首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel class of thioflavone and flavonoid derivatives has been prepared and their antiviral activities against enterovirus 71 (EV71) and the coxsackievirus B3 (CVB3) and B6 (CVB6) were evaluated. Compounds 7d and 9b showed potent antiviral activities against EV71 with IC50 values of 8.27 and 5.48 μM, respectively. Compound 7f, which has been synthesized for the first time in this work, showed the highest level of inhibitory activity against both CVB3 and CVB6 with an IC50 value of 0.62 and 0.87 μM. Compounds 4b, 7a, 9c and 9e also showed strong inhibitory activities against both the CVB3 and CVB6 at low concentrations (IC50=1.42?7.15 μM), whereas compounds 4d, 7c, 7e and 7g showed strong activity against CVB6 (IC50=2.91–3.77 μM) together with low levels of activity against CVB3. Compound 7d exhibited stronger inhibitory activity against CVB3 (IC50=6.44 μM) than CVB6 (IC50>8.29 μM). The thioflavone derivatives 7a, 7c, 7d, 7e, 7f and 7g, represent a new class of lead compounds for the development of novel antiviral agents.  相似文献   

2.
New antimicrobials are needed to combat drug resistance and have often been equated with the identification and exploitation of novel targets. This study focused on the synthesis of new benzimidazole analogues with improved DNA minor groove-binding affinity and having lower cytotoxicity to mammalian cells as well as selective targeting of bacterial DNA over host DNA. 5-(4-Methylpiperazin-1-yl)-2-[2′-(3,4-dimethoxyphenyl)-5′-benzimidazolyl]benzimidazole (DMA) cleared bacterial infections from mammalian cell culture without apparent cytotoxicity to mammalian cells. Moreover, DMA inhibited microbial topoisomerase over mammalian topoisomerase, with a 50% inhibitory concentration (IC50) value for human topoisomerase I of >54 μM compared with an IC50 of <10 μM for Escherichia coli topoisomerase I in vitro.  相似文献   

3.
《Toxicology in vitro》2014,28(4):607-615
Phenazine was recently identified as a drinking water disinfection byproduct (DBP), but little is known of its toxic effects. We examined in vitro cytotoxicity and genotoxicity of phenazine (1.9–123 μM) in HepG2 and T24 cell lines. Cytotoxicity was determined by an impedance-based real-time cell analysis instrument. The BrdU (5-bromo-2′-deoxyuridine) proliferation and MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) viability assays were used to examine mechanisms of cytotoxicity. Genotoxicity was determined using the alkaline comet assay. Concentration-dependent cytotoxicity was observed in HepG2 cells, primarily due to an antiproliferative effect (BrdU 24 h IC50: 11 μM; 48 h IC50: 7.8 μM) observed as low as 1.9 μM. T24 cells experienced a minor antiproliferative effect (BrdU 24 h IC50: 47 μM; 48 h IC50: 17 μM). IC50 values for HepG2 proliferation and viability were 54–77% lower compared to T24 cells. In both cell lines, IC50 values for proliferation were 66–90% lower than those for viability. At phenazine concentrations producing equivalent cytotoxicity, HepG2 cells (1.9–30.8 μM) experienced no significant genotoxic effects, while T24 cells (7.7–123 μM) experienced significant genotoxicity at ⩾61.5 μM. While these effects were seen at phenazine concentrations above those found in disinfected water, the persistence of the antiproliferative effect and the differential toxicity in each cell line deserves further study.  相似文献   

4.
Natural polysulfanes including diallyltrisulfide (DATS) and diallyltetrasulfide (DATTS) from garlic possess antimicrobial, chemopreventive and anticancer properties. However these compounds exhibit chemical instability and reduced solubility, which prevents their potential clinical applicability. We synthesized six DATS and DATTS derivatives, based on the polysulfane motif, expected to exhibit improved physical and chemical properties and verified their biological activity on human leukemia cells.We identified four novel cytotoxic compounds (IC50 values: compound 1, 24.96 ± 12.37 μM; compound 2, 22.82 ± 4.20 μM; compound 3, 3.86 ± 1.64 μM and compound 5, 40.62 ± 10.07 μM, compared to DATTS: IC50: 9.33 ± 3.86 μM). These polysulfanes possess excellent differential toxicity, as they did not affect proliferating mononuclear blood cells from healthy donors.We further demonstrated ability of active compounds to induce apoptosis in leukemia cells by analysis of nuclear fragmentation and of cleavage of effector and executioner caspases. Apoptosis was preceded by accumulation of cells in G2/M phase with a pro-metaphase-like nuclear pattern as well as microtubular alterations. Prolonged and persistent arrest of cancer cells in early mitosis by the benzyl derivative identifies this compound as the most stable and effective one for further mechanistic and in vivo studies.  相似文献   

5.
The presented study investigates and compares the estrogenic and androgenic activities of commonly used diesters of phthalic acid (phthalates) using the XenoScreen YES/YAS assay. Phthalates are commonly used plasticizers in polymers dedicated for i.e. food and drug containers. Since phthalates are not chemically bonded to the polymer, they can leach or migrate from the polymer. Therefore, phthalates are identified as contaminants in a variety of consumer products. Investigation of estrogenic and androgenic activities of phthalates (DEP, DBP, BBP, DEHP and DINP) showed no significant effect of tested substances either on hERα or hAR receptors. Phthalates exhibited strong anti-estrogenic (IC50 for BBP = 8.66 μM, IC50 for DEHP = 3.61 μM and IC50 for DINP = 0.065 μM) and anti-androgenic (IC50 for BBP = 5.30 μM, IC50 for DEHP = 2.87 μM and IC50 for DINP = 0.068 μM) activities.  相似文献   

6.
α-Glucosidase and lipase inhibitors play important roles in the treatment of hyperglycaemia and dyslipidemia. To identify novel naturally occurring inhibitors, a bioactivity-guided phytochemical research was performed on the pu-erh tea. One new flavanol, named (–)-epicatechin-3-O-(Z)-coumarate (1), and 16 known analogs (217) were isolated from the aqueous extract of the pu-erh tea. Their structures were determined by spectroscopic and chemical methods. Furthermore, the water extract of pu-erh tea and its fractions exhibited inhibitory activities against α-glucosidases and lipases in vitro; compound 15 showed moderate inhibitory effect against sucrase with an IC50 value of 32.5 μmol/L and significant inhibitory effect against maltase with an IC50 value of 1.3 μmol/L. Compounds 8, 10, 11 and 15 displayed moderate activity against a lipase with IC50 values of 16.0, 13.6, 19.8, and 13.3 μmol/L, respectively.  相似文献   

7.
《Biochemical pharmacology》2006,71(12):1735-1743
Isothiazole dioxides have been shown to inhibit Trypanosoma brucei protein farnesyltransferase (PFTase) in isolated enzyme, but elicited only a minor effect on mammalian PFTase. In the present study we have evaluated the effect of 3-diethylamino-4-(4-methoxyphenyl)-isothiazole 1,1-dioxides with different substituents at C5, on rat PFTase and protein geranylgeranyltransferase-I (PGGTase-I) with the final aims to improve the potency against mammalian PFTase and to identify new compounds with antiproliferative properties. For these purposes, in vitro and cell culture models have been utilized. The results showed that isothiazole dioxides with C4–C5 double bond and sulfaryl substituted at the C5 position but none of the dihydro-derivatives, were able to inhibit in vitro PFTase in a concentration dependent manner (IC50 ranging from 8.56 to 1015 μM). Among those, compound 6n (C5; methyl-S) displayed 500-fold higher inhibitory potency on PFTase than PGGTase-I. Compound 6n was shown to affect rat smooth muscle cell (SMC) proliferation at concentrations similar (IC50 = 61.4 μM) to those required to inhibit [3H]-farnesol incorporation into cellular proteins (−44.1% at 100 μM). Finally, compound 6n interferes with rat SMC proliferation by blocking the progression of G0/G1 phase without inducing apoptosis, as assessed by [3H]-thymidine incorporation assay and flow cytometry analysis. Taken together, we described a new PFTase inhibitor containing the isothiazole dioxide moiety that affects mammalian protein farnesylation and SMC proliferation by inhibiting G0/G1 phase of the cell cycle.  相似文献   

8.
Marine sponges represent an affluent source of biogenetically unprecedented array of biologically active compounds. This study revealed the isolation of ten compounds from marine sponge of Petrosia sp. Their chemical structures were determined by using 1D and 2D NMR, UV, IR and MS measurements. A polyoxygenated steroid (3β,7β,9α-trihydroxycholest-5-en (1), a purine-derivative (3,7-dimethyl-2-(methylamino)-3H-purin-6(7H)-one (2) and a sphingolipid (N-((3S,E)-1,3-dihydroxytetracos-4-en-2-yl)stearamide (3) proved to be new compounds. Meanwhile, seven known compounds; (410) were also identified. The cytotoxicity of the total extract and the isolated compounds were subjected to cytotoxicity evaluation employing two cancer cell lines; HepG2 and MCF-7. All tested compounds exhibited cytotoxic effect on both cancer cell lines with IC50 in range of 20-500 μM. The proposed mechanism of cytotoxic activities was examined through its molecular affinity to the DNA. Compound 5 showed the highest affinity to the DNA with IC50 30 μg/mL.  相似文献   

9.
Astaxanthin, β-cryptoxanthin, canthaxanthin, lutein and zeaxanthin, the major xanthophylls, are widely used in food, medicine, and health care products. To date, no studies regarding the inhibitory effects of these xanthophylls on the nine CYPs isozymes have been reported. This study investigated the reversible and time-dependent inhibitory potentials of five xanthophylls on CYPs activities in vitro. The reversible inhibition results showed that the five compounds had only a weak inhibitory effect on the nine CYPs. Lutein did not inhibit the nine CYPs activities. Astaxanthin weakly inhibited CYP2C19, with an IC50 of 16.2 μM; and β-cryptoxanthin weakly inhibited CYP2C8, with an IC50 of 13.8 μM. In addition, canthaxanthin weakly inhibited CYP2C19 and CYP3A4/5, with IC50 values of 10.9 and 13.9 μM, respectively. Zeaxanthin weakly inhibited CYP3A4/5, with an IC50 of 15.5 μM. However, these IC50 values were markedly greater than the Cmax values reported in humans. No significant IC50 shift was observed in the time-dependent inhibition screening. Based on these observations, it is unlikely that these five xanthophylls from the diet or nutritional supplements alter the pharmacokinetics of drugs metabolized by CYPs. These findings provide some useful information for the safe use of these five xanthophylls in clinical practice.  相似文献   

10.
BackgroundEmodin (1,3,8-trihydroxy-6-methylanthraquinone) is a Chinese herbal anthraquinone derivative from the rhizome of rhubarb (Rheum palmatum L.) that exhibits numerous biological activities, such as antitumor, antibacterial, antiinflammatory, and immunosuppressive. In the present studies, the anti-allergic activities of emodin were investigated to elucidate the underlying active mechanisms.MethodsThe inhibitory effects of emodin on the IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells were evaluated by measuring the release of granules and cytokines. The Ca2+ mobilization in RBL-2H3 cells loaded with the Ca2+-reactive fluorescent probe Fluo-4 AM was also measured by laser scanning confocal microscope.ResultsEmodin inhibited the release of β-hexosaminidase (β-HEX; IC50 = 5.5 μM) and tumor necrosis factor (TNF)-α (IC50 = 11.5 μM) from RBL-2H3 cells induced by 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) and displayed stronger inhibition of β-HEX release than ketotifen fumarate salt (IC50 = 63.8 μM). Emodin at a concentration of 12.5 μM also inhibited the DNP-BSA-induced influx of extracellular Ca2+ in RBL-2H3 cells.ConclusionsThese results suggested that emodin likely exhibits anti-allergic activities via increasing the stability of the cell membrane and inhibiting extracellular Ca2+ influx.  相似文献   

11.
The 1d-polymeric iron(III) complexes [Fe(salen)(μ-L)]n (16), involving a deprotonated form of the N-donor heterocyclic compounds (L) imidazole (complex 1), 1,2,4-triazole (2), benztriazole (3), 5-methyltetrazole (4), 5-aminotetrazole (5) and 5-phenyltetrazole (6), were studied for their in vitro cytotoxic activity against human cancer cell lines including lung carcinoma (A549), cervix epithelial carcinoma (HeLa), osteosarcoma (HOS), malignant melanoma (G361), breast adenocarcinoma (MCF7), ovarian carcinoma (A2780) and cisplatin-resistant ovarian carcinoma (A2780cis). Cytotoxicity in vitro (IC50 = 0.39–0.48 μM) was achieved for 26 against A2780 (IC50 of cisplatin equals 11.5 μM) as well as for 5 and 6 against all the tested cells, with IC50 = 2.5–37.7 μM. The Uv–Vis spectroscopic study showed that the complexes are unstable in organic solvents (e.g. dimethyl sulfoxide, dimethylformamide) containing even trace amounts of water (and thus also in the medium, i.e. 0.1% DMF, v/v, used in the MTT assay), where they partially or completely decompose to the mixtures involving, besides [Fe(salen)(μ-L)]n itself, also the starting compounds [{Fe(salen)}2(μ-O)] and appropriate organic compound (HL). In efforts to find how the resulting cytotoxicity of the most active compounds 5 and 6 is influenced by this fact, the in vitro cytotoxicity testing of mixtures of reactants [{Fe(salen)}2(μ-O)] and HL, as well as the respective reactants, was also performed. It has been found that the cytotoxicity of 5 and 6 against all the tested cell lines is probably caused by a combined effect of the individual components presented within the corresponding mixture in the medium used.  相似文献   

12.
In this contribution, a chemical collection of aromatic compounds was screened for inhibition on butyrylcholinesterase (BChE)’s hydrolase activity using Ellman’s reaction. A set of diarylimidazoles was identified as highly selective inhibitors of BChE hydrolase activity and amyloid β (Aβ) fibril formation. New derivatives were synthesized resulting in several additional hits, from which the most active was 6c, 4-(3-ethylthiophenyl)-2-(3-thienyl)-1H-imidazole, an uncompetitive inhibitor of BChE hydrolase activity (IC50 BChE = 0.10 μM; Ki = 0.073 ± 0.011 μM) acting also on Aβ fibril formation (IC50 = 5.8 μM). With the aid of structure–activity relationship (SAR) studies, chemical motifs influencing the BChE inhibitory activity of these imidazoles were proposed. These bifunctional inhibitors represent good tools in basic studies of BChE and/or promising lead molecules for AD therapy.  相似文献   

13.
Cyclooxygenase-2 (COX-2) inhibitors (coxibs) are non-steroidal anti-inflammatory drugs (NSAIDs) designed to selectively inhibit COX-2. However, drugs of this therapeutic class are associated with drug induced liver injury (DILI) and mitochondrial injury is likely to play a role. The effects of selective COX-2 inhibitors on inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria were investigated. The order of potency of inhibition of ATP synthesis was: lumiracoxib (IC50: 6.48 ± 2.74 μM) > celecoxib (IC50: 14.92 ± 6.40 μM) > valdecoxib (IC50: 161.4 ± 28.6 μM) > rofecoxib (IC50: 238.4 ± 79.2 μM) > etoricoxib (IC50: 405.1 ± 116.3 μM). Mechanism based inhibition of ATP synthesis (Kinact 0.078 min 1 and KI 21.46 μM and Kinact/KI ratio 0.0036 min 1 μM 1) was shown by lumiracoxib and data suggest that the opening of the MPT pore may not be the mechanism of toxicity. A positive correlation (with r2 = 0.921) was observed between the potency of inhibition of ATP synthesis and the log P values. The in vitro metabolism of coxibs in rat liver mitochondria yielded for each drug substance a major single metabolite and identified a hydroxy metabolite with each of the coxibs and these metabolites did not alter the inhibition profile of ATP synthesis of the parent compound. The results suggest that coxibs themselves could be involved in the hepatotoxic action through inhibition of ATP synthesis.  相似文献   

14.
The in vivo and in vitro toxic effects of the synthetic polymeric 3-alkylpyridinium salt (APS3), from the Mediterranean marine sponge Reniera sarai, were evaluated on mammals, with emphasis to determine its mode of action. The median lethal doses of APS3 were 7.25 and higher that 20 mg/kg in mouse and rat, respectively. Intravenous administration of 7.25 and 20 mg/kg APS3 to rat caused a significant fall followed by an increase in mean arterial blood pressure accompanied by tachycardia. In addition, cumulative doses of APS3 (up to 60 mg/kg) inhibited rat nerve-evoked skeletal muscle contraction in vivo, with a median inhibitory dose (ID50) of 37.25 mg/kg. When administrated locally by intramuscular injection to mouse, APS3 decreased the compound muscle action potential recorded in response to in vivo nerve stimulation, with an ID50 of 0.5 mg/kg. In vitro experiments confirmed the inhibitory effect of APS3 on mouse hemidiaphragm nerve-evoked muscle contraction with a median inhibitory concentration (IC50) of 20.3 μM, without affecting directly elicited muscle contraction. The compound inhibited also miniature endplate potentials and nerve-evoked endplate potentials with an IC50 of 7.28 μM in mouse hemidiaphragm. Finally, APS3 efficiently blocked acetylcholine-activated membrane inward currents flowing through Torpedo nicotinic acetylcholine receptors (nAChRs) incorporated to Xenopus oocytes, with an IC50 of 0.19 μM. In conclusion, our results strongly suggest that APS3 blocks muscle-type nAChRs, and show for the first time that in vivo toxicity of APS3 is likely to occur through an antagonist action of the compound on these receptors.  相似文献   

15.
Microbial transformation of lovastatin (1) by resting cells of a filamentous fungus, Beauveria bassiana AS 3.4270, yielded five metabolites (2–6), which were unambiguously characterized by various spectroscopic data analyses. The occurred reactions included hydroxylation, lactone hydrolysis and methylation. The inhibitory effects of all metabolites on the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were evaluated. Of the five compounds, 4 exhibited comparable inhibitory effect to lovastatin on the HMG-CoA reductase with IC50 value of 2.2 μM, and inhibitory rate of 81.4%.  相似文献   

16.
Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile of MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC50 values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC50(AChE) = 0.214 μM; IC50(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease.  相似文献   

17.
《Toxicology in vitro》2014,28(7):1312-1319
The use of xylazine as a drug of abuse has emerged worldwide in the last 7 years, including Puerto Rico. Clinical findings reported that xylazine users present greater physiological deterioration, than heroin users. The aim of this study was to assess the xylazine toxicity on endothelial cells, as this is one of the first tissues impact upon administration. Human umbilical vein endothelial cells in culture were treated with xylazine, cocaine, 6-monoacetylmorphine (heroin metabolite) and its combinations, at concentrations of 0.10–400 μM, for periods of 24, 48 and 72 h. IC50 were calculated and the Annexin V assay implemented to determine the cell death mechanism. Results indicated IC50 values at 24 h as follow: xylazine 62 μM, cocaine 210 μM, 6-monoacetylmorphine 300 μM. When these drugs were combined the IC50 value was 57 μM. Annexin V results indicated cell death by an apoptosis mechanism in cells treated with xylazine or in combination. Results demonstrated that xylazine use inhibits the endothelial cell proliferation, at lower concentrations than cocaine and 6-monoacetylmorphine. These findings contribute to the understanding of the toxicity mechanisms induced by xylazine on endothelial cells.  相似文献   

18.
Zinc (Zn) is an essential trace elements, its deficiency is associated with increased incidence of human breast cancer. We aimed to study the effect of Zn on human breast cancer MCF-7 cells cultured in Zn depleted and Zn adequate medium. We found increased cancer cell growth in zinc depleted condition, further Zn supplementation inhibits the viability of breast cancer MCF-7 cell cultured in Zn deficient condition and the IC25, IC50 value for Zn is 6.2 μM, 15 μM, respectively after 48 h. Zn markedly induced apoptosis through the characteristic apoptotic morphological changes and DNA fragmentation after 48 h. In addition, Zn deficient cells significantly triggered intracellular ROS level and develop oxidative stress induced DNA damage; it was confirmed by elevated expression of CYP1A, GPX, GSK3β and TNF-α gene. Zinc depleted MCF-7 cells expressed significantly (p  0.001) decreased levels of CDKN2A, pRb1, p53 and increased the level of mdm2 expression. Zn supplementation (IC50 = 15 μM), increased significantly CDKN2A, pRB1 & p53 and markedly reduced mdm2 expression; also protein expression levels of CDKN2A and pRb1 was significantly increased. In addition, intrinsic apoptotic pathway related genes such as Bax, caspase-3, 8, 9 & p21 expression was enhanced and finally induced cell apoptosis. In conclusion, physiological level of zinc is important to prevent DNA damage and MCF-7 cell proliferation via regulation of tumor suppressor gene.  相似文献   

19.
Eleven authenticated botanicals used in the traditional Chinese medicine Huo-Luo-Xiao-Ling Dan were screened for ligands to cyclooxygenase (COX) using pulsed ultrafiltration liquid chromatography–mass spectrometry, and a mass spectrometry-based enzyme assay was used to determine the concentration of each of 17 ligands that inhibited COX-1 or COX-2 by 50% (IC50). Acetyl-11-keto-β-boswellic acid, β-boswellic acid, acetyl-α-boswellic acid, acetyl-β-boswellic acid, and betulinic acid were COX-1 selective inhibitors with IC50 values of approximately 10 μM. Senkyunolide O and cryptotanshinone were COX-2 selective inhibitors with IC50 values of 5 μM and 22 μM, respectively. Roburic acid and phenethyl-trans-ferulate inhibited COX-1 and COX-2 equally. COX inhibition and the IC50 values of most of these natural product ligands have not been reported previously.  相似文献   

20.
With the goal of developing soluble epoxide hydrolase (sEH) inhibitors with novel chemical structures, the sEH inhibitory activities of 30 natural compounds were evaluated using both a fluorescent substrate, 3-phenyl-cyano(6-methoxy-2-naphthalenyl)methyl ester- 2-oxiraneacetic acid, and a physiological substrate, 14,15-epoxyeicosatrienoic acid. To evaluate the selectivity of sEH inhibition, the inhibition of microsomal epoxide hydrolase (mEH), which plays a critical role in detoxification of toxic epoxides, was determined using human liver microsomes. Honokiol and β-amyrin acetate, isolated from Magnolia officinalis and Acer mandshuricum, respectively, displayed strong inhibition of sEH activity, with respective IC50 values of 0.57 μM and 3.4 μM determined using the fluorescent substrate, and 1.7 μM and 6.1 μM determined using 14,15-epoxyeicosatrienoic acid. mEH activity was decreased to 49% or 61% of control activity by 25 μM honokiol or β-amyrin acetate, respectively. These results suggest that β-amyrin acetate and honokiol exhibit sEH inhibitory activity, although their sEH selectivity should be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号