首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Continuous probabilistic genotyping software enables the interpretation of highly complex DNA profiles that are prone to stochastic effects and/or consist of multiple contributions. The process of introducing probabilistic genotyping into an accredited forensic laboratory requires testing, validation, documentation and training. Documents that include guidelines and/or requirements have been published in order to guide forensic laboratories through this extensive process and there has been encouragements to share the results obtained from internal laboratory studies. To this end, we present the results obtained from the quantitative probabilistic genotyping system EuroForMix applied to mixed DNA profiles with known contributions mixed in known proportions, levels of allele sharing and levels of allelic drop-out. The mixtures were profiled using the PowerPlex® Fusion 6C (PPF6C) kit. Using these mixtures, 427 Hp-true tests and 408 Hd-true tests were performed. In the Hd-true tests, non-contributors were selected deliberately to a have large overlap with the alleles within the mixture and worst-case scenarios were examined in which a simulated relative of one of the true donors was considered as the person of interest under the prosecution hypothesis. The effects of selecting different EuroForMix modelling options, the use of PCR replicates, allelic drop-out, and varying the assigned number of contributors were examined. Instances of Type I and Type II errors are discussed. In addition 330 likelihood ratio results from EuroForMix are compared to the semi-continuous model LRmix Studio. Results demonstrate the performance and trends of EuroForMix when applied to PPF6C profiles.  相似文献   

2.
The data management, interpretation and comparison of sets of DNA profiles can be complex, time-consuming and error-prone when performed manually. This, combined with the growing numbers of genetic markers in forensic identification systems calls for expert systems that can automatically compare genotyping results within (large) sets of DNA profiles and assist in profile interpretation. To that aim, we developed a user-friendly software program or DNA eXpert System that is denoted DNAxs. This software includes features to view, infer and match autosomal short tandem repeat profiles with connectivity to up and downstream software programs. Furthermore, DNAxs has imbedded the ‘DNAStatistX’ module, a statistical library that contains a probabilistic algorithm to calculate likelihood ratios (LRs). This algorithm is largely based on the source code of the quantitative probabilistic genotyping system EuroForMix [1]. The statistical library, DNAStatistX, supports parallel computing which can be delegated to a computer cluster and enables automated queuing of requested LR calculations. DNAStatistX is written in Java and is accessible separately or via DNAxs. Using true and non-contributors to DNA profiles with up to four contributors, the DNAStatistX accuracy and precision were assessed by comparing the DNAStatistX results to those of EuroForMix. Results were the same up to rare differences that could be attributed to the different optimizers used in both software programs. Implementation of dye specific detection thresholds resulted in larger likelihood values and thus a better explanation of the data used in this study. Furthermore, processing time, robustness of DNAStatistX results and the circumstances under which model validations failed were examined. Finally, guidelines for application of the software are shared as an example. The DNAxs software is future-proof as it applies a modular approach by which novel functionalities can be incorporated.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号