首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Histone deacetylase inhibitors selectively suppress expression of HDAC7   总被引:1,自引:0,他引:1  
There are 18 histone deacetylases (HDAC) generally divided into four classes based on homology to yeast HDACs. HDACs have many protein substrates in addition to histones that are involved in regulation of gene expression, cell proliferation, and cell death. Inhibition of HDACs can cause accumulation of acetylated forms of these proteins, thus altering their function. HDAC inhibitors (HDACi), such as the hydroxamic acid-based vorinostat (suberoylanilide hydroxamic acid), inhibit the zinc-containing classes I, II, and IV, but not the NAD(+)-dependent class III, enzymes. HDACis are a group of novel anticancer agents. Vorinostat is the first HDACi approved for clinical use in the treatment of the cancer cutaneous T-cell lymphoma. Factors affecting expression of HDACs are not well understood. This study focuses on the effect of the HDACi vorinostat on the expression of class I and class II HDACs. We found that vorinostat selectively down-regulates HDAC7 with little or no effect on the expression of other class I or class II HDACs. Fourteen cell lines were examined, including normal, immortalized, genetically transformed, and human cancer-derived cell lines. Down-regulation of HDAC7 by vorinostat is more pronounced in transformed cells sensitive to inhibitor-induced cell death than in normal cells or cancer cells resistant to induced cell death. Modulation of HDAC7 levels by small interfering RNA-mediated knockdown or by HDAC7 overexpression is associated with growth arrest but without detectable changes in acetylation of histones or p21 gene expression. Selective down-regulation of HDAC7 protein may serve as a marker of response of tumors to HDACi.  相似文献   

2.
Inhibitors of histone deacetylases, including suberoylanilide hydroxamic acid (SAHA) and Trichostatin A, are a new class of anticancer agents. With potent chemotherapy effects in cancers, these agents are not obviously toxic in normal nonmalignant cells or tissues. However, their toxicity in kidney cells has not been carefully evaluated. Here, we demonstrate a potent apoptosis-inducing activity of SAHA in cultured renal proximal tubular cells. SAHA induces apoptosis at low micromolar concentrations. At 5 muM, SAHA induces 30 to approximately 40% apoptosis in 18 h. The apoptosis is accompanied by notable caspase activation; however, the general caspase inhibitor VAD can only partially suppress SAHA-induced apoptosis, suggesting the involvement of both caspase-dependent and -independent mechanisms. SAHA treatment leads to cytochrome c release from mitochondria, which is suppressed by Bcl-2 but not by VAD. Bcl-2 consistently blocks SAHA-induced apoptosis. During SAHA treatment, Bcl-2 and Bcl-XL decrease, and Bid is proteolytically cleaved, whereas Bax and Bak expression remains constant. Bid cleavage, but not Bcl-2/Bcl-XL decrease, is completely suppressed by VAD. SAHA does not activate p53, and pifithrin-alpha (a pharmacological p53 inhibitor) does not attenuate SAHA-induced apoptosis, negating a role of p53 in SAHA-induced apoptosis. SAHA induces histone acetylation, which is not affected by VAD, Bcl-2, or pifithrin-alpha. Trichostatin A can also induce apoptosis and histone acetylation in renal tubular cells. Together, the results have shown evidence for renal toxicity of histone deacetylase inhibitors. The toxicity may be related to protein acetylation and decrease of antiapoptotic proteins including Bcl-2 and Bcl-XL.  相似文献   

3.
Overexpression of the antiapoptotic proteins Bcl-2 and Bcl-XL is commonly observed in human malignancies and contributes to chemotherapy and radiation resistance. Bcl-2 and Bcl-XL inhibit apoptosis by binding to proapoptotic proteins such as Bax, thereby preventing chemotherapy-induced or radiation-induced release of cytochrome c from mitochondria and subsequent activation of the caspase protease cascade. Efforts to inhibit Bcl-2 or Bcl-XL function in tumor cells have focused on developing agents to inhibit the interactions of these proteins with proapoptotic proteins. Peptides derived from the BH3 domains of proapoptotic proteins have been shown to disrupt the interactions of Bcl-2 and Bcl-XL with key binding partners in cell-free reactions and to promote cellular apoptosis. However, less is known about the targets of BH3 peptides in intact cells as well as the sequence, length, and conformational requirements for peptide biological activity. In this report, we show that cell-permeable Bax BH3 peptides physically disrupt Bax/Bcl-2 heterodimerization in intact cells and that this disruption correlates with peptide-induced cell death. A point-mutant, control peptide that failed to disrupt intracellular Bax/Bcl-2 interactions also failed to promote apoptosis. To determine important sequence, length, and structural requirements for peptide activity, we generated and systematically analyzed the biological activities of 17 Bax BH3 peptide variants. Peptides were quantitatively examined for their ability to inhibit Bax/Bcl-2 and Bax/Bcl-XL heterodimerization in vitro and to promote cytochrome c release from mitochondria isolated from Jurkat, HL-60, U937, and PC-3 cells. Our results define 15 amino acids as the minimal length required for Bax BH3 peptide biological activity and show that amino acids COOH terminal to the BH3 core sequence are less critical than those located NH2 terminal to the core. In addition, circular dichroism spectroscopy revealed that high alpha-helical content generally correlated with, but was not sufficient for, peptide activity. Taken together, these studies provide a basis for future optimization of Bax BH3 peptide as a therapeutic anticancer agent.  相似文献   

4.
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.  相似文献   

5.
Non-Hodgkin lymphomas usually become resistant to chemotherapy and relapse due to the their intense antiapoptotic robustness. Furthermore, the slow growth of these malignancies limits the effectiveness of drugs aimed mainly at the proliferative pathways. Because protein tyrosine kinases (PTKs) play a key role in both proliferative and antiapoptotic pathways we screened our library of PTK inhibitors for agents that induce growth arrest and apoptosis in non-Hodgkin B cell lymphoma cell lines. Herein, we describe the identification of a family of PTK inhibitors whose most potent member is AGL 2592. This agent induces growth arrest and massive apoptosis in a number of non-Hodgkin lymphoma cell lines. We also show that the lymphoma cell lines are much more sensitive to this class of agents compared with other malignant carcinoma cells. AGL 2592 induces a dose-dependent and time-dependent inhibition of tyrosine phosphorylation of numerous proteins, including Stat3, and an increase of Bcl-2 phosphorylation, both biochemical hallmarks of growth inhibition and apoptosis.  相似文献   

6.
7.
Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4+ T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4+ T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4+ T cells, we found that resting CD4+ T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections.  相似文献   

8.
The physiological role of B cell lymphoma 2 (Bcl-2) homology 3-only proteins has been investigated in mice lacking the individual genes identifying rate-limiting roles for Bim (Bcl-2-interacting mediator of cell death) and Puma (p53-up-regulated modulator of apoptosis) in apoptosis induction. The loss of Bim protects lymphocytes from apoptosis induced by cytokine deprivation and deregulated Ca++ flux and interferes with the deletion of autoreactive lymphocytes and the shutdown of immune responses. In contrast, Puma is considered the key mediator of p53-induced apoptosis. To investigate the hypothesis that Bim and Puma have overlapping functions, we generated mice lacking both genes and found that bim-/-/puma-/- animals develop multiple postnatal defects that are not observed in the single knockout mice. Most strikingly, hyperplasia of lymphatic organs is comparable with that observed in mice overexpressing Bcl-2 in all hemopoietic cells exceeding the hyperplasia observed in bim-/- mice. Bim and Puma also have clearly overlapping functions in p53-dependent and -independent apoptosis. Their combined loss promotes spontaneous tumorigenesis, causing the malignancies observed in Bcl-2 transgenic mice, but does not exacerbate the autoimmunity observed in the absence of Bim.  相似文献   

9.
Cyclin I is an atypical cyclin because it is most abundant in postmitotic cells. We previously showed that cyclin I does not regulate proliferation, but rather controls survival of podocytes, terminally differentiated epithelial cells that are essential for the structural and functional integrity of kidney glomeruli. Here, we investigated the mechanism by which cyclin I safeguards against apoptosis and found that cyclin I bound and activated cyclin-dependent kinase 5 (Cdk5) in isolated mouse podocytes and neurons. Cdk5 activity was reduced in glomeruli and brain lysates from cyclin I–deficient mice, and inhibition of Cdk5 increased in vitro the susceptibility to apoptosis in response to cellular damage. In addition, levels of the prosurvival proteins Bcl-2 and Bcl-XL were reduced in podocytes and neurons from cyclin I–deficient mice, and restoration of Bcl-2 or Bcl-XL expression prevented injury-induced apoptosis. Furthermore, we found that levels of phosphorylated MEK1/2 and ERK1/2 were decreased in cyclin I–deficient podocytes and that inhibition of MEK1/2 restored Bcl2 and Bcl-XL protein levels. Of interest, this pathway was also defective in mice with experimental glomerulonephritis. Taken together, these data suggest that a cyclin I–Cdk5 complex forms a critical antiapoptotic factor in terminally differentiated cells that functions via MAPK signaling to modulate levels of the prosurvival proteins Bcl-2 and Bcl-XL.  相似文献   

10.
Histone deacetylases (HDACs) are a family of enzymes that have been of interest in drug discovery for more than 30 years. Inhibitors of HDACs are potential therapeutics for various diseases, such as neurodegenerative diseases, inflammation, viral infection, and especially cancer. Most HDAC inhibitors (HDACi) are designed for cancer therapy. In 2006, suberoylanilide hydroxamic acid was approved by the US Food and Drug Administration for once‐daily oral treatment of advanced cutaneous T‐cell lymphoma. In the meantime, there have been aggressive efforts to bring HDACi to the market for every major tumor type, either as a single therapy or in combination, and a number of compounds are currently undergoing clinical trials. Multiple strategies have been applied to the rational design of drugs targeting HDACs by taking advantage of the new developments in proteomics, chemogenomics, cheminformatics, and computational chemistry/biology. Herein, we review the current methods successfully used in developing novel HDACi. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 4, 585–602, 2010  相似文献   

11.
12.
13.
目的:探讨肠黏膜相关淋巴组织(MALT)淋巴瘤细胞增殖和凋亡的特征以及调亡相关调控基因的表达。方法:应用TUNEL技术检测21例肠淋巴瘤的凋亡指数(apoptosis index,AI),免疫组化S-P法检测PCNA增殖指数(proliferative index,PI)及bcl-2和p5e蛋白的表达。结果:随着肠MALT淋巴瘤恶性度的增高,AI和PI显著增加,并且二者呈显著正相关。低度恶性、高度恶性伴低度恶性以及高度恶性肿瘤组中,bcl-2阳性率分别为79.4%、57.1%、40.9%。三组bcl-2呈阳性率为AI均差异显著(P<0.05)。bcl-2与AI呈显著负相关(P<0.05)。p53阳性率为31.4%。高度恶性组p53阳性率显著高于其余两组。p53与bcl-2表达呈负相关(P<0.05)。结论:凋亡和增殖在肿瘤的发生、发展、转化中起着重要作用,检测AI、PI可能是诊断恶性淋巴瘤、评价其生物学行为的可靠指标。在MALT的恶性度从低到高的转化中,p53和bcl-2基因可能起着重要作用。  相似文献   

14.
Introduction: T-cell lymphoma is a relatively rare hematologic malignancy that accounts for 10–20% of non-Hodgkin lymphomas. Treatment strategies for T-cell lymphomas are different from that for B-cell lymphomas and have poor prognoses. Among various subtypes of T-cell lymphomas, adult T-cell leukemia-lymphoma (ATL) has the worst prognosis. To achieve further improvement in the treatment outcome of T-cell lymphomas, several novel agents such as brentuximab vedotin, lenalidomide, romidepsin, and pralatrexate are actively being studied. Mogamulizumab, an anti-CC chemokine receptor 4 (CCR4) monoclonal antibody, is one of the promising agents for CCR4-positive T-cell lymphomas, especially for ATL.

Areas covered: First, basic information about the current treatment strategy of T-cell lymphomas including ATL is described. Then, the authors discuss the current clinical development of mogamulizumab and its clinical implications for T-cell lymphomas.

Expert opinion: Mogamulizumab has potent clinical efficacy against CCR4-positive T-cell lymphomas, especially against ATL. Among various toxicities associated with mogamulizumab, skin eruptions are the most significant. Although there are several effective competitors, mogamulizumab has a unique mechanism and is expected to be a key agent for treating CCR4-positive T-cell lymphomas, especially ATL.  相似文献   


15.
T(11;18)及核bcl-10蛋白在胃肠MALT淋巴瘤中的表达   总被引:1,自引:0,他引:1  
为了探讨t(11;18)(q21;q21)染色体易位及核bcl-10蛋白在胃肠粘膜相关淋巴组织淋巴瘤(MALT lymphoma)中的表达,用酸性酚氯仿法从石蜡组织中提取RNA;逆转录合成cDNA后用聚合酶链反应(PCR)扩增API2-MALT1融合基因;用免疫组织化学法检测石蜡切片中bcl—10蛋白的表达。结果表明:42例MALT淋巴瘤中,t(11;18)(q21;q21)染色体易位在低度恶性MALT淋巴瘤中的表达为14%,在伴高恶转化型MALT淋巴瘤中的表达为46%,在40例弥漫大B细胞淋巴瘤(diffuse 1arge B cell lymphoma,DLBCL)对照组中没有表达;43例MALT淋巴瘤中bcl-10蛋白在低度恶性MALT淋巴瘤的核表达为61%,在伴高恶转化型MALT淋巴瘤中的核表达为69%。结论:t(11;18)易位可能与高度进展MALT淋巴瘤有一定相关性,但与DLBCL无关;bcl-10蛋白的核表达在恶性程度不同的两组MALT淋巴瘤中无显著性差异,其原因有待进一步研究。  相似文献   

16.
To ascertain the potential for histone deacetylase (HDAC) inhibitor-based treatment in non-small cell lung cancer (NSCLC), we analyzed the antitumor effects of trichostatin A (TSA) and suberoylanilide hydroxamic acid (vorinostat) in a panel of 16 NSCLC cell lines via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. TSA and vorinostat both displayed strong antitumor activities in 50% of NSCLC cell lines, suggesting the need for the use of predictive markers to select patients receiving this treatment. There was a strong correlation between the responsiveness to TSA and vorinostat (P < 0.0001). To identify a molecular model of sensitivity to HDAC inhibitor treatment in NSCLC, we conducted a gene expression profiling study using cDNA arrays on the same set of cell lines and related the cytotoxic activity of TSA to corresponding gene expression pattern using a modified National Cancer Institute program. In addition, pathway analysis was done with Pathway Architect software. We used nine genes, which were identified by gene-drug sensitivity correlation and pathway analysis, to build a support vector machine algorithm model by which sensitive cell lines were distinguished from resistant cell lines. The prediction performance of the support vector machine model was validated by an additional nine cell lines, resulting in a prediction value of 100% with respect to determining response to TSA and vorinostat. Our results suggested that (a) HDAC inhibitors may be promising anticancer drugs to NSCLC and (b) the nine-gene classifier is useful in predicting drug sensitivity to HDAC inhibitors and may contribute to achieving individualized therapy for NSCLC patients.  相似文献   

17.
Aberrant overexpression of antiapoptotic members of the Bcl-2 protein family, including Bcl-2 and Bcl-X(L), contributes to malignant transformation and subsequent resistance to traditional chemotherapeutics. Thus, these proteins represent attractive targets for novel anticancer agents. The small molecule, gossypol, was initially investigated as a contraceptive agent, but subsequently has been shown to possess anticancer properties in vitro and in vivo. Recently gossypol has been found to bind to Bcl-X(L) and, with less affinity, to Bcl-2. Here we investigate the ability of the (-) enantiomer of gossypol, (-)-gossypol, to overcome the apoptosis resistance conferred by Bcl-2 or Bcl-X(L) overexpression in Jurkat T leukemia cells. (-)-Gossypol potently induced cell death in Jurkat cells overexpressing Bcl-2 (IC50, 18.1+/-2.6 micromol/L) or Bcl-X(L) (IC50, 22.9+/-3.7 micromol/L). Vector-transfected control cells were also potently killed by (-)-gossypol (IC50, 7.0+/-2.7 micromol/L). By contrast, the chemotherapy drug etoposide only induced efficient killing of vector-transfected cells (IC50, 9.6+/-2.3 micromol/L). Additionally, (-)-gossypol was more efficient than etoposide at inducing caspase-3 activation and phosphatidylserine externalization in the setting of Bcl-2 or Bcl-X(L) overexpression. (-)-Gossypol-induced apoptosis was associated with Bak activation and release of cytochrome c from mitochondria, suggesting a mitochondrial-mediated apoptotic mechanism. Moreover, (-)-gossypol treatment of isolated mitochondria purified from Bcl-2-overexpressing cells also resulted in cytochrome c release, indicating a possible direct action on Bcl-2 present in the mitochondrial outer membrane. Taken together, these results suggest that (-)-gossypol is a potent and novel therapeutic able to overcome apoptosis resistance by specifically targeting the activity of antiapoptotic Bcl-2 family members. (-)-Gossypol may be a promising new agent to treat malignancies that are resistant to conventional therapies.  相似文献   

18.
Galiximab (anti-CD80 monoclonal antibody) is a primatized (human IgG1 constant regions and cynomologus macaque variable regions) monoclonal antibody that is currently in clinical trials. Galiximab inhibits tumor cell proliferation through possibly cell signaling-mediated effects. Thus, we hypothesized that galiximab may signal the tumor cells and modify intracellular survival/antiapoptotic pathways such as the NF-κB pathway. This hypothesis was tested using various CD80(+) Burkitt B-NHL (non-Hodgkin lymphomas) cell lines as models. Treatment of B-NHL cells with galiximab (25-100 μg/mL) resulted in significant inhibition of NF-κB activity and its target resistant factors such as YY1, Snail, and Bcl-2/Bcl-XL. Treatment of B-NHL cells with galiximab sensitized the tumor cells to both cis-diamminedichloroplatinum(II) (CDDP)- and TRAIL-induced apoptosis. The important roles of YY1- and Snail-induced inhibition by galiximab in the sensitization to CCDP and TRAIL were corroborated following transfection of Raji cells with YY1 or Snail short interfering RNA. The transfected cells were shown to become sensitive to both CCDP- and TRAIL-induced apoptosis in the absence of galiximab. Furthermore, knockdown of YY1 or Snail inhibited Bcl-XL. The involvement of Bcl-XL inhibition in sensitization was corroborated by the use of the pan-Bcl-2 inhibitor 2MAM-3 whereby the treated cells were sensitive to both CDDP- and TRAIL-induced apoptosis. These findings show that galiximab inhibits the NF-κB/Snail/YY1/Bcl-XL circuit that regulates drug resistance in B-NHL and in combination with cytotoxic drugs results in apoptosis. The findings also support the therapeutic application of the combination of galiximab and cytotoxic drugs in the treatment of drug-resistant CD80-positive B-cell malignancies.  相似文献   

19.
20.
The survival of T lymphocytes is tightly controlled during development. Here, we show that Bcl-xL, a protein homologue of Bcl-2, is highly regulated in the thymus in a pattern different than that of Bcl-2. The maximum expression was in CD4+CD8+ thymocytes, a developmental stage where Bcl-2 is downregulated. To assess the role of Bcl-xL in thymocyte apoptosis, we generated mice overexpressing an E mu-bcl-x transgene within the T cell compartment. Constitutive expression of Bcl-xL resulted in accumulation of thymocytes and mature T cells in lymphoid organs. Thymocytes overexpressing Bcl-xL exhibited increased viability in vitro and were resistant to apoptosis induced by different signals, including glucocorticoid, gamma irradiation, calcium ionophore, and CD3 cross-linking. However, Bcl-xL was unable to block clonal deletion of thymocytes reactive with self-superantigens or H-Y antigen. These studies demonstrate that Bcl-2 and Bcl-xL, two functionally related proteins, are regulated independently during T cell development. In contrast to Bcl-2, which has been implicated in the maintenance of mature T cells, Bcl-xL appears to provide a survival signal for the maintenance of more immature CD4+CD8+ thymocytes before positive selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号