首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases’ mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder–decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.  相似文献   

2.
Road segmentation from high-resolution visible remote sensing images provides an effective way for automatic road network forming. Recently, deep learning methods based on convolutional neural networks (CNNs) are widely applied in road segmentation. However, it is a challenge for most CNN-based methods to achieve high segmentation accuracy when processing high-resolution visible remote sensing images with rich details. To handle this problem, we propose a road segmentation method based on a Y-shaped convolutional network (indicated as Y-Net). Y-Net contains a two-arm feature extraction module and a fusion module. The feature extraction module includes a deep downsampling-to-upsampling sub-network for semantic features and a convolutional sub-network without downsampling for detail features. The fusion module combines all features for road segmentation. Benefiting from this scheme, the Y-Net can well segment multi-scale roads (both wide and narrow roads) from high-resolution images. The testing and comparative experiments on a public dataset and a private dataset show that Y-Net has higher segmentation accuracy than four other state-of-art methods, FCN (Fully Convolutional Network), U-Net, SegNet, and FC-DenseNet (Fully Convolutional DenseNet). Especially, Y-Net accurately segments contours of narrow roads, which are missed by the comparative methods.  相似文献   

3.
Fully convolutional networks (FCNs), including UNet and VNet, are widely-used network architectures for semantic segmentation in recent studies. However, conventional FCN is typically trained by the cross-entropy or Dice loss, which only calculates the error between predictions and ground-truth labels for pixels individually. This often results in non-smooth neighborhoods in the predicted segmentation. This problem becomes more serious in CT prostate segmentation as CT images are usually of low tissue contrast. To address this problem, we propose a two-stage framework, with the first stage to quickly localize the prostate region, and the second stage to precisely segment the prostate by a multi-task UNet architecture. We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network. Therefore, the proposed network has a dual-branch architecture that tackles two tasks: (1) a segmentation sub-network aiming to generate the prostate segmentation, and (2) a voxel-metric learning sub-network aiming to improve the quality of the learned feature space supervised by a metric loss. Specifically, the voxel-metric learning sub-network samples tuples (including triplets and pairs) in voxel-level through the intermediate feature maps. Unlike conventional deep metric learning methods that generate triplets or pairs in image-level before the training phase, our proposed voxel-wise tuples are sampled in an online manner and operated in an end-to-end fashion via multi-task learning. To evaluate the proposed method, we implement extensive experiments on a real CT image dataset consisting 339 patients. The ablation studies show that our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss. And the comparisons show that the proposed method outperforms the state-of-the-art methods by a reasonable margin.  相似文献   

4.
Skin lesion segmentation from dermoscopy images is a fundamental yet challenging task in the computer-aided skin diagnosis system due to the large variations in terms of their views and scales of lesion areas. We propose a novel and effective generative adversarial network (GAN) to meet these challenges. Specifically, this network architecture integrates two modules: a skip connection and dense convolution U-Net (UNet-SCDC) based segmentation module and a dual discrimination (DD) module. While the UNet-SCDC module uses dense dilated convolution blocks to generate a deep representation that preserves fine-grained information, the DD module makes use of two discriminators to jointly decide whether the input of the discriminators is real or fake. While one discriminator, with a traditional adversarial loss, focuses on the differences at the boundaries of the generated segmentation masks and the ground truths, the other examines the contextual environment of target object in the original image using a conditional discriminative loss. We integrate these two modules and train the proposed GAN in an end-to-end manner. The proposed GAN is evaluated on the public International Skin Imaging Collaboration (ISIC) Skin Lesion Challenge Datasets of 2017 and 2018. Extensive experimental results demonstrate that the proposed network achieves superior segmentation performance to state-of-the-art methods.  相似文献   

5.
In recent years, deep learning technology has shown superior performance in different fields of medical image analysis. Some deep learning architectures have been proposed and used for computational pathology classification, segmentation, and detection tasks. Due to their simple, modular structure, most downstream applications still use ResNet and its variants as the backbone network. This paper proposes a modular group attention block that can capture feature dependencies in medical images in two independent dimensions: channel and space. By stacking these group attention blocks in ResNet-style, we obtain a new ResNet variant called ResGANet. The stacked ResGANet architecture has 1.51–3.47 times fewer parameters than the original ResNet and can be directly used for downstream medical image segmentation tasks. Many experiments show that the proposed ResGANet is superior to state-of-the-art backbone models in medical image classification tasks. Applying it to different segmentation networks can improve the baseline model in medical image segmentation tasks without changing the network architecture. We hope that this work provides a promising method for enhancing the feature representation of convolutional neural networks (CNNs) in the future.  相似文献   

6.
Dual-energy cone-beam computed tomography (DE-CBCT) is a promising imaging technique with foreseeable clinical applications. DE-CBCT images acquired with two different spectra can provide material-specific information. Meanwhile, the anatomical consistency and energy-domain correlation result in significant information redundancy, which could be exploited to improve image quality. In this context, this paper develops the Transformer-Integrated Multi-Encoder Network (TIME-Net) for DE-CBCT to remove the limited-angle artifacts. TIME-Net comprises three encoders (image encoder, prior encoder, and transformer encoder), two decoders (low- and high-energy decoders), and one feature fusion module. Three encoders extract various features for image restoration. The feature fusion module compresses these features into more compact shared features and feeds them to the decoders. Two decoders perform differential learning for DE-CBCT images. By design, TIME-Net could obtain high-quality DE-CBCT images using two complementary quarter-scans, holding great potential to reduce radiation dose and shorten the acquisition time. Qualitative and quantitative analyses based on simulated data and real rat data have demonstrated the promising performance of TIME-Net in artifact removal, subtle structure restoration, and reconstruction accuracy preservation. Two clinical applications, virtual non-contrast (VNC) imaging and iodine quantification, have proved the potential utility of the DE-CBCT images provided by TIME-Net.  相似文献   

7.
Computer-Aided Diagnosis (CAD) for dermatological diseases offers one of the most notable showcases where deep learning technologies display their impressive performance in acquiring and surpassing human experts. In such the CAD process, a critical step is concerned with segmenting skin lesions from dermoscopic images. Despite remarkable successes attained by recent deep learning efforts, much improvement is still anticipated to tackle challenging cases, e.g., segmenting lesions that are irregularly shaped, bearing low contrast, or possessing blurry boundaries. To address such inadequacies, this study proposes a novel Multi-scale Residual Encoding and Decoding network (Ms RED) for skin lesion segmentation, which is able to accurately and reliably segment a variety of lesions with efficiency. Specifically, a multi-scale residual encoding fusion module (MsR-EFM) is employed in an encoder, and a multi-scale residual decoding fusion module (MsR-DFM) is applied in a decoder to fuse multi-scale features adaptively. In addition, to enhance the representation learning capability of the newly proposed pipeline, we propose a novel multi-resolution, multi-channel feature fusion module (M2F2), which replaces conventional convolutional layers in encoder and decoder networks. Furthermore, we introduce a novel pooling module (Soft-pool) to medical image segmentation for the first time, retaining more helpful information when down-sampling and getting better segmentation performance. To validate the effectiveness and advantages of the proposed network, we compare it with several state-of-the-art methods on ISIC 2016, 2017, 2018, and PH2. Experimental results consistently demonstrate that the proposed Ms RED attains significantly superior segmentation performance across five popularly used evaluation criteria. Last but not least, the new model utilizes much fewer model parameters than its peer approaches, leading to a greatly reduced number of labeled samples required for model training, which in turn produces a substantially faster converging training process than its peers. The source code is available at https://github.com/duweidai/Ms-RED.  相似文献   

8.
Semantic instance segmentation is crucial for many medical image analysis applications, including computational pathology and automated radiation therapy. Existing methods for this task can be roughly classified into two categories: (1) proposal-based methods and (2) proposal-free methods. However, in medical images, the irregular shape-variations and crowding instances (e.g., nuclei and cells) make it hard for the proposal-based methods to achieve robust instance localization. On the other hand, ambiguous boundaries caused by the low-contrast nature of medical images (e.g., CT images) challenge the accuracy of the proposal-free methods. To tackle these issues, we propose a proposal-free segmentation network with discriminative deep supervision (DDS), which at the same time allows us to gain the power of the proposal-based method. The DDS module is interleaved with a carefully designed proposal-free segmentation backbone in our network. Consequently, the features learned by the backbone network become more sensitive to instance localization. Also, with the proposed DDS module, robust pixel-wise instance-level cues (especially structural information) are introduced for semantic segmentation. Extensive experiments on three datasets, i.e., a nuclei dataset, a pelvic CT image dataset, and a synthetic dataset, demonstrate the superior performance of the proposed algorithm compared to the previous works.  相似文献   

9.
Automated skin lesion classification has been proved to be capable of improving the diagnostic performance for dermoscopic images. Although many successes have been achieved, accurate classification remains challenging due to the significant intra-class variation and inter-class similarity. In this article, a deep learning method is proposed to increase the intra-class consistency as well as the inter-class discrimination of learned features in the automatic skin lesion classification. To enhance the inter-class discriminative feature learning, a CAM-based (class activation mapping) global-lesion localization module is proposed by optimizing the distance of CAMs for the same dermoscopic image generated by different skin lesion tasks. Then, a global features guided intra-class similarity learning module is proposed to generate the class center according to the deep features of all samples in one class and the history feature of one sample during the learning process. In this way, the performance can be improved with the collaboration of CAM-based inter-class feature discriminating and global features guided intra-class feature concentrating. To evaluate the effectiveness of the proposed method, extensive experiments are conducted on the ISIC-2017 and ISIC-2018 datasets. Experimental results with different backbones have demonstrated that the proposed method has good generalizability and can adaptively focus on more discriminative regions of the skin lesion.  相似文献   

10.
Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which is one of the dreadful diseases that affect women globally. Segmenting breast regions accurately from ultrasound image is a challenging task due to the inherent speckle artifacts, blurry breast lesion boundaries, and inhomogeneous intensity distributions inside the breast lesion regions. Recently, convolutional neural networks (CNNs) have demonstrated remarkable results in medical image segmentation tasks. However, the convolutional operations in a CNN often focus on local regions, which suffer from limited capabilities in capturing long-range dependencies of the input ultrasound image, resulting in degraded breast lesion segmentation accuracy. In this paper, we develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection (BD) modules for boosting the breast ultrasound lesion segmentation. The GGB utilizes the multi-layer integrated feature map as a guidance information to learn the long-range non-local dependencies from both spatial and channel domains. The BD modules learn additional breast lesion boundary map to enhance the boundary quality of a segmentation result refinement. Experimental results on a public dataset and a collected dataset show that our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation. Moreover, we also show the application of our network on the ultrasound prostate segmentation, in which our method better identifies prostate regions than state-of-the-art networks.  相似文献   

11.
The success of neural networks on medical image segmentation tasks typically relies on large labeled datasets for model training. However, acquiring and manually labeling a large medical image set is resource-intensive, expensive, and sometimes impractical due to data sharing and privacy issues. To address this challenge, we propose AdvChain, a generic adversarial data augmentation framework, aiming at improving both the diversity and effectiveness of training data for medical image segmentation tasks. AdvChain augments data with dynamic data augmentation, generating randomly chained photo-metric and geometric transformations to resemble realistic yet challenging imaging variations to expand training data. By jointly optimizing the data augmentation model and a segmentation network during training, challenging examples are generated to enhance network generalizability for the downstream task. The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks. It is computationally efficient and applicable for both low-shot supervised and semi-supervised learning. We analyze and evaluate the method on two MR image segmentation tasks: cardiac segmentation and prostate segmentation with limited labeled data. Results show that the proposed approach can alleviate the need for labeled data while improving model generalization ability, indicating its practical value in medical imaging applications.  相似文献   

12.
Segmentation of brain structures from magnetic resonance (MR) scans plays an important role in the quantification of brain morphology. Since 3D deep learning models suffer from high computational cost, 2D deep learning methods are favored for their computational efficiency. However, existing 2D deep learning methods are not equipped to effectively capture 3D spatial contextual information that is needed to achieve accurate brain structure segmentation. In order to overcome this limitation, we develop an Anatomical Context-Encoding Network (ACEnet) to incorporate 3D spatial and anatomical contexts in 2D convolutional neural networks (CNNs) for efficient and accurate segmentation of brain structures from MR scans, consisting of 1) an anatomical context encoding module to incorporate anatomical information in 2D CNNs and 2) a spatial context encoding module to integrate 3D image information in 2D CNNs. In addition, a skull stripping module is adopted to guide the 2D CNNs to attend to the brain. Extensive experiments on three benchmark datasets have demonstrated that our method achieves promising performance compared with state-of-the-art alternative methods for brain structure segmentation in terms of both computational efficiency and segmentation accuracy.  相似文献   

13.
Despite remarkable success of deep learning, distribution divergence remains a challenge that hinders the performance of many tasks in medical image analysis. Large distribution gap may deteriorate the knowledge transfer across different domains or feature subspaces. To achieve better distribution alignment, we propose a novel module named Instance to Prototype Earth Mover’s Distance (I2PEMD), where shared class-specific prototypes are progressively learned to narrow the distribution gap across different domains or feature subspaces, and Earth Mover’s Distance (EMD) is calculated to take into consideration the cross-class relationships during embedding alignment. We validate the effectiveness of the proposed I2PEMD on two different tasks: multi-modal medical image segmentation and semi-supervised classification. Specifically, in multi-modal medical image segmentation, I2PEMD is explicitly utilized as a distribution alignment regularization term to supervise the model training process, while in semi-supervised classification, I2PEMD works as an alignment measure to sort and cherry-pick the unlabeled data for more accurate and robust pseudo-labeling. Results from comprehensive experiments demonstrate the efficacy of the present method.  相似文献   

14.
深度学习是当前人工智能发展最为迅速的一个分支。深度学习可以在大样本数据中自动提取良好的特征表达,有效提升各种机器学习的任务性能,广泛应用于图像信号处理、计算机视觉和自然语言处理等领域。随着数字影像的发展,深度学习凭借自动提取特征,高效处理高维度医学图像数据的优点,已成为医学图像分析在临床应用的重要技术之一。目前这项技术在分析某些医学影像方面已达到放射科医生水平,如肺结节的检出识别以及对膝关节退变进行级别分类等,这将为计算机科学发展在医疗应用的提供一个新机遇。由于骨科领域疾病种类繁多,图像数据特征清晰,内容复杂丰富,相关的学习任务与应用场景对深度学习提出了新要求。本文将从骨关节关键参数测量、病灶检测、疾病分级、图像分割以及图像配准五大临床图像处理分析任务对深度学习在骨科领域的应用研究进展进行综述,并对其发展趋势进行展望,以供从事骨科相关研究人员作参考。   相似文献   

15.
With the recent development of deep learning, the classification and segmentation tasks of computer-aided diagnosis (CAD) using non-contrast head computed tomography (NCCT) for intracranial hemorrhage (ICH) has become popular in emergency medical care. However, a few challenges remain, such as the difficulty of training due to the heterogeneity of ICH, the requirement for high performance in both sensitivity and specificity, patient-level predictions demanding excessive costs, and vulnerability to real-world external data. In this study, we proposed a supervised multi-task aiding representation transfer learning network (SMART-Net) for ICH to overcome these challenges. The proposed framework consists of upstream and downstream components. In the upstream, a weight-shared encoder of the model is trained as a robust feature extractor that captures global features by performing slice-level multi-pretext tasks (classification, segmentation, and reconstruction). Adding a consistency loss to regularize discrepancies between classification and segmentation heads has significantly improved representation and transferability. In the downstream, the transfer learning was conducted with a pre-trained encoder and 3D operator (classifier or segmenter) for volume-level tasks. Excessive ablation studies were conducted and the SMART-Net was developed with optimal multi-pretext task combinations and a 3D operator. Experimental results based on four test sets (one internal and two external test sets that reflect a natural incidence of ICH, and one public test set with a relatively small amount of ICH cases) indicate that SMART-Net has better robustness and performance in terms of volume-level ICH classification and segmentation over previous methods. All code is available at https://github.com/babbu3682/SMART-Net.  相似文献   

16.
Skin lesion segmentation from dermoscopic image is essential for improving the quantitative analysis of melanoma. However, it is still a challenging task due to the large scale variations and irregular shapes of the skin lesions. In addition, the blurred lesion boundaries between the skin lesions and the surrounding tissues may also increase the probability of incorrect segmentation. Due to the inherent limitations of traditional convolutional neural networks (CNNs) in capturing global context information, traditional CNN-based methods usually cannot achieve a satisfactory segmentation performance. In this paper, we propose a novel feature adaptive transformer network based on the classical encoder-decoder architecture, named FAT-Net, which integrates an extra transformer branch to effectively capture long-range dependencies and global context information. Furthermore, we also employ a memory-efficient decoder and a feature adaptation module to enhance the feature fusion between the adjacent-level features by activating the effective channels and restraining the irrelevant background noise. We have performed extensive experiments to verify the effectiveness of our proposed method on four public skin lesion segmentation datasets, including the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. Ablation studies demonstrate the effectiveness of our feature adaptive transformers and memory-efficient strategies. Comparisons with state-of-the-art methods also verify the superiority of our proposed FAT-Net in terms of both accuracy and inference speed. The code is available at https://github.com/SZUcsh/FAT-Net.  相似文献   

17.
以深度学习(DL)为代表的人工智能(AI)技术已在计算机视觉任务中取得突破性进展。本文从4种常见计算机视觉任务(图像分类、目标检测、物体分割和图像生成)出发,回顾AI技术在医学影像分析中的应用及其发展。  相似文献   

18.
19.
Deep reinforcement learning (DRL) augments the reinforcement learning framework, which learns a sequence of actions that maximizes the expected reward, with the representative power of deep neural networks. Recent works have demonstrated the great potential of DRL in medicine and healthcare. This paper presents a literature review of DRL in medical imaging. We start with a comprehensive tutorial of DRL, including the latest model-free and model-based algorithms. We then cover existing DRL applications for medical imaging, which are roughly divided into three main categories: (i) parametric medical image analysis tasks including landmark detection, object/lesion detection, registration, and view plane localization; (ii) solving optimization tasks including hyperparameter tuning, selecting augmentation strategies, and neural architecture search; and (iii) miscellaneous applications including surgical gesture segmentation, personalized mobile health intervention, and computational model personalization. The paper concludes with discussions of future perspectives.  相似文献   

20.
目的 提出融合视觉Transformer与边缘引导的编码-解码网络(RET-Net)算法,观察其分割脊柱MRI的效能。方法 基于二类分割公开脊柱数据集spinesagt2wdataset3选取195幅脊柱三维T2WI及经过标注的对应脊柱掩码,对脊柱区域与背景设置不同标签。将残差卷积网络嵌入编码-解码网络,引入边缘模块引导网络,关注脊柱边缘粒度信息并提取边缘特征;结合视觉Transformer与残差网络提取脊柱全局及局部信息,构建RET-Net分割脊柱的深度学习模型,评价其分割脊柱的效能。结果 利用RET-Net算法能准确分割脊柱椎骨区域,边缘分割较为平滑;RET-Net在数据集中的戴斯相似系数(DSC)为90.15%,交并比(IOU)为81.06%,敏感度(SE)为92.71%,特异度(SP)为99.57%,准确率(ACC)为98.61%,豪斯多夫距离(HD)为1.84 mm,其DSC及ACC等均优于UNet、PSPNet和Attention-UNet等基础分割模型。结论 融合视觉Transformer与边缘引导RET-Net算法分割脊柱MRI效能较佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号