首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue-level semantic segmentation is a vital step in computational pathology. Fully-supervised models have already achieved outstanding performance with dense pixel-level annotations. However, drawing such labels on the giga-pixel whole slide images is extremely expensive and time-consuming. In this paper, we use only patch-level classification labels to achieve tissue semantic segmentation on histopathology images, finally reducing the annotation efforts. We propose a two-step model including a classification and a segmentation phases. In the classification phase, we propose a CAM-based model to generate pseudo masks by patch-level labels. In the segmentation phase, we achieve tissue semantic segmentation by our propose Multi-Layer Pseudo-Supervision. Several technical novelties have been proposed to reduce the information gap between pixel-level and patch-level annotations. As a part of this paper, we introduce a new weakly-supervised semantic segmentation (WSSS) dataset for lung adenocarcinoma (LUAD-HistoSeg). We conduct several experiments to evaluate our proposed model on two datasets. Our proposed model outperforms five state-of-the-art WSSS approaches. Note that we can achieve comparable quantitative and qualitative results with the fully-supervised model, with only around a 2% gap for MIoU and FwIoU. By comparing with manual labeling on a randomly sampled 100 patches dataset, patch-level labeling can greatly reduce the annotation time from hours to minutes. The source code and the released datasets are available at: https://github.com/ChuHan89/WSSS-Tissue.  相似文献   

2.
High performance of deep learning models on medical image segmentation greatly relies on large amount of pixel-wise annotated data, yet annotations are costly to collect. How to obtain high accuracy segmentation labels of medical images with limited cost (e.g. time) becomes an urgent problem. Active learning can reduce the annotation cost of image segmentation, but it faces three challenges: the cold start problem, an effective sample selection strategy for segmentation task and the burden of manual annotation. In this work, we propose a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical image segmentation, which reduces the annotation cost both in decreasing the amount of the annotated images and simplifying the annotation process. Specifically, we propose a novel hybrid sample selection strategy to select the most valuable samples for segmentation model performance improvement. This strategy combines pixel entropy, regional consistency and image diversity to ensure that the selected samples have high uncertainty and diversity. In addition, we propose a warm-start initialization strategy to build the initial annotated dataset to avoid the cold-start problem. To simplify the manual annotation process, we propose an interactive annotation module with suggested superpixels to obtain pixel-wise label with several clicks. We validate our proposed framework with extensive segmentation experiments on four medical image datasets. Experimental results showed that the proposed framework achieves high accuracy pixel-wise annotations and models with less labeled data and fewer interactions, outperforming other state-of-the-art methods. Our method can help physicians efficiently obtain accurate medical image segmentation results for clinical analysis and diagnosis.  相似文献   

3.
Coronavirus disease (COVID-19) has caused a worldwide pandemic, putting millions of people’s health and lives in jeopardy. Detecting infected patients early on chest computed tomography (CT) is critical in combating COVID-19. Harnessing uncertainty-aware consensus-assisted multiple instance learning (UC-MIL), we propose to diagnose COVID-19 using a new bilateral adaptive graph-based (BA-GCN) model that can use both 2D and 3D discriminative information in 3D CT volumes with arbitrary number of slices. Given the importance of lung segmentation for this task, we have created the largest manual annotation dataset so far with 7,768 slices from COVID-19 patients, and have used it to train a 2D segmentation model to segment the lungs from individual slices and mask the lungs as the regions of interest for the subsequent analyses. We then used the UC-MIL model to estimate the uncertainty of each prediction and the consensus between multiple predictions on each CT slice to automatically select a fixed number of CT slices with reliable predictions for the subsequent model reasoning. Finally, we adaptively constructed a BA-GCN with vertices from different granularity levels (2D and 3D) to aggregate multi-level features for the final diagnosis with the benefits of the graph convolution network’s superiority to tackle cross-granularity relationships. Experimental results on three largest COVID-19 CT datasets demonstrated that our model can produce reliable and accurate COVID-19 predictions using CT volumes with any number of slices, which outperforms existing approaches in terms of learning and generalisation ability. To promote reproducible research, we have made the datasets, including the manual annotations and cleaned CT dataset, as well as the implementation code, available at https://doi.org/10.5281/zenodo.6361963.  相似文献   

4.
Automatic surgical instrument segmentation of endoscopic images is a crucial building block of many computer-assistance applications for minimally invasive surgery. So far, state-of-the-art approaches completely rely on the availability of a ground-truth supervision signal, obtained via manual annotation, thus expensive to collect at large scale. In this paper, we present FUN-SIS, a Fully-UNsupervised approach for binary Surgical Instrument Segmentation. FUN-SIS trains a per-frame segmentation model on completely unlabelled endoscopic videos, by solely relying on implicit motion information and instrument shape-priors. We define shape-priors as realistic segmentation masks of the instruments, not necessarily coming from the same dataset/domain as the videos. The shape-priors can be collected in various and convenient ways, such as recycling existing annotations from other datasets. We leverage them as part of a novel generative-adversarial approach, allowing to perform unsupervised instrument segmentation of optical-flow images during training. We then use the obtained instrument masks as pseudo-labels in order to train a per-frame segmentation model; to this aim, we develop a learning-from-noisy-labels architecture, designed to extract a clean supervision signal from these pseudo-labels, leveraging their peculiar noise properties. We validate the proposed contributions on three surgical datasets, including the MICCAI 2017 EndoVis Robotic Instrument Segmentation Challenge dataset. The obtained fully-unsupervised results for surgical instrument segmentation are almost on par with the ones of fully-supervised state-of-the-art approaches. This suggests the tremendous potential of the proposed method to leverage the great amount of unlabelled data produced in the context of minimally invasive surgery.  相似文献   

5.
The dearth of annotated data is a major hurdle in building reliable image segmentation models. Manual annotation of medical images is tedious, time-consuming, and significantly variable across imaging modalities. The need for annotation can be ameliorated by leveraging an annotation-rich source modality in learning a segmentation model for an annotation-poor target modality. In this paper, we introduce a diverse data augmentation generative adversarial network (DDA-GAN) to train a segmentation model for an unannotated target image domain by borrowing information from an annotated source image domain. This is achieved by generating diverse augmented data for the target domain by one-to-many source-to-target translation. The DDA-GAN uses unpaired images from the source and target domains and is an end-to-end convolutional neural network that (i) explicitly disentangles domain-invariant structural features related to segmentation from domain-specific appearance features, (ii) combines structural features from the source domain with appearance features randomly sampled from the target domain for data augmentation, and (iii) train the segmentation model with the augmented data in the target domain and the annotations from the source domain. The effectiveness of our method is demonstrated both qualitatively and quantitatively in comparison with the state of the art for segmentation of craniomaxillofacial bony structures via MRI and cardiac substructures via CT.  相似文献   

6.
Accurate delineation of multiple organs is a critical process for various medical procedures, which could be operator-dependent and time-consuming. Existing organ segmentation methods, which were mainly inspired by natural image analysis techniques, might not fully exploit the traits of the multi-organ segmentation task and could not accurately segment the organs with various shapes and sizes simultaneously. In this work, the characteristics of multi-organ segmentation are considered: the global count, position and scale of organs are generally predictable, while their local shape and appearance are volatile. Thus, we supplement the region segmentation backbone with a contour localization task to increase the certainty along delicate boundaries. Meantime, each organ has exclusive anatomical traits, which motivates us to deal with class variability with class-wise convolutions to highlight organ-specific features and suppress irrelevant responses at different field-of-views.To validate our method with adequate amounts of patients and organs, we constructed a multi-center dataset, which contains 110 3D CT scans with 24,528 axial slices, and provided voxel-level manual segmentations of 14 abdominal organs, which adds up to 1,532 3D structures in total. Extensive ablation and visualization studies on it validate the effectiveness of the proposed method. Quantitative analysis shows that we achieve state-of-the-art performance for most abdominal organs, and obtain 3.63 mm 95% Hausdorff Distance and 83.32% Dice Similarity Coefficient on an average.  相似文献   

7.
Cell instance segmentation is important in biomedical research. For living cell analysis, microscopy images are captured under various conditions (e.g., the type of microscopy and type of cell). Deep-learning-based methods can be used to perform instance segmentation if sufficient annotations of individual cell boundaries are prepared as training data. Generally, annotations are required for each condition, which is very time-consuming and labor-intensive. To reduce the annotation cost, we propose a weakly supervised cell instance segmentation method that can segment individual cell regions under various conditions by only using rough cell centroid positions as training data. This method dramatically reduces the annotation cost compared with the standard annotation method of supervised segmentation. We demonstrated the efficacy of our method on various cell images; it outperformed several of the conventional weakly-supervised methods on average. In addition, we demonstrated that our method can perform instance cell segmentation without any manual annotation by using pairs of phase contrast and fluorescence images in which cell nuclei are stained as training data.  相似文献   

8.
Object segmentation is an important step in the workflow of computational pathology. Deep learning based models generally require large amount of labeled data for precise and reliable prediction. However, collecting labeled data is expensive because it often requires expert knowledge, particularly in medical imaging domain where labels are the result of a time-consuming analysis made by one or more human experts. As nuclei, cells and glands are fundamental objects for downstream analysis in computational pathology/cytology, in this paper we propose NuClick, a CNN-based approach to speed up collecting annotations for these objects requiring minimum interaction from the annotator. We show that for nuclei and cells in histology and cytology images, one click inside each object is enough for NuClick to yield a precise annotation. For multicellular structures such as glands, we propose a novel approach to provide the NuClick with a squiggle as a guiding signal, enabling it to segment the glandular boundaries. These supervisory signals are fed to the network as auxiliary inputs along with RGB channels. With detailed experiments, we show that NuClick is applicable to a wide range of object scales, robust against variations in the user input, adaptable to new domains, and delivers reliable annotations. An instance segmentation model trained on masks generated by NuClick achieved the first rank in LYON19 challenge. As exemplar outputs of our framework, we are releasing two datasets: 1) a dataset of lymphocyte annotations within IHC images, and 2) a dataset of segmented WBCs in blood smear images.  相似文献   

9.
Cells/nuclei deliver massive information of microenvironment. An automatic nuclei segmentation approach can reduce pathologists’ workload and allow precise of the microenvironment for biological and clinical researches. Existing deep learning models have achieved outstanding performance under the supervision of a large amount of labeled data. However, when data from the unseen domain comes, we still have to prepare a certain degree of manual annotations for training for each domain. Unfortunately, obtaining histopathological annotations is extremely difficult. It is high expertise-dependent and time-consuming. In this paper, we attempt to build a generalized nuclei segmentation model with less data dependency and more generalizability. To this end, we propose a meta multi-task learning (Meta-MTL) model for nuclei segmentation which requires fewer training samples. A model-agnostic meta-learning is applied as the outer optimization algorithm for the segmentation model. We introduce a contour-aware multi-task learning model as the inner model. A feature fusion and interaction block (FFIB) is proposed to allow feature communication across both tasks. Extensive experiments prove that our proposed Meta-MTL model can improve the model generalization and obtain a comparable performance with state-of-the-art models with fewer training samples. Our model can also perform fast adaptation on the unseen domain with only a few manual annotations. Code is available at https://github.com/ChuHan89/Meta-MTL4NucleiSegmentation  相似文献   

10.
Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. The success of machine learning, in particular supervised learning, depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire, it takes a substantial amount of time and resource to curate an annotated medical image set. In this paper, we propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate. We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation. Experiments show that for brain tumour segmentation task on the BraTS 2019 dataset, training a segmentation model with only 7% suggestively annotated image samples can achieve a performance comparable to that of training on the full dataset. For whole brain segmentation on the MALC dataset, training with 42% suggestively annotated image samples can achieve a comparable performance to training on the full dataset. The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.  相似文献   

11.
Automated lesion segmentation is one of the important tasks for the quantitative assessment of retinal diseases in SD-OCT images. Recently, deep convolutional neural networks (CNN) have shown promising advancements in the field of automated image segmentation, whereas they always benefit from large-scale datasets with high-quality pixel-wise annotations. Unfortunately, obtaining accurate annotations is expensive in both human effort and finance. In this paper, we propose a weakly supervised two-stage learning architecture to detect and further segment central serous chorioretinopathy (CSC) retinal detachment with only image-level annotations. Specifically, in the first stage, a Located-CNN is designed to detect the location of lesion regions in the whole SD-OCT retinal images, and highlight the distinguishing regions. To generate available a pseudo pixel-level label, the conventional level set method is employed to refine the distinguishing regions. In the second stage, we customize the active-contour loss function in deep networks to achieve the effective segmentation of the lesion area. A challenging dataset is used to evaluate our proposed method, and the results demonstrate that the proposed method consistently outperforms some current models trained with a different level of supervision, and is even as competitive as those relying on stronger supervision. To our best knowledge, we are the first to achieve CSC segmentation in SD-OCT images using weakly supervised learning, which can greatly reduce the labeling efforts.  相似文献   

12.
White matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI) provides an important tool for the analysis of brain development, function, and disease. Deep learning based methods of WM tract segmentation have been proposed, which greatly improve the accuracy of the segmentation. However, the training of the deep networks usually requires a large number of manual delineations of WM tracts, which can be especially difficult to obtain and unavailable in many scenarios. Therefore, in this work, we explore how to perform deep learning based WM tract segmentation when annotated training data is scarce. To this end, we seek to exploit the abundant unannotated dMRI data in the self-supervised learning framework. From the unannotated data, knowledge about image context can be learned with pretext tasks that do not require manual annotations. Specifically, a deep network can be pretrained for the pretext task, and the knowledge learned from the pretext task is then transferred to the subsequent WM tract segmentation task with only a small number of annotated scans via fine-tuning. We explore two designs of pretext tasks that are related to WM tracts. The first pretext task predicts the density map of fiber streamlines, which are representations of generic WM pathways, and the training data can be obtained automatically with tractography. The second pretext task learns to mimic the results of registration-based WM tract segmentation, which, although inaccurate, is more relevant to WM tract segmentation and provides a good target for learning context knowledge. Then, we combine the two pretext tasks and develop a nested self-supervised learning strategy. In the nested self-supervised learning strategy, the first pretext task provides initial knowledge for the second pretext task, and the knowledge learned from the second pretext task with the initial knowledge is transferred to the target WM tract segmentation task via fine-tuning. To evaluate the proposed method, experiments were performed on brain dMRI scans from the Human Connectome Project dataset with various experimental settings. The results show that the proposed method improves the performance of WM tract segmentation when tract annotations are scarce.  相似文献   

13.
Deep learning techniques for 3D brain vessel image segmentation have not been as successful as in the segmentation of other organs and tissues. This can be explained by two factors. First, deep learning techniques tend to show poor performances at the segmentation of relatively small objects compared to the size of the full image. Second, due to the complexity of vascular trees and the small size of vessels, it is challenging to obtain the amount of annotated training data typically needed by deep learning methods. To address these problems, we propose a novel annotation-efficient deep learning vessel segmentation framework. The framework avoids pixel-wise annotations, only requiring weak patch-level labels to discriminate between vessel and non-vessel 2D patches in the training set, in a setup similar to the CAPTCHAs used to differentiate humans from bots in web applications. The user-provided weak annotations are used for two tasks: (1) to synthesize pixel-wise pseudo-labels for vessels and background in each patch, which are used to train a segmentation network, and (2) to train a classifier network. The classifier network allows to generate additional weak patch labels, further reducing the annotation burden, and it acts as a second opinion for poor quality images. We use this framework for the segmentation of the cerebrovascular tree in Time-of-Flight angiography (TOF) and Susceptibility-Weighted Images (SWI). The results show that the framework achieves state-of-the-art accuracy, while reducing the annotation time by 77% w.r.t. learning-based segmentation methods using pixel-wise labels for training.  相似文献   

14.
Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose articular damage and knee osteoarthritis (OA). Deep learning (DL) methods for medical image segmentation have largely outperformed traditional methods, but they often need large amounts of annotated data for model training, which is very costly and time-consuming for medical experts, especially on 3D images. In this paper, we report a new knee cartilage and bone segmentation framework, KCB-Net, for 3D MR images based on sparse annotation. KCB-Net selects a small subset of slices from 3D images for annotation, and seeks to bridge the performance gap between sparse annotation and full annotation. Specifically, it first identifies a subset of the most effective and representative slices with an unsupervised scheme; it then trains an ensemble model using the annotated slices; next, it self-trains the model using 3D images containing pseudo-labels generated by the ensemble method and improved by a bi-directional hierarchical earth mover’s distance (bi-HEMD) algorithm; finally, it fine-tunes the segmentation results using the primal–dual Internal Point Method (IPM). Experiments on four 3D MR knee joint datasets (the SKI10 dataset, OAI ZIB dataset, Iowa dataset, and iMorphics dataset) show that our new framework outperforms state-of-the-art methods on full annotation, and yields high quality results for small annotation ratios even as low as 10%.  相似文献   

15.

Purpose

Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images.

Methods

The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model.

Results

Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency.

Conclusion

A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
  相似文献   

16.
The difficulty of obtaining annotations to build training databases still slows down the adoption of recent deep learning approaches for biomedical image analysis. In this paper, we show that we can train a Deep Net to perform 3D volumetric delineation given only 2D annotations in Maximum Intensity Projections (MIP) of the training volumes. This significantly reduces the annotation time: We conducted a user study that suggests that annotating 2D projections is on average twice as fast as annotating the original 3D volumes. Our technical contribution is a loss function that evaluates a 3D prediction against annotations of 2D projections. It is inspired by space carving, a classical approach to reconstructing complex 3D shapes from arbitrarily-positioned cameras. It can be used to train any deep network with volumetric output, without the need to change the network’s architecture. Substituting the loss is all it takes to enable 2D annotations in an existing training setup. In extensive experiments on 3D light microscopy images of neurons and retinal blood vessels, and on Magnetic Resonance Angiography (MRA) brain scans, we show that, when trained on projection annotations, deep delineation networks perform as well as when they are trained using costlier 3D annotations.  相似文献   

17.
Radiotherapy is a treatment where radiation is used to eliminate cancer cells. The delineation of organs-at-risk (OARs) is a vital step in radiotherapy treatment planning to avoid damage to healthy organs. For nasopharyngeal cancer, more than 20 OARs are needed to be precisely segmented in advance. The challenge of this task lies in complex anatomical structure, low-contrast organ contours, and the extremely imbalanced size between large and small organs. Common segmentation methods that treat them equally would generally lead to inaccurate small-organ labeling. We propose a novel two-stage deep neural network, FocusNetv2, to solve this challenging problem by automatically locating, ROI-pooling, and segmenting small organs with specifically designed small-organ localization and segmentation sub-networks while maintaining the accuracy of large organ segmentation. In addition to our original FocusNet, we employ a novel adversarial shape constraint on small organs to ensure the consistency between estimated small-organ shapes and organ shape prior knowledge. Our proposed framework is extensively tested on both self-collected dataset of 1,164 CT scans and the MICCAI Head and Neck Auto Segmentation Challenge 2015 dataset, which shows superior performance compared with state-of-the-art head and neck OAR segmentation methods.  相似文献   

18.
Manual segmentation of stacks of 2D biomedical images (e.g., histology) is a time-consuming task which can be sped up with semi-automated techniques. In this article, we present a suggestive deep active learning framework that seeks to minimise the annotation effort required to achieve a certain level of accuracy when labelling such a stack. The framework suggests, at every iteration, a specific region of interest (ROI) in one of the images for manual delineation. Using a deep segmentation neural network and a mixed cross-entropy loss function, we propose a principled strategy to estimate class probabilities for the whole stack, conditioned on heterogeneous partial segmentations of the 2D images, as well as on weak supervision in the form of image indices that bound each ROI. Using the estimated probabilities, we propose a novel active learning criterion based on predictions for the estimated segmentation performance and delineation effort, measured with average Dice scores and total delineated boundary length, respectively, rather than common surrogates such as entropy. The query strategy suggests the ROI that is expected to maximise the ratio between performance and effort, while considering the adjacency of structures that may have already been labelled – which decrease the length of the boundary to trace. We provide quantitative results on synthetically deformed MRI scans and real histological data, showing that our framework can reduce labelling effort by up to 60–70% without compromising accuracy.  相似文献   

19.

Purpose

Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans.

Methods

The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map.

Results

The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively.

Conclusions

The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.
  相似文献   

20.
Although having achieved great success in medical image segmentation, deep learning-based approaches usually require large amounts of well-annotated data, which can be extremely expensive in the field of medical image analysis. Unlabeled data, on the other hand, is much easier to acquire. Semi-supervised learning and unsupervised domain adaptation both take the advantage of unlabeled data, and they are closely related to each other. In this paper, we propose uncertainty-aware multi-view co-training (UMCT), a unified framework that addresses these two tasks for volumetric medical image segmentation. Our framework is capable of efficiently utilizing unlabeled data for better performance. We firstly rotate and permute the 3D volumes into multiple views and train a 3D deep network on each view. We then apply co-training by enforcing multi-view consistency on unlabeled data, where an uncertainty estimation of each view is utilized to achieve accurate labeling. Experiments on the NIH pancreas segmentation dataset and a multi-organ segmentation dataset show state-of-the-art performance of the proposed framework on semi-supervised medical image segmentation. Under unsupervised domain adaptation settings, we validate the effectiveness of this work by adapting our multi-organ segmentation model to two pathological organs from the Medical Segmentation Decathlon Datasets. Additionally, we show that our UMCT-DA model can even effectively handle the challenging situation where labeled source data is inaccessible, demonstrating strong potentials for real-world applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号