首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate 3D segmentation of calf muscle compartments in volumetric MR images is essential to diagnose as well as assess progression of muscular diseases. Recently, good segmentation performance was achieved using state-of-the-art deep learning approaches, which, however, require large amounts of annotated data for training. Considering that obtaining sufficiently large medical image annotation datasets is often difficult, time-consuming, and requires expert knowledge, minimizing the necessary sizes of expert-annotated training datasets is of great importance. This paper reports CMC-Net, a new deep learning framework for calf muscle compartment segmentation in 3D MR images that selects an effective small subset of 2D slices from the 3D images to be labelled, while also utilizing unannotated slices to facilitate proper generalization of the subsequent training steps. Our model consists of three parts: (1) an unsupervised method to select the most representative 2D slices on which expert annotation is performed; (2) ensemble model training employing these annotated as well as additional unannotated 2D slices; (3) a model-tuning method using pseudo-labels generated by the ensemble model that results in a trained deep network capable of accurate 3D segmentations. Experiments on segmentation of calf muscle compartments in 3D MR images show that our new approach achieves good performance with very small annotation ratios, and when utilizing full annotation, it outperforms state-of-the-art full annotation segmentation methods. Additional experiments on a 3D MR thigh dataset further verify the ability of our method in segmenting leg muscle groups with sparse annotation.  相似文献   

2.
Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. The success of machine learning, in particular supervised learning, depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire, it takes a substantial amount of time and resource to curate an annotated medical image set. In this paper, we propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate. We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation. Experiments show that for brain tumour segmentation task on the BraTS 2019 dataset, training a segmentation model with only 7% suggestively annotated image samples can achieve a performance comparable to that of training on the full dataset. For whole brain segmentation on the MALC dataset, training with 42% suggestively annotated image samples can achieve a comparable performance to training on the full dataset. The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.  相似文献   

3.
Since segmentation labeling is usually time-consuming and annotating medical images requires professional expertise, it is laborious to obtain a large-scale, high-quality annotated segmentation dataset. We propose a novel weakly- and semi-supervised framework named SOUSA (Segmentation Only Uses Sparse Annotations), aiming at learning from a small set of sparse annotated data and a large amount of unlabeled data. The proposed framework contains a teacher model and a student model. The student model is weakly supervised by scribbles and a Geodesic distance map derived from scribbles. Meanwhile, a large amount of unlabeled data with various perturbations are fed to student and teacher models. The consistency of their output predictions is imposed by Mean Square Error (MSE) loss and a carefully designed Multi-angle Projection Reconstruction (MPR) loss. Extensive experiments are conducted to demonstrate the robustness and generalization ability of our proposed method. Results show that our method outperforms weakly- and semi-supervised state-of-the-art methods on multiple datasets. Furthermore, our method achieves a competitive performance with some fully supervised methods with dense annotation when the size of the dataset is limited.  相似文献   

4.
Whole abdominal organ segmentation is important in diagnosing abdomen lesions, radiotherapy, and follow-up. However, oncologists’ delineating all abdominal organs from 3D volumes is time-consuming and very expensive. Deep learning-based medical image segmentation has shown the potential to reduce manual delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole abdominal organ segmentation. In this work, we establish a new large-scale Whole abdominal ORgan Dataset (WORD) for algorithm research and clinical application development. This dataset contains 150 abdominal CT volumes (30495 slices). Each volume has 16 organs with fine pixel-level annotations and scribble-based sparse annotations, which may be the largest dataset with whole abdominal organ annotation. Several state-of-the-art segmentation methods are evaluated on this dataset. And we also invited three experienced oncologists to revise the model predictions to measure the gap between the deep learning method and oncologists. Afterwards, we investigate the inference-efficient learning on the WORD, as the high-resolution image requires large GPU memory and a long inference time in the test stage. We further evaluate the scribble-based annotation-efficient learning on this dataset, as the pixel-wise manual annotation is time-consuming and expensive. The work provided a new benchmark for the abdominal multi-organ segmentation task, and these experiments can serve as the baseline for future research and clinical application development.  相似文献   

5.
High performance of deep learning models on medical image segmentation greatly relies on large amount of pixel-wise annotated data, yet annotations are costly to collect. How to obtain high accuracy segmentation labels of medical images with limited cost (e.g. time) becomes an urgent problem. Active learning can reduce the annotation cost of image segmentation, but it faces three challenges: the cold start problem, an effective sample selection strategy for segmentation task and the burden of manual annotation. In this work, we propose a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical image segmentation, which reduces the annotation cost both in decreasing the amount of the annotated images and simplifying the annotation process. Specifically, we propose a novel hybrid sample selection strategy to select the most valuable samples for segmentation model performance improvement. This strategy combines pixel entropy, regional consistency and image diversity to ensure that the selected samples have high uncertainty and diversity. In addition, we propose a warm-start initialization strategy to build the initial annotated dataset to avoid the cold-start problem. To simplify the manual annotation process, we propose an interactive annotation module with suggested superpixels to obtain pixel-wise label with several clicks. We validate our proposed framework with extensive segmentation experiments on four medical image datasets. Experimental results showed that the proposed framework achieves high accuracy pixel-wise annotations and models with less labeled data and fewer interactions, outperforming other state-of-the-art methods. Our method can help physicians efficiently obtain accurate medical image segmentation results for clinical analysis and diagnosis.  相似文献   

6.
Direct automatic segmentation of objects in 3D medical imaging, such as magnetic resonance (MR) imaging, is challenging as it often involves accurately identifying multiple individual structures with complex geometries within a large volume under investigation. Most deep learning approaches address these challenges by enhancing their learning capability through a substantial increase in trainable parameters within their models. An increased model complexity will incur high computational costs and large memory requirements unsuitable for real-time implementation on standard clinical workstations, as clinical imaging systems typically have low-end computer hardware with limited memory and CPU resources only. This paper presents a compact convolutional neural network (CAN3D) designed specifically for clinical workstations and allows the segmentation of large 3D Magnetic Resonance (MR) images in real-time. The proposed CAN3D has a shallow memory footprint to reduce the number of model parameters and computer memory required for state-of-the-art performance and maintain data integrity by directly processing large full-size 3D image input volumes with no patches required. The proposed architecture significantly reduces computational costs, especially for inference using the CPU. We also develop a novel loss function with extra shape constraints to improve segmentation accuracy for imbalanced classes in 3D MR images. Compared to state-of-the-art approaches (U-Net3D, improved U-Net3D and V-Net), CAN3D reduced the number of parameters up to two orders of magnitude and achieved much faster inference, up to 5 times when predicting with a standard commercial CPU (instead of GPU). For the open-access OAI-ZIB knee MR dataset, in comparison with manual segmentation, CAN3D achieved Dice coefficient values of (mean = 0.87 ± 0.02 and 0.85 ± 0.04) with mean surface distance errors (mean = 0.36 ± 0.32 mm and 0.29 ± 0.10 mm) for imbalanced classes such as (femoral and tibial) cartilage volumes respectively when training volume-wise under only 12G video memory. Similarly, CAN3D demonstrated high accuracy and efficiency on a pelvis 3D MR imaging dataset for prostate cancer consisting of 211 examinations with expert manual semantic labels (bladder, body, bone, rectum, prostate) now released publicly for scientific use as part of this work.  相似文献   

7.
Deep learning techniques for 3D brain vessel image segmentation have not been as successful as in the segmentation of other organs and tissues. This can be explained by two factors. First, deep learning techniques tend to show poor performances at the segmentation of relatively small objects compared to the size of the full image. Second, due to the complexity of vascular trees and the small size of vessels, it is challenging to obtain the amount of annotated training data typically needed by deep learning methods. To address these problems, we propose a novel annotation-efficient deep learning vessel segmentation framework. The framework avoids pixel-wise annotations, only requiring weak patch-level labels to discriminate between vessel and non-vessel 2D patches in the training set, in a setup similar to the CAPTCHAs used to differentiate humans from bots in web applications. The user-provided weak annotations are used for two tasks: (1) to synthesize pixel-wise pseudo-labels for vessels and background in each patch, which are used to train a segmentation network, and (2) to train a classifier network. The classifier network allows to generate additional weak patch labels, further reducing the annotation burden, and it acts as a second opinion for poor quality images. We use this framework for the segmentation of the cerebrovascular tree in Time-of-Flight angiography (TOF) and Susceptibility-Weighted Images (SWI). The results show that the framework achieves state-of-the-art accuracy, while reducing the annotation time by 77% w.r.t. learning-based segmentation methods using pixel-wise labels for training.  相似文献   

8.
Accurate cardiac segmentation of multimodal images, e.g., magnetic resonance (MR), computed tomography (CT) images, plays a pivot role in auxiliary diagnoses, treatments and postoperative assessments of cardiovascular diseases. However, training a well-behaved segmentation model for the cross-modal cardiac image analysis is challenging, due to their diverse appearances/distributions from different devices and acquisition conditions. For instance, a well-trained segmentation model based on the source domain of MR images is often failed in the segmentation of CT images. In this work, a cross-modal images-oriented cardiac segmentation scheme is proposed using a symmetric full convolutional neural network (SFCNN) with the unsupervised multi-domain adaptation (UMDA) and a spatial neural attention (SNA) structure, termed UMDA-SNA-SFCNN, having the merits of without the requirement of any annotation on the test domain. Specifically, UMDA-SNA-SFCNN incorporates SNA to the classic adversarial domain adaptation network to highlight the relevant regions, while restraining the irrelevant areas in the cross-modal images, so as to suppress the negative transfer in the process of unsupervised domain adaptation. In addition, the multi-layer feature discriminators and a predictive segmentation-mask discriminator are established to connect the multi-layer features and segmentation mask of the backbone network, SFCNN, to realize the fine-grained alignment of unsupervised cross-modal feature domains. Extensive confirmative and comparative experiments on the benchmark Multi-Modality Whole Heart Challenge dataset show that the proposed model is superior to the state-of-the-art cross-modal segmentation methods.  相似文献   

9.
In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index.  相似文献   

10.
Training deep learning models that segment an image in one step typically requires a large collection of manually annotated images that captures the anatomical variability in a cohort. This poses challenges when anatomical variability is extreme but training data is limited, as when segmenting cardiac structures in patients with congenital heart disease (CHD). In this paper, we propose an iterative segmentation model and show that it can be accurately learned from a small dataset. Implemented as a recurrent neural network, the model evolves a segmentation over multiple steps, from a single user click until reaching an automatically determined stopping point. We develop a novel loss function that evaluates the entire sequence of output segmentations, and use it to learn model parameters. Segmentations evolve predictably according to growth dynamics encapsulated by training data, which consists of images, partially completed segmentations, and the recommended next step. The user can easily refine the final segmentation by examining those that are earlier or later in the output sequence. Using a dataset of 3D cardiac MR scans from patients with a wide range of CHD types, we show that our iterative model offers better generalization to patients with the most severe heart malformations.  相似文献   

11.
Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.  相似文献   

12.

Objective

We propose a hybrid interactive approach for the segmentation of anatomic structures in medical images with higher accuracy at lower user interaction cost.

Materials and methods

Eighteen brain MR scans from the Internet Brain Segmentation Repository are used for brain structure segmentation. A MR scan and a CT scan of an old female are used for orbital structure segmentation. The proposed approach combines shape-based interpolation, radial basis function (RBF)-based warping and model-based segmentation. With this approach, to segment a structure in a 3D image, we first delineate the structure in several slices using interactive methods, and then use shape-based interpolation to automatically generate an initial 3D model of the structure from the segmented slices. To refine the initial model, we specify a set of additional points on the structure boundary in the image, and use a RBF to warp the model so that it passes the specified points. Finally, we adopt a point-anchored active surface approach to further deform the model for a better fitting of the model with its corresponding structure in image.

Results

Two brain structures and 15 orbital structures are segmented. For each structure, it needs only to semi- automatically segment three to five 2D slices and specify two to nine additional points on the structure boundary. The time cost for each structure is about 1–3 min. The overlap ratio of the segmentation results and the ground truth is higher than 96%.

Conclusion

The proposed method for the segmentation of anatomic structure achieved higher accuracy at lower user interaction cost, and therefore promising in many applications such as surgery planning and simulation, atlas construction, and morphometric analysis of anatomic structures.  相似文献   

13.
《Medical image analysis》2015,21(1):198-207
Imaging and quantification of tongue anatomy is helpful in surgical planning, post-operative rehabilitation of tongue cancer patients, and studying of how humans adapt and learn new strategies for breathing, swallowing and speaking to compensate for changes in function caused by disease, medical interventions or aging. In vivo acquisition of high-resolution three-dimensional (3D) magnetic resonance (MR) images with clearly visible tongue muscles is currently not feasible because of breathing and involuntary swallowing motions that occur over lengthy imaging times. However, recent advances in image reconstruction now allow the generation of super-resolution 3D MR images from sets of orthogonal images, acquired at a high in-plane resolution and combined using super-resolution techniques. This paper presents, to the best of our knowledge, the first attempt towards automatic tongue muscle segmentation from MR images. We devised a database of ten super-resolution 3D MR images, in which the genioglossus and inferior longitudinalis tongue muscles were manually segmented and annotated with landmarks. We demonstrate the feasibility of segmenting the muscles of interest automatically by applying the landmark-based game-theoretic framework (GTF), where a landmark detector based on Haar-like features and an optimal assignment-based shape representation were integrated. The obtained segmentation results were validated against an independent manual segmentation performed by a second observer, as well as against B-splines and demons atlasing approaches. The segmentation performance resulted in mean Dice coefficients of 85.3%, 81.8%, 78.8% and 75.8% for the second observer, GTF, B-splines atlasing and demons atlasing, respectively. The obtained level of segmentation accuracy indicates that computerized tongue muscle segmentation may be used in surgical planning and treatment outcome analysis of tongue cancer patients, and in studies of normal subjects and subjects with speech and swallowing problems.  相似文献   

14.
《Medical image analysis》2015,25(1):297-312
We present a novel interactive segmentation framework incorporating a priori knowledge learned from training data. The knowledge is learned as a structured patch model (StPM) comprising sets of corresponding local patch priors and their pairwise spatial distribution statistics which represent the local shape and appearance along its boundary and the global shape structure, respectively. When successive user annotations are given, the StPM is appropriately adjusted in the target image and used together with the annotations to guide the segmentation. The StPM reduces the dependency on the placement and quantity of user annotations with little increase in complexity since the time-consuming StPM construction is performed offline. Furthermore, a seamless learning system can be established by directly adding the patch priors and the pairwise statistics of segmentation results to the StPM. The proposed method was evaluated on three datasets, respectively, of 2D chest CT, 3D knee MR, and 3D brain MR. The experimental results demonstrate that within an equal amount of time, the proposed interactive segmentation framework outperforms recent state-of-the-art methods in terms of accuracy, while it requires significantly less computing and editing time to obtain results with comparable accuracy.  相似文献   

15.
Brain tissue segmentation is of great value in diagnosing brain disorders. Three-dimensional (3D) and two-dimensional (2D) segmentation methods for brain Magnetic Resonance Imaging (MRI) suffer from high time complexity and low segmentation accuracy, respectively. To address these two issues, we propose a Context-assisted full Attention Network (CAN) for brain MRI segmentation by integrating 2D and 3D data of MRI. Different from the fully symmetric structure U-Net, the CAN takes the current 2D slice, its 3D contextual skull slices and 3D contextual brain slices as the input, which are further encoded by the DenseNet and decoded by our constructed full attention network. We have validated the effectiveness of the CAN on our collected dataset PWML and two public datasets dHCP2017 and MALC2012. Our code is available at https://github.com/nwuAI/CAN.  相似文献   

16.
High-resolution (HR), isotropic cardiac Magnetic Resonance (MR) cine imaging is challenging since it requires long acquisition and patient breath-hold times. Instead, 2D balanced steady-state free precession (SSFP) sequence is widely used in clinical routine. However, it produces highly-anisotropic image stacks, with large through-plane spacing that can hinder subsequent image analysis. To resolve this, we propose a novel, robust adversarial learning super-resolution (SR) algorithm based on conditional generative adversarial nets (GANs), that incorporates a state-of-the-art optical flow component to generate an auxiliary image to guide image synthesis. The approach is designed for real-world clinical scenarios and requires neither multiple low-resolution (LR) scans with multiple views, nor the corresponding HR scans, and is trained in an end-to-end unsupervised transfer learning fashion. The designed framework effectively incorporates visual properties and relevant structures of input images and can synthesise 3D isotropic, anatomically plausible cardiac MR images, consistent with the acquired slices. Experimental results show that the proposed SR method outperforms several state-of-the-art methods both qualitatively and quantitatively. We show that subsequent image analyses including ventricle segmentation, cardiac quantification, and non-rigid registration can benefit from the super-resolved, isotropic cardiac MR images, to produce more accurate quantitative results, without increasing the acquisition time. The average Dice similarity coefficient (DSC) for the left ventricular (LV) cavity and myocardium are 0.95 and 0.81, respectively, between real and synthesised slice segmentation. For non-rigid registration and motion tracking through the cardiac cycle, the proposed method improves the average DSC from 0.75 to 0.86, compared to the original resolution images.  相似文献   

17.
18.
Coronavirus disease (COVID-19) has caused a worldwide pandemic, putting millions of people’s health and lives in jeopardy. Detecting infected patients early on chest computed tomography (CT) is critical in combating COVID-19. Harnessing uncertainty-aware consensus-assisted multiple instance learning (UC-MIL), we propose to diagnose COVID-19 using a new bilateral adaptive graph-based (BA-GCN) model that can use both 2D and 3D discriminative information in 3D CT volumes with arbitrary number of slices. Given the importance of lung segmentation for this task, we have created the largest manual annotation dataset so far with 7,768 slices from COVID-19 patients, and have used it to train a 2D segmentation model to segment the lungs from individual slices and mask the lungs as the regions of interest for the subsequent analyses. We then used the UC-MIL model to estimate the uncertainty of each prediction and the consensus between multiple predictions on each CT slice to automatically select a fixed number of CT slices with reliable predictions for the subsequent model reasoning. Finally, we adaptively constructed a BA-GCN with vertices from different granularity levels (2D and 3D) to aggregate multi-level features for the final diagnosis with the benefits of the graph convolution network’s superiority to tackle cross-granularity relationships. Experimental results on three largest COVID-19 CT datasets demonstrated that our model can produce reliable and accurate COVID-19 predictions using CT volumes with any number of slices, which outperforms existing approaches in terms of learning and generalisation ability. To promote reproducible research, we have made the datasets, including the manual annotations and cleaned CT dataset, as well as the implementation code, available at https://doi.org/10.5281/zenodo.6361963.  相似文献   

19.
背景:国内外已有学者利用不同的方法对人体膝关节进行三维建模,根据各自研究侧重点不同,在方法和最终效果上各有不同。目的:根据不同模态中膝关节影像的特点,将膝关节建模结果进行配准、融合,为进一步生物力学研究提供一种方便的方法。方法:采用MimicsV10.0软件根据膝关节在CT和MR断层图像的特点,选择不同分割算法进行膝关节解剖组织分割,并对不同的分割图像进行三维重建。结果与结论:基于逆向工程原理,利用虚拟人膝关节连续CT断面图像分别重建出膝关节的骨性结构如股骨、胫骨、腓骨、髌骨;并利用膝关节的连续MRI断面图像重建出半月板、髌韧带、内侧副韧带、前交叉韧带、后交叉韧带等结构,并成功对上述结构进行融合,融合后的三维膝关节模型可以任意角度或单独观察,并可以进行体视学测量。说明通过不同模态图像融合的方法可以建立膝关节的三维模型,为计算机辅助膝关节损伤康复研究奠定基础。  相似文献   

20.
基于磁共振图像的人体膝关节三维模型的建立   总被引:3,自引:1,他引:3  
目的:建立人体膝关节三维模型,作为膝关节内部运动和受力分析的基础。方法:以磁共振图像作为数据源,通过域值法对图像进行预处理,并利用区域生长法进行图像分割,进而通过空间插值建立活体膝关节模型。结果:该方法建立的模型不仅包含股骨和胫骨骨端,而且包括了半月板和骨端软骨等软组织,更加符合膝关节内部的真实解剖结构。此外,该模型可以被导入有限元分析平台并用于股胫接触面的受力分析。结论:本方法适用于磁共振图像的膝关节模型建立,重建效果可以通过改变图像分割和空间插值的算法得以改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号