首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The effect of stimulation of various skin areas on the function of the bladder was examined in anesthetized rats with the CNS intact, in decerebrated non-anesthetized rats and in spinal rats. The tone and contraction of the bladder was measured by the intravesical ballon method. (2) When the volume of the intravesical ballon was expanded so that the resting vesical pressure was increased from O to approximately 40 mm H2O level, the bladder revealed small spontaneous contractions in all experiments. Under these conditions intravesical pressure was increased approximately 40 mm H2O by application of tactile or nociceptive stimulation of the skin in the perineal area. This excitatory perneal-bladder response existed befor and after spinal transection and was shown to be a propriospinal reflex for which reflexly increased nerve discharges of vesical branches of the pelvic nerves were responsible. (3) When the volume of the intravesical ballon was further expanded so that the resting vesical pressure was kept about 200 mm H2O, the bladder had the usual large rhythmic contractions (micturition contractions) with amplitudes of about 610 mm H2O, and rhythms of 1--3/min in the CNS intact or decrebrated rats. These large contractions were driven by the rhythmic bust discharges of the vesical nerve branches of the pelvic nerves. The occurrence of the large contractions of the bladder could be inhibited by nociceptive stimulation which was localized in the perineal area. This inhibition of the large contractions was caused by disappearance of the rhythmic burst discharges in the vesical branches of the pelvic nerves. (4) On some occasions in the CNS intact anesthetized and in the decerebrated non-anesthetized rats the large contractions of the bladder disappeared during experiments even when the bladder was expanded enough for producing normal large contractions and kept at high intravesical pressure. Regardless of whether the large contractions existed or not at the high intravesical pressure, the vesical pressure was increased by perineal stimulation due to the same neural mechanism mentioned in (2) above.  相似文献   

2.
P. Szulczyk  M. Wilk 《Brain research》1985,326(2):261-271
The reflex responses evoked in the postganglionic nerves to the heart were tested in chloralose-anaesthetized cats. Electrical stimulation of the A delta afferent fibres from the left inferior cardiac nerve evoked spinal and supraspinal reflex responses with the onset latencies of 36 ms and 77 ms respectively. The most effective stimulus was a train of 3-4 electrical pulses with the intratrain frequency of 200-300 Hz. Electrical stimulation of the high threshold afferent fibres (C-fibres) from the left inferior cardiac nerve evoked the reflex response with the onset latency of 200 ms. The C-reflex was present in intact animals and disappeared after spinalization. The most effective stimulus to evoke this reflex was a train of electrical pulses delivered at a frequency of 1-2 Hz with an intratrain frequency of 20-30 Hz. The most prominent property of the C-reflex was its marked increase after prolonged repeated electrical stimulation. We conclude that: (1) viscero-cardiac sympathetic reflexes may be organized at the spinal and supraspinal level; (2) viscero-cardiac sympathetic reflexes evoked by stimulation of the A delta and C afferent fibres from the left inferior cardiac nerve have different central organization.  相似文献   

3.
Effects of gentle skin stimulation of various segmental areas on the micturition contractions of the urinary bladder were examined in anesthetized male rats. The bladder was expanded by infusing saline via urethral cannula until the bladder produced rhythmic micturition contractions as a consequence of rhythmic burst discharges of vesical pelvic efferent nerves. Gentle stimulation was applied for 1 min by slowly rolling on top of skin with an elastomer "roller". Rolling on the perineal area inhibited both micturition contractions and pelvic efferent discharges during and after stimulation. Stimulation of the hindlimb, abdomen and forelimb inhibited micturition contractions after stimulation ended, in this order of effectiveness. During stimulation of the perineal skin, the reflex increase in pelvic efferent discharges in response to bladder distension to a constant pressure was also inhibited up to 45% of its control response. The inhibition of the micturition contractions induced by perineal stimulation was abolished, to a large extent by the opioid receptor antagonist naloxone and completely by severing cutaneous nerves innervating the perineal skin. We recorded unitary afferent activity from cutaneous branches of the pudendal nerve and found that the fibers excited by stimulation were low-threshold mechanoreceptive Aβ, Aδ and C fibers. Discharge rates of afferent C fibers (7.9 Hz) were significantly higher than those of Aβ (2.2 Hz) and Aδ (2.9 Hz) afferents. The results suggest that low frequency excitation of low threshold cutaneous mechanoreceptive myelinated and unmyelinated fibers inhibits a vesico-pelvic parasympathetic reflex, mainly via release of opioids, leading to inhibition of micturition contraction.  相似文献   

4.
Electrophysiological techniques were used to examine the organization of the spinobulbospinal micturition reflex pathway in the rat. Electrical stimulation of afferent axons in the pelvic nerve evoked a long latency (136 +/- 41 ms) response on bladder postganglionic nerves, whereas stimulation in the dorsal pontine tegmentum elicited shorter latency firing (72 +/- 25 ms) on these nerves. Transection of the pelvic nerve eliminated these responses. Firing on the bladder postganglionic nerves was evoked by stimulation in a relatively limited area of the pons within and close to the laterodorsal tegmental nucleus (LDT) and adjacent ventral periaqueductal gray. Stimulation at sites ventral to this excitatory area inhibited at latencies of 107 +/- 11 ms the asynchronous firing on the bladder postganglionic nerves elicited by bladder distension. Electrical stimulation of afferents in the pelvic nerve evoked short latency (13 +/- 3 ms) negative field potentials in the dorsal part of the periaqueductal gray as well as long latency (42 +/- 7 ms) field potentials in and adjacent to the LDT. The responses were not altered by neuromuscular blockade. Similar responses were elicited by stimulation of afferent axons in the bladder nerves. The sum of the latencies of the ascending and descending pathways between the LDT and the pelvic nerve (i.e. 72 ms plus 42 ms = 114 ms) is comparable although somewhat shorter (22 ms) than the latency of the entire micturition reflex. These results provide further evidence that the micturition reflex in the rat is mediated by a spinobulbospinal pathway which passes through the dorsal pontine tegmentum, and that neurons in the periaqueductal gray as well as the LDT may play as important role in the regulation of the micturition.  相似文献   

5.
The effects of pudendal nerve stimulation on reflex bladder activity were investigated in cats with chronic spinal cord injury (6-12 months) under alpha-chloralose anesthesia. Electrical stimulation of the pudendal nerve on one side at different frequencies and intensities induced either inhibitory or excitatory effects on bladder activity. The inhibitory effect peaked at a stimulation frequency of 3 Hz and gradually decreased at lower or higher frequencies. The inhibitory effect could occur at stimulation intensities between 0.3 and 1 V (pulse width 0.1 ms) and increased at intensities up to 10 V. Stimulation of the central end of transected pudendal nerve also inhibited bladder activity, indicating that afferent axons in pudendal nerve are involved. Nerve transections also showed that both hypogastric and pelvic nerves might be involved in the inhibitory pudendal-to-bladder spinal reflex. Pudendal nerve stimulation at 20 Hz and at the same intensities (1-10 V) elicited a bladder excitatory response. Although this excitatory effect could not sustain a long lasting bladder contraction at small bladder volumes, it did induce continuous rhythmic bladder contractions at large bladder volumes. This study indicated the possibility of developing a neuroprosthetic device based on pudendal nerve electrical stimulation to restore micturition function after spinal cord injury.  相似文献   

6.
Bladder reflexes evoked by stimulation of pudendal afferent nerves (PudA-to-Bladder reflex) were studied in normal and chronic spinal cord injured (SCI) adult cats to examine the reflex plasticity. Physiological activation of pudendal afferent nerves by tactile stimulation of the perigenital skin elicits an inhibitory PudA-to-Bladder reflex in normal cats, but activates an excitatory reflex in chronic SCI cats. However, in both normal and chronic SCI cats electrical stimulation applied to the perigenital skin or directly to the pudendal nerve induces either inhibitory or excitatory PudA-to-Bladder reflexes depending on stimulation frequency. An inhibitory response occurs at 3–10 Hz stimulation, but becomes excitatory at 20–30 Hz. The inhibitory reflex activated by electrical stimulation significantly (P < 0.05) increases the bladder capacity to about 180% of control capacity in normal and chronic SCI cats. The excitatory reflex significantly (P < 0.05) reduces bladder capacity to about 40% of control capacity in chronic SCI cats, but does not change bladder capacity in normal cats. Electrical stimulation of pudendal afferent nerves during slow bladder filling elicits a large amplitude bladder contraction comparable to the contraction induced by distension alone. A bladder volume about 60% of bladder capacity was required to elicit this excitatory reflex in normal cats; however, in chronic SCI cats a volume less than 20% of bladder capacity was sufficient to unmask an excitatory response. This study revealed the co-existence of both inhibitory and excitatory PudA-to-Bladder reflex pathways in cats before and after chronic SCI. However our data combined with published electrophysiological data strongly indicates that the spinal circuitry for both the excitatory and inhibitory PudA-to-Bladder reflexes undergoes a marked reorganization after SCI.  相似文献   

7.
Viscero-sympathetic reflex responses to mechanical stimulation of urinary bladder and colon were studied in cutaneous vasoconstrictor (CVC) neurones supplying hairy skin, in muscle vasoconstrictor (MVC) neurones supplying skeletal muscle and in sudomotor (SM) neurones supplying the sweat glands of the central paw pad of the cat hindlimb. The cats were anaesthetized, paralysed and artificially ventilated. The vasoconstrictor activity was recorded from the axons of the postganglionic fibres that were isolated in filaments from the respective peripheral hindlimb nerves. The activity in the sudomotor neurones was monitored by recording the fast skin potential changes occurring on the surface of the central paw pad. Afferents from the urinary bladder and from the colon were stimulated by isotonic distension and isovolumetric contraction of the organs. Most CVC neurones with ongoing activity were inhibited by these stimuli; only a few CVC neurones were excited. The MVC and SM neurones were generally excited by the visceral stimuli, yet the size of the evoked skin potential changes was variable. The reflex responses elicited in the sympathetic outflow to the cat hindlimb by stimulation of visceral afferents from the pelvic organs are uniform with respect to the different types of afferent input system but differentiated with respect to the efferent output systems. Graded stimulation of the visceral afferents from the urinary bladder by isotonic pressure steps elicited graded reflex responses in CVC (threshold less than 30 mmHg) and MVC neurones (threshold less than 20 mmHg) and a graded increase of the arterial blood pressure (threshold less than 20 mmHg). These graded reflex responses are closely related to the quantitative activation of sacral afferent neurones with thin myelinated axons innervating the urinary bladder that are also responsible for eliciting the micturition reflex, but not to the quantitative activation of sacral afferent neurones with unmyelinated axons. The latter have thresholds of 40-50 mmHg intravesical pressure at which the size of the vesico-sympathetic reflexes in the vasoconstrictor neurones was about 50% of maximal size. This does not exclude the fact that activation of unmyelinated vesical afferents contributes to the vesico-sympathetic reflexes.  相似文献   

8.
In high spinal cats propriospinal pathways ascending from lumbo-sacral levels of the spinal cord can mediate strong excitatory and inhibitory changes in reflexes to different groups of motoneurones supplying muscles of the forelimb. Discharges evoked by electrical stimulation of hindlimb nerves could be evoked in 41% of experiments in the motoneurones of pectoralis major and minor. The latency of the discharge (8–18 msec) could be shortened by increasing the repetition frequency of the stimulus, the greatest reduction occurring in the range 1–4 Hz. Contralateral hindlimb nerves were less effective and the discharge generally occurred at a latency 1–2 msec longer than for ipsilateral nerves.Monosynaptic reflexes to pectoralis major and deep radial motoneurones supplying the physiological flexor muscles were strongly facilitated by hindlimb nerve stimulation, ipsilateral nerves being more effective than contralateral. Monosynaptic reflexes to latissimus dorsi showed a reciprocal pattern of conditioning, being depressed by ipsilateral and facilitated by contralateral hindlimb extensor nerves, the flexor nerves giving the reverse pattern. Monosynaptic reflexes to median and ulnar nerves supplying physiological extensor muscles were not significantly affected by hindlimb nerve conditioning.Polysynaptic reflexes to pectoralis major and deep radial motoneurones received initial strong facilitation followed by prolonged depression, ipsilateral hindlimb nerves being more effective than contralateral. In latissimus dorsi a reciprocal pattern similar to that for monosynaptic reflex testing was found. Polysynaptic reflexes to median and ulnar motoneurones received only prolonged depression.The hindlimb afferent nerves responsible for the discharge in forelimb motoneurones and for the facilitation and depression of forelimb reflexes include groups II and II muscle afferents and group II skin afferents, especially from quadriceps and sartorius muscles, and sural and superficial peroneal nerves, respectively.The ascending long propriospinal pathways are influenced bilaterally from hindlimb nerves and are located in the lower thoracic segments in the ventrolateral funiculus. The pathways mediate effects on ipsilateral and contralateral forelimb reflex systems, the ipsilateral projections being dominant. Part of the long ascending projection terminates monosynaptically on the motoneurones of pectoralis major. It is likely that group II afferents from ipsilateral quadriceps muscle activate the ascending tract monosynaptically and those from contralateral quadriceps disynaptically.The hypothesis is suggested that long propriospinal paths primarily represent intrinsic links between hindlimb and forelimb ‘motor centres’. The pattern of long ascending influences to groups of forelimb motoneurones corresponds closely to the sequences of hindlimb and forelimb stepping observed in normal cats. A functional role in stepping is therefore proposed for long ascending propriospinal pathways.  相似文献   

9.
The role of capsaicin-sensitive bladder afferents in micturition was studied in unanesthetized chronic spinal rats. Reflex voiding in response to tactile stimulation of the perigenital region appeared 5–9 days after spinal cord injury (SCI) whereas voiding induced by bladder distension occurred 2–3 weeks after SCI. The frequency and amplitude of reflex bladder contractions recorded under isovolumetric conditions were similar in chronic spinal and urethane-anesthetized CNS-intact rats. However, cystometrograms (CMGs) performed 6–8 weeks after SCI revealed that the chronic spinal rats had larger bladder capacities (1.86 ml) than CNS-intact rats (0.48 ml) and also exhibited multiple, small-amplitude, nonvoiding bladder contractions that were not detected in CNS-intact rats. Administration of capsaicin (50 mg/kg s.c.) acutely (onset 14–40 min) suppressed reflex bladder activity induced by bladder distension or by perigenital stimulation in chronic spinal animals. However, pretreatment of chronic spinal rats with capsaicin (125 mg/kg s.c.) 4 days before the experiment did not depress voiding reflexes or change bladder capacity but did eliminate the nonvoiding contractions. Inhibition of reflex bladder contractions by mechanical stimulation of rectoanal canal or the uterine cervix-vagina was not altered by pretreatment with capsaicin. These data indicate that capsaicin-sensitive bladder afferents are not essential for the initiation of reflex micturition in chronic spinal rats. However, these afferents do contribute to hyperactivity of the bladder during the filling phase of the CMG. Thus, capsaicin-sensitive bladder afferents should be evaluated as possible targets for the pharmacological treatment of bladder hyperreflexia in patients with SCI.  相似文献   

10.
J.H. Coote  A. Sato 《Brain research》1978,142(3):425-437
(1) In chloralose anaesthetized cats, reflex responses were recorded in inferior cardiac nerves following stimulation of intercostal nerves and hind limb afferent nerves. (2) In 80% of cats, a long latency reflex response alone was recorded, whereas, in the others, a short and long latency response was present to intercostal nerve stimulation. (3) In cats displaying only a long latency somatocardiac reflex response, damage to the ventral quadrant of the ipsilateral cervical spinal cord, through which runs a bulbospinal inhibitory pathway, resulted in the appearance of shorter latency reflexes to intercostal nerve stimulation. Lesions elsewhere in the cervical cord did not do this. (4) The characteristics of the early responses indicated that they were somatosympathetic reflexes and not dorsal root reflexes. (5) The early reflexes remained and the late reflex disappeared on subsequent complete transection of the spinal cord. The early reflexes were therefore spinal reflexes, and suppressed in the animal with cord intact. (6) Lesions at C4, which included a contralateral hemisection and a section of dorsal columns extending into the dorsal part of the lateral funiculus, abolished the inhibition of a sympathetic reflex that followed stimulation of some somatic afferent nerve fibres. These sections did not release the spinal reflex. Therefore, this reflex inhibition was not responsible for the suppression of the spinal somatosympathetic reflex. (7) The descending inhibitory influence on the segmental reflex pathway was not antagonized by strychnine, bicuculline or picrotoxin. (8) The possibility is discussed that the spinal reflex pathway into cardiac sympathetic nerves is tonically inhibited by a bulbospinal pathway originating from the classical depressor region of the ventromedial reticular formation.  相似文献   

11.
Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with alpha-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 +/- 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 +/- 19%, p < 0.001, n = 27 across six cats) or bilateral intermittent SR stimulation (25 +/- 23%, p < 0.005, n = 4 across two cats). After bilateral transection of the nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 +/- 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.  相似文献   

12.
The neural pathways involved in the interactions between urinary bladder and internal anal sphincter (IAS) were studied in anaesthetized spinal cats. Activation of vesical afferents produced in the IAS a reflex increase in the electrical activity and a reflex inhibition of the excitatory responses evoked by stimulation of one hypogastric nerve. Both reflexes are achieved partly in the lumbar spinal cord and partly within the inferior mesenteric ganglion.  相似文献   

13.
A pontine centre located near the micturition centre controlling external anal sphincter (EAS) motility via noradrenergic neurones has been described in cats. The aim of this study was to determine (i) whether a similar centre controls EAS motility in humans and (ii) whether this centre is involved in vesico-sphincteric reflexes in cats and humans. The effects of an alpha-1-adrenoceptor antagonist (nicergoline) and those of vesical distension on the electrical activity of the EAS were studied in paraplegic and non-paraplegic volunteers. The effects of vesical distension by injecting saline at physiological levels on the responses of the EAS to pudendal nerve stimulation were investigated in intact cats and cats with nerve sections. In non-paraplegic subjects, nicergoline and vesical distension abolished the activity of the EAS. These effects were no longer observed in paraplegic patients. In cats, vesical distension inhibited the reflex response of the EAS to pudendal nerve stimulation. This vesico-sphincteric reflex, which was no longer observed in spinal animals, persisted after nicergoline injection. These findings indicate that in humans, there exists a supra-spinal centre facilitating the tonic activity of the EAS via noradrenergic neurones not involved in the inhibitory vesico-sphincteric reflex.  相似文献   

14.
Interaction of segmental, propriospinal and spino-bulbo-spinal components of the lumbar flexor reflexes evoked by activation of the hind-and forelimb afferents with paired stimuli was studied in anesthetized cats. Coincidence in time of a reflex discharge evoked by stimulation of the forelimb afferent nerves with monosynaptic hindlimb flexor reflex causes considerable facilitation of the latter. The monosynaptic reflex increases for 40-50 ms. tthe polysynaptic flexor reflexes of segmental, propriospinal and spino-bulbo-spinal origin act upon each other in both a facilitatory and an inhibitory manner. Facilitation takes place only during the period of coincidence of the responses, inhibition when the responses are separated in time. Three types of inhibition with duration of 7-15, 40-150, 300-500 ms were observed. Possible neuronal mechanisms of interaction of the above-mentioned responses and their role in the inter limb interrelations are discussed  相似文献   

15.
The influence of supraspinal 5-HT1A receptors on reflex bladder activity was evaluated in anesthetized rats by studying the effects of intracerebroventricular (i.c.v.) administration of WAY100635 (1–100 μg), a selective 5-HT1A receptor antagonist. The drug dose-dependently decreased the frequency and/or amplitude of isovolumetric reflex bladder contractions. Low doses (1–10 μg) increased the interval between contractions but only slightly reduced the amplitude of the contractions. However, 100 μg of WAY100635 elicited an initial complete block of bladder reflexes followed by a recovery period lasting 10–15 min during which the frequency of reflex contractions was normal but the amplitude was markedly suppressed by 70–80%. Mesulergine (0.1 mg/kg, i.v.), a 5-HT2C antagonist, which transiently eliminated bladder activity in some rats (five of 11), blocked the inhibitory effect of WAY100635 (10 or 100 μg, i.c.v.) in only two of six rats. Our data coupled with the results of previous studies suggest that spinal and supraspinal 5-HT1A receptors are involved in multiple inhibitory mechanisms controlling the spinobulbospinal micturition reflex pathway. The regulation of the frequency of bladder reflexes is presumably mediated by a suppression of afferent input to the micturition switching circuitry in the pons, whereas the regulation of bladder contraction amplitude may be related to an inhibition of the output from the pons to the parasympathetic nucleus in the spinal cord.  相似文献   

16.
P A Durant  T L Yaksh 《Brain research》1988,451(1-2):301-308
Unanesthetized rats chronically implanted with vesical and intrathecal catheters were injected intrathecally (i.t.) with either capsaicin (CAP), N-vanillylnonanamide (VN), 6-hydroxydopamine (6-OHDA), or 5,6-dihydroxytryptamine (5,6-DHT). The volume-evoked micturition reflex was assessed by cystometrography before, and 2 h, 1 day and 7 days after injection. In control and vehicle-injected rats, the infusion of saline into the bladder resulted in a periodic contraction of the bladder with synergic sphincter relaxation. One day after i.t. CAP and VN (70 micrograms each), 50% and 30% of the animals displayed a blockade of the micturition reflex, respectively. In these animals, the infusion of saline resulted in a gradual rise in bladder pressure up to a plateau (overflow pressure) equivalent to the predrug bladder opening pressure. When the plateau was reached, continuous dribbling of urine with no bladder contractions was observed. Most of the affected rats displayed some micturition responses by day 7. Following i.t. injection of 5,6-DHT (20 micrograms) or 6-OHDA (20 micrograms), the micturition reflex displayed small but significant increases in bladder volume with no changes in pressure profile. Small primary afferents, sensitive to the neurotoxic effects of CAP and VN appear to play a major tonic role in the regulation of the micturition reflex in unanesthetized rats. Serotonergic and adrenergic descending pathways might play a role in the maintenance of resting bladder tone.  相似文献   

17.
Bladder contractions evoked by pudendal nerve stimulation in both spinal intact and spinal transected cats support the possibility of restoring urinary function in persons with chronic spinal cord injury (SCI). However, electrically evoked bladder responses in persons with SCI were limited to transient contractions at relatively low pressures. This prompted the present study, which presents a detailed quantification of the responses evoked by selective stimulation of individual branches of the pudendal nerve at different stimulation frequencies. In spinal intact cats anesthetized with α-chloralose, selective frequency-dependent electrical activation of the sensory (2 Hz ≤ f ≤ 50 Hz), cranial sensory (f ≤ 5 Hz), dorsal genital (f ≥ 20 Hz) and rectal perineal (f ≤ 10 Hz) branches of the pudendal nerve evoked sustained bladder contractions dependent on the stimulation frequency. Contractions evoked by selective electrical stimulation resulted in significant increases in voiding efficiency compared to bladder emptying by distension-evoked contractions (pANOVA < 0.05). Acute spinal transection abolished reflex bladder contractions evoked by low frequency stimulation of the cranial sensory or rectal perineal branches, whereas contractions evoked by high frequency stimulation of the dorsal genital branch remained intact. This study presents evidence for two distinct micturition pathways (spino-bulbo-spinal vs. spinal reflexes) activated by selective afferent pudendal nerve stimulation, the latter of which may be applied to restore bladder function in persons with SCI.  相似文献   

18.
This study examined reflex mechanisms that mediate urinary bladder and external urethral sphincter (EUS) coordination in female Sprague-Dawley urethane-anesthetized rats under empty and distended bladder conditions. The bladder was distended either by a small balloon or a saline filled catheter inserted through the body of the bladder. Stimulation of the entire pudendal nerve elicited short latency (8-12 ms) responses in the EUS and short (3-8 ms) and long latency responses (16-20 ms) in contralateral pudendal nerve. The long latency pudendal-pudendal reflex was reduced by 36.7% in area during bladder distension with the balloon catheter. However, there was no significant change in the area of pudendal-EUS reflex during bladder distension. Peak amplitudes of both reflexes were reduced 32% by bladder distension. The effects of glutamatergic receptor antagonists on the reflexes were also examined. MK 801 (0.3-5mg/kg, i.v.), an N-methyl-d-aspartate glutamatergic receptor antagonist, markedly depressed the pudendal-pudendal reflex, but LY 215490 (3mg/kg, i.v.), an alpha-amino-5-methyl isoxazole-4-propionate antagonist, had a minimal inhibitory effect. Both glutamatergic receptor antagonists significantly suppressed the pudendal-EUS reflex. These results indicate that the EUS is innervated by multiple pathways and that glutamatergic excitatory transmission is important in the neural mechanisms underlying bladder-sphincter coordination in the rat.  相似文献   

19.
Reflexes in visceral preganglionic motility-regulating (MR) neurons which project in the lumbar splanchnic nerves were investigated in acutely spinalized cats. Some neurons were analyzed before and after spinalization. The stimuli used were mechanical stimulation of mucosal skin of the anus and of perianal (perigenital) hairy skin, and distension and contraction of urinary bladder and colon. Most MR neurons exhibited a reflex pattern which consists of the following components: excitation upon bladder distension, inhibition or no effect upon colon distension and excitation (or, rarely, no effect) upon anal stimulation. This is the reflex pattern of MR1 neurons. Some neurons were excited by anal stimulation but not affected from the colon and urinary bladder. Some were inhibited by anal and perianal stimulation but otherwise exhibited the reflex patterns of the MR1 neurons. Analysis of the reflexes before and after spinalization showed that, in particular, inhibition elicited by anal, perianal and bladder stimulation was abolished; inhibition elicited from the colon was enhanced after spinalization. It is concluded that the reflexes elicited in preganglionic lumbar visceral neurons by the natural stimuli probably use spinal pathways, with the afferent input occurring at the sacral spinal cord. These spinal reflex pathways are probably controlled by descending inhibitory and excitatory spinal systems from the supraspinal neuraxis.  相似文献   

20.
In experiments on spinal narcotized cats perfusion of lumbosacral spinal cord through central canal with artificial cerebrospinal fluid containing high concentration (20-46 mM) of magnesium ions led to reversible depression of negative DRP as well as to depression of prolonged "presynaptic" inhibition of extensor monosynaptic reflexes produced by repetitive impulse volleys in group I flexor muscle afferents. Magnesium did not cause a depression of monosynaptic reflex discharges in spinal ventral roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号