似文献   

15.
The synaptic pathways of mesencephalic locomotor region (MLR)-evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) recorded from lumbar motoneurons of unanesthetized decerebrate cats during fictive locomotion were analyzed prior to, during, and after cold block of the medial reticular formation (MedRF) or the low thoracic ventral funiculus (VF). As others have shown, electrical stimulation of the MLR typically evoked short-latency excitatory or mixed excitatory/inhibitory PSPs in flexor and extensor motoneurons. The bulbospinal conduction velocities averaged approximately 88 m/s (range: 62-145 m/s) and segmental latencies for EPSPs ranged from 1.2 to 10.9 ms. The histogram of segmental latencies showed three peaks, suggesting di-, tri-, and polysynaptic linkages. Segmental latencies for IPSPs suggested trisynaptic or polysynaptic transmission. Most EPSPs (69/77) were significantly larger during the depolarized phase of the intracellular locomotor drive potential (LDP), and most IPSPs (35/46) were larger during the corresponding hyperpolarized phase. Bilateral cooling of the MedRF reversibly abolished locomotion of both hindlimbs as measured from the electroneurogram (ENG) activity of muscle nerves and simultaneously abolished or diminished the motoneuron PSPs and LDPs. Unilateral cooling of the VF blocked locomotion ipsilaterally and diminished it contralaterally with concomitant loss or decrease the motoneuron PSPs and LDPs. Relative to the side of motoneuron recording, cooling of the ipsilateral VF sometimes uncovered longer-latency EPSPs, whereas cooling of the contralateral VF abolished longer-latency EPSPs. It is concluded that MLR stimulation activates a pathway that relays in the MedRF and descends bilaterally in the VF to contact spinal interneurons that project to motoneurons. Local segmental pathways that activate or inhibit motoneurons during MLR-evoked fictive locomotion appear to be both ipsilateral and contralateral.  相似文献   

16.
Trigeminal excitation of dorsal neck motoneurones in the cat   总被引:4,自引:0,他引:4  
Summary Excitation of dorsal neck motoneurones evoked by electrical stimulation of primary trigeminal afferents in the Gasserian ganglion has been investigated with intracellular recording from -motoneurones in the cat. Single stimulation in the Gasserian ganglion ipsi-and contralateral to the recording side evoked excitatory postsynaptic potentials (EPSPs) in motoneurones innervating the lateral head flexor muscle splenius (SPL) and the head elevator muscles biventer cervicis and complexus (BCC). The gasserian EPSPs were composed of early and late components which gave the EPSPs a hump-like shape. A short train of stimuli, consisting of two to three volleys, evoked temporal facilitation of both the early and late EPSP components. The latencies of the gasserian EPSPs ranged from 1.6 to 3.6 ms in SPL motoneurones and from 1.6 to 5.8 ms among BCC motoneurones. A rather similar latency distribution between 1.6 and 2.4 ms was found for ipsi- and contralateral EPSPs in SPL and BCC motoneurones, which is compatible with a minimal disynaptic linkage between primary trigeminal afferents and neck motoneurones. Systematic transections of the ipsi- and contralateral trigeminal tracts were performed in the brain stem between 3 and 12 mm rostral to the level of obex. The results demonstrate that both the ipsi- and contralateral disynaptic and late gasserian EPSPs can be mediated via trigeminospinal neurones which take their origin in the nucleus trigeminalis spinalis oralis. Transection of the midline showed that the contralateral trigeminospinal neurones cross in the brain stem. Systematic tracking in and around the ipsilateral trigeminal nuclei demonstrated that the axons of ipsilateral trigeminospinal neurones descend just medial to and/or in the medial part of the nucleus. Spinal cord lesions revealed a location of the axons of the ipsilateral trigeminospinal neurones in the lateral and ventral funiculi. Interaction between the ipsi- and contralateral gasserian EPSPs showed complete summation of the disynaptic EPSP component, while the late components were occluded by about 45%. These results show that the disynaptic EPSPs are mediated by separate trigeminospinal neurones from the ipsi- and contralateral side, while about half of the late EPSPs are mediated by common neurones which receive strong bilateral excitation from commissural neurones in the trigeminal nuclei. Spatial facilitation was found in the late gasserian EPSP but not in the disynaptic gasserian EPSP by conditioning stimulation of cortico- and tectofugal fibres. Disynaptic pyramidal and tectal EPSPs, which are mediated by reticulospinal neurones, were facilitated by a single stimulation in the gasserian ganglion at an optimal interval of 2 ms. It is suggested that primary trigeminal afferents can excite the reticulospinal neurones via a disynaptic trigeminoreticular pathway.  相似文献   

17.
The location of intercalated neurones mediating disynaptic excitation from tectum, tegmentum and pyramids to dorsal neck motoneurones has been investigated by: (a) recording field potentials in the lower brain stem evoked from the above systems, (b) systematic stimulation in the brain stem during intracellular recording from motoneurones innervating the splenius, biventer cervicis and complexus muscles, and (c) comparing the effects of lesions of the brain stem with kainic acid on the disynaptic EPSPs elicited from the above three systems. Electrical stimulation of the contralateral superior colliculus evoked monosynaptic field potentials which were largest in the caudal pontine reticular formation rostral to the abducens nucleus and in the rostral part of the medullary reticular formation caudal to the abducens nucleus. Likewise, stimulation of the ipsilateral tegmentum (the cuneiform and subcuneiform nucleus) evoked field potentials which were large in the caudal medulla and small in the pons. In contrast, stimulation of the contralateral tegmentum was ineffective in evoking field potentials. Stimulation of the pyramid 2-3 mm rostral to the obex elicited monosynaptic field potentials in the reticular formation of the lower brain stem that were only about 25% of those from the superior colliculus. In contrast to the field potentials from the superior colliculus, the pyramidal ones were large in the medulla and small in the pons. Lesions of the reticular formation in the lower brain stem by unilateral kainic acid injection caused disappearance of disynaptic EPSPs in motoneurones from the above three systems. These results strongly suggest that the intercalated neurones mediating pyramidal, tectal and tegmental EPSPs are reticulospinal neurones in the lower brain stem. Systematic stimulation in various locations of the lower brain stem showed that monosynaptic EPSPs were evoked from the regions of the reticular formation which received projection from the above three descending systems. The effective regions for evoking the EPSPs in splenius (SPL) were located somewhat more dorsally than for biventer cervicis and complexus (BCC) motoneurones. The descending axons of presumed reticulospinal neurones were stimulated with electrodes placed in medial, middle and lateral positions at the spinomedullary junction. Monosynaptic EPSPs in SPL and BCC motoneurones were evoked from the medial and middle electrodes but not from the lateral electrode.  相似文献   

18.
Postsynaptic potentials evoked in hindlimb alpha-motoneurons by stimulation of a cutaneous nerve (sural) with finely graded stimulus strengths were analyzed in the primate, monitoring the spinal cord potentials and afferent nerve volleys in the sural nerve. It was observed that activities in A alpha beta, A delta and C fibers of the cutaneous nerve elicited characteristic excitatory and/or inhibitory postsynaptic potentials (EPSPs and/or IPSPs) with different latencies and durations in extensor and flexor motoneurons. Volleys in A delta fibers of the cutaneous nerve produced EPSPs in 57% of flexor and 31% of extensor motoneurons tested, whereas IPSPs were produced by A delta volleys in 41% of flexor and 62% of extensor motoneurons. EPSPs with longer latencies and longer durations were evoked by cutaneous C fiber volleys in 55% of flexor and 34% of extensor motoneurons, whereas IPSPs due to C volleys were recorded in 9% of flexor and 14% of extensor motoneurons. A alpha beta and A delta volleys caused motoneurons to fire in several instances, and some motoneurons discharged repetitively during the depolarizations evoked by activities in C fibers of the nerve. Central latency for transmission in interneuronal chains in the spinal cord was estimated from the onset of the cord potential (N3 wave) to the onset of the postsynaptic potential evoked by A delta volleys. Ranges of central latencies of the EPSPs and IPSPs evoked by A delta volleys were 2.0-7.0 ms and 3.5-8.5 ms, respectively. It is postulated that there may be at least two interneurons interposed in the excitatory reflex pathway from A delta afferent fibers to motoneurons and the A delta inhibitory pathway may involve longer interneuronal chains. In a few motoneurons, however, sural volleys with strengths sufficient to activate A delta fibers produced EPSPs with a central latency of about 1 ms, suggesting activation of a disynaptic segmental pathway with one interposed interneuron. Stimulation of the sural nerve with strengths sufficient to activate cutaneous C fibers produced slow negative cord dorsum potentials with long latencies. It is proposed that primate motoneurons, which show characteristic postsynaptic potentials evoked by cutaneous A delta and C fiber volleys, may provide a suitable model for analyzing the role of high threshold cutaneous afferent fibers not only in the flexor withdrawal reflex but also in motor control functions.  相似文献   

19.
The lateral reticular nucleus in the cat   总被引:1,自引:0,他引:1  
The afferent paths from the spinal cord and from trigeminal afferents to the lateral reticular nucleus (LRN) were investigated by intracellular recording from 204 LRN neurones in preparations with a spinal cord lesion at C3 that spared only the ipsilateral ventral quadrant. Stimulation of nerves in the limbs evoked EPSPs and JPSPs in 201 of 204 tested LRN neurones. The strongest input was from the ipsilateral forelimb (iF) which evoked EPSPs in 49% and IPSPs in 73% of the LRN neurones. Each of the other limbs evoked EPSPs in approximately 20% and IPSPs in approximately 25% of the neurones. Stimulation of the ipsilateral trigeminal nerve (iTrig) evoked EPSPs in 32% and IPSPs in 46% of the neurones. The shortest latencies of the EPSPs and IPSPs indicated a disynaptic connection between primary afferents in the iF and iTrig and the LRN. The most direct pathways for excitatory and inhibitory responses from the other limbs were trisynaptic. Stimulation of the ventral part of the ipsilateral funiculus (iVLF) at C3 (C3iVLF) evoked monosynaptic responses in 189 of 201 tested LRN neurones. Monosynaptic EPSPs were recorded in 104 neurones and monosynaptic IPSPs in 126 neurones. Monosynaptic EPSPs and IPSPs were encountered in all parts of the LRN. Stimulation of the iVLF at L1 (L1iVLF) evoked monosynaptic EPSPs and IPSPs in the ventrolateral part of the LRN. The termination areas of excitatory and inhibitory fibres appeared to be the same. LRN neurones without monosynaptic EPSPs or IPSPs from the L1iVLF were located mainly in the dorsal part of the magnocellular division. Stimulation of the dorsal funiculi (DF) at C2 and the ipsilateral trigeminal nerve (iTrig) evoked excitatory and inhibitory responses in the LRN. The shortest latencies of EPSPs and IPSPs indicated disynaptic connections.  相似文献   

20.
Summary This study investigated the nature of synaptic inputs from the Forel's field H (FFH) in the medial mesodiencephalic junction to inferior oblique (IO) motoneurons in the oculomotor nucleus and superior oblique (SO) motoneurons in the trochlear nucleus in anesthetized cats, using intracellular recording techniques. Stimulation of the FFH induced monosynaptic EPSPs in IO motoneurons on both sides. Paired stimulation of the ipsilateral FFH and contralateral vestibular nerve substantiated that the FFH-induced EPSPs were caused mainly by direct excitatory fibers from the FFH to IO motoneurons and partly by axon collaterals of excitatory neurons in the vestibular nuclei. Among parts of the FFH, the medial part was most effective for producing the EPSPs. Systematic tracking with the stimulating electrode in and around the FFH revealed that effective sites of stimulation inducing negative field potentials in the IO subdivision of the oculomotor nucleus, identified as extracellular counterparts of the EPSPs in IO motoneurons, were also located in the interstitial nucleus of Cajal, nearby reticular formation and posterior commissure, besides within and near the medial part of the FFH. Areas far rostral, dorsal and ventral to the FFH were ineffective. EPSP-IPSPs or EPSPs were mainly induced in SO motoneurons on both sides by FFH stimulation. Latencies of these EPSPs and IPSPs were close to those of the EPSPs in IO motoneurons, indicating their monosynaptic nature. Effective stimulation sites for inducing these synaptic potentials overlapped those for the EPSPs in IO motoneurons. Based on these results, it was suggested that excitatory and inhibitory premotor neurons directly controlling IO and SO motoneurons were located within and near the medial part of the FFH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号