首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a consanguineous Turkish family, a locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI) was mapped to chromosome 2q31.1-2q33.1. Microsatellite marker analysis in the complete family determined the critical linkage interval that overlapped with DFNB27, for which the causative gene has not yet been identified, and DFNB59, a recently described auditory neuropathy caused by missense mutations in the DFNB59 gene. The 352-amino acid (aa) DFNB59 gene product pejvakin is present in hair cells, supporting cells, spiral ganglion cells, and the first three relays of the afferent auditory pathway. A novel homozygous nonsense mutation (c.499C>T; p.R167X) was detected in the DFNB59 gene, segregating with the deafness in the family. The mRNA derived from the mutant allele was found not to be degraded in lymphocytes, indicating that a truncated pejvakin protein of 166 aa may be present in the affected individuals. Screening of 67 index patients from additional consanguineous Turkish families with autosomal recessive hearing impairment revealed a homozygous missense mutation (c.547C>T; p.R183W) that segregates with the hearing impairment in one family. Furthermore, in a panel of 83 Dutch patients, two additional novel mutations (c.509_512delCACT; p.S170CfsX35 and c.731T>G; p.L244R), which were not present in ethnically matched controls, were found heterozygously. Together, our data indicate that also nonsense mutations in DFNB59 cause nonsyndromic hearing loss, but that mutations in DFNB59 are not a major cause of nonsyndromic hearing impairment in the Turkish and Dutch population.  相似文献   

2.
3.
Autosomal recessive nonsyndromic hearing impairment (ARNSHI) segregating in three unrelated, large consanguineous Pakistani families (PKDF528, PKDF859 and PKDF326) is linked to markers on chromosome 12q14.2-q15. This novel locus is designated DFNB74 . Maximum two-point limit of detection (LOD) scores of 5.6, 5.7 and 2.6 were estimated for markers D 12 S 313, D 12 S 83 and D 12 S 75 at θ = 0 for recessive deafness segregating in these three families. Haplotype analyses identified a critical linkage interval of 5.35 cM (5.36 Mb) defined by D 12 S 329 at 74.58 cM and D 12 S 313 at 79.93 cM. DFNB74 is the second ARNSHI locus mapped to chromosome 12, but the physical intervals do not overlap with one another. A locus contributing to the early onset, rapidly progressing hearing loss of A/J mice ( ahl4 , age-related hearing loss 4) was reported to map to chromosome 10 in a region of conserved synteny to DFNB74 , suggesting that ahl4 and DFNB74 may be due to mutations of the same gene in these two species.  相似文献   

4.
The TECTA gene, which encodes alpha-tectorin, is known as a causative gene for DFNA8/DFNA12, and DFNB21 hearing loss in humans. In the present study, mutation analysis of the TECTA gene was performed in 62 Korean patients with hereditary hearing loss. Two novel nucleotide substitutions, p.V317E and p.T1866M, were identified for the first time in the Korean population. These mutations result in the substitution of amino acids in the zonadhesin (ZA) and the zona pellucida (ZP) domains, and show a genotype-phenotype correlation, which is a characteristic of TECTA-related mutations in autosomal dominant nonsyndromic hearing loss. Both mutations are located in highly conserved regions of alpha-tectorin and were not found in 120 unrelated control subjects with normal hearing. Based on this evidence, it is likely that both mutations are the pathogenic ones causing the hearing loss. This study provides useful information for the functional study of hereditary hearing loss caused by tectorial membrane defects.  相似文献   

5.
A consanguineous family with autosomal recessive nonsyndromic hearing impairment (NSHI) was ascertained in Pakistan and displayed significant evidence of linkage to 3q13.31-q22.3. The novel locus (DFNB42) segregating in this kindred, maps to a 21.6 cM region according to a genetic map constructed using data from both the deCode and Marshfield genetic maps. This region of homozygosity is flanked by markers D3S1278 and D3S2453. A maximum multipoint LOD score of 3.72 was obtained at marker D3S4523. DFNB42 represents the third autosomal recessive NSHI locus to map to chromosome 3.  相似文献   

6.
A novel locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI), DFNB96, was mapped to the 1p36.31-p36.13 region. A whole-genome linkage scan was performed using DNA samples from a consanguineous family from Pakistan with ARNSHI. A maximum two-point logarithm of odds (LOD) score of 3.2 was obtained at marker rs8627 (chromosome 1: 8.34?Mb) at θ=0 and a significant maximum multipoint LOD score of 3.8 was achieved at 15 contiguous markers from rs630075 (9.3?Mb) to rs10927583 (15.13?Mb). The 3-unit support interval and the region of homozygosity were both delimited by markers rs3817914 (6.42?Mb) and rs477558 (18.09?Mb) and contained 11.67?Mb. Of the 125 genes within the DFNB96 interval, the previously identified ARNSHI gene for DFNB36, ESPN, and two genes that cause Bartter syndrome, CLCNKA and CLCNKB, were sequenced, but no potentially causal variants were identified.  相似文献   

7.
Mutations in the transmembrane channel-like gene 1 (TMC1) cause prelingual autosomal recessive (DFNB7/11) and postlingual progressive autosomal dominant (DFNA36) nonsyndromic hearing loss. To determine the genetic causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) in the northeast and east of Turkey, 65 unrelated families without mutations in the protein coding region of the GJB2 (GJB2-negative) were analyzed. A genomewide scan for homozygosity and linkage analysis in one of these families revealed a 13.2 cM critical region between D9S273 and D9S153 at chromosome 9p13.2-q21.31 with a maximum two-point lod score of 4.00 at theta=0.0 for marker D9S175. TMC1 is in this critical region. Homozygosity screening with intragenic markers for TMC1 in the remaining 64 families suggested involvement of this gene in three additional families. Subsequent sequencing of TMC1 in these four families revealed four novel homozygous mutations, c.776A>G [p.Tyr259Cys], c.821C>T [p.Pro274Leu], c.1334G>A [p.Arg445His], and c.1083_1087delCAGAT [p.Arg362ProfrX6]. Our results indicate that TMC1 mutations account for at least 6% (4/65) of ARNSHL in GJB2-negative Turkish families from the northeast and east of Turkey.  相似文献   

8.
To date, 37 genes have been identified for nonsyndromic hearing impairment (NSHI). Identifying the functional sequence variants within these genes and knowing their population-specific frequencies is of public health value, in particular for genetic screening for NSHI. To determine putatively functional sequence variants in the transmembrane inner ear (TMIE) gene in Pakistani and Jordanian families with autosomal recessive (AR) NSHI, four Jordanian and 168 Pakistani families with ARNSHI that is not due to GJB2 (CX26) were submitted to a genome scan. Two-point and multipoint parametric linkage analyses were performed, and families with logarithmic odds (LOD) scores of 1.0 or greater within the TMIE region underwent further DNA sequencing. The evolutionary conservation and location in predicted protein domains of amino acid residues where sequence variants occurred were studied to elucidate the possible effects of these sequence variants on function. Of seven families that were screened for TMIE, putatively functional sequence variants were found to segregate with hearing impairment in four families but were not seen in not less than 110 ethnically matched control chromosomes. The previously reported c.241C>T (p.R81C) variant was observed in two Pakistani families. Two novel variants, c.92A>G (p.E31G) and the splice site mutation c.212 −2A>C, were identified in one Pakistani and one Jordanian family, respectively. The c.92A>G (p.E31G) variant occurred at a residue that is conserved in the mouse and is predicted to be extracellular. Conservation and potential functionality of previously published mutations were also examined. The prevalence of functional TMIE variants in Pakistani families is 1.7% [95% confidence interval (CI) 0.3–4.8]. Further studies on the spectrum, prevalence rates, and functional effect of sequence variants in the TMIE gene in other populations should demonstrate the true importance of this gene as a cause of hearing impairment.  相似文献   

9.
Hereditary hearing impairment (HI) is the most genetically heterogeneous trait known in humans. So far, 54 autosomal recessive non-syndromic hearing impairment (ARNSHI) loci have been mapped, and 21 ARNSHI genes have been identified. Here is reported the mapping of a novel ARNSHI locus, DFNB55, to chromosome 4q12-q13.2 in a consanguineous Pakistani family. A maximum multipoint LOD score of 3.5 was obtained at marker D4S2638. The region of homozygosity and the 3-unit support interval are flanked by markers D4S2978 and D4S2367. The region spans 8.2 cm on the Rutgers combined linkage-physical map and contains 11.5 Mb. DFNB55 represents the third ARNSHI locus mapped to chromosome 4.  相似文献   

10.
Mutations in the Cx26 gene have been shown to cause autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNB1 locus on chromosome 13q12. Using direct sequencing, we screened the Cx26 coding region of affected and nonaffected members from seven ARNSHL families either linked to the DFNB1 locus or in which the ARNSHL phenotype cosegregated with markers from chromosome 13q12. Cx26 mutations were found in six of the seven families and included two previously described mutations (W24X and W77X) and two novel Cx26 mutations: a single base pair deletion of nucleotide 35 resulting in a frameshift and a C-to-T substitution at nucleotide 370 resulting in a premature stop codon (Q124X). We have developed and optimized allele-specific PCR primers for each of the four mutations to rapidly determine carrier and noncarrier status within families. We also have developed a single stranded conformational polymorphism (SSCP) assay which covers the entire Cx26 coding region. This assay can be used to screen individuals with nonsyndromic hearing loss for mutations in the CX26 gene. Hum Mutat 11:387–394, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

13.
14.
Background: Allele variants of COL11A2, encoding collagen type XI α2, cause autosomal dominant non-syndromic hearing loss (ARNSHL) at the DFNA13 locus (MIM 601868) and various syndromes that include a deafness phenotype. Objective: To describe a genome-wide scan carried out on a consanguineous Iranian family segregating ARNSHL. Results: Genotyping data identified a novel locus for ARNSHL on chromosome 6p21.3, which was designated DFNB53. Homozygosity for the P621T mutation of COL11A2 was present in all deaf persons in this family; this same variation was absent in 269 Iranian controls. Sequence comparison of collagen type XI α1 and α2 peptides across species shows that the replaced proline is an evolutionarily conserved amino acid. Conclusions: The P621T mutation of COL11A2 affects the Y position of the canonical -Gly-X-Y- repeat in collagens. It lies near the amino-terminus of the triple helical region and causes ARNSHL. This finding suggests that mutation type and location are critical determinants in defining the phenotype of COL11A2 associated diseases.  相似文献   

15.
Approximately 80% of the hereditary hearing loss is nonsyndromic. Isolated deafness is the most genetically heterogeneous trait. We have ascertained 10 individuals from a large consanguineous Tunisian family with congenital profound autosomal recessive deafness. All affected individuals are otherwise healthy. Genotype analysis excluded linkage to known recessive deafness loci in this family. Following a genome wide screening, a linkage was detected only with locus D1S206 on chromosome 1, thereby defining a novel deafness locus, DFNB32. In order to confirm linkage and for fine mapping the genetic interval, 12 individuals belonging to this family were added and 19 microsatellite markers were tested. A maximum two-point lodscore of 4.96 was obtained at a new polymorphic marker D1S21401. Haplotype analysis defined a 16 Mb critical region between D1S2868 and afmb014zb9. The interval of DFNB32 locus overlap with DFNA37 locus and the Marshall and Stickler syndromes locus. The entire coding region of COL11A1, responsible of the later syndromes, was screened and no mutation was observed. Towards the identification of the DFNB32 gene, a search on the Human Cochlear cDNA Library and EST Database was done. The genes corresponding to the ESTs found in the DFNB32 interval are being screened for deafness-causing mutations.  相似文献   

16.
Hereditary nonsyndromic deafness (NSD) is extremely heterogeneous. Autosomal recessive (AR) forms account for approximately 75% of genetic cases. To date, over 40 ARNSD loci have been mapped. A novel locus (DFNB46) for ARNSD was mapped to chromosome 18p11.32-p11.31 in a five-generation Pakistani family. A 10 cM genome-wide scan and fine mapping was carried out using microsatellite markers. A maximum multipoint LOD score of 3.8 was obtained at two markers, D18S481 and D18S1370. The three-unit support interval is flanked by markers D18S59 and D18S391, corresponds to a 17.6 cM region according to the deCode genetic map and spans 5.8 Mb on the sequence-based physical map.  相似文献   

17.
Mutations in the CLDN14 gene are known to cause autosomal recessive (AR) non-sydromic hearing loss (NSHL) at the DFNB29 locus on chromosome 21q22.13. As part of an ongoing study to localize and identify NSHL genes, the ARNSHL segregating in four Pakistani consanguineous families were mapped to the 21q22.13 region with either established or suggestive linkage. Given the known involvement of CLDN14 gene in NSHL, DNA samples from hearing-impaired members from the four families were sequenced to potentially identify causal variants within this gene. Three novel CLDN14 mutations, c.167G>A (p.Trp56*), c.242G>A (p.Arg81His), and c.694G>A (p.Gly232Arg), segregate with hearing loss (HL) in three of the families. The previously reported CLDN14 mutation c.254T>A (p.Val85Asp) was observed in the fourth family. None of the mutations were detected in 400 Pakistani control chromosomes and all were deemed damaging based on bioinformatics analyses. The non-sense mutation c.167G>A (p.Trp56*) is the first stop codon mutation in CLDN14 gene to be identified to cause NSHL. The c.242G>A (p.Arg81His) and c.694G>A (p.Gly232Arg) mutations were identified within the first extracellular loop and the carboxyl-tail of claudin-14, respectively, which highlights the importance of the extracellular domains and phosphorylation of cytoplasmic tail residues to claudin function within the inner ear. The HL due to novel CLDN14 mutations is prelingual, severe-to-profound with greater loss in the high frequencies.  相似文献   

18.
Ezrin, radixin, and moesin are paralogous proteins that make up the ERM family and function as cross-linkers between integral membrane proteins and actin filaments of the cytoskeleton. In the mouse, a null allele of Rdx encoding radixin is associated with hearing loss as a result of the degeneration of inner ear hair cells as well as with hyperbilirubinemia due to hepatocyte dysfunction. Two mutant alleles of RDX [c.1732G>A (p.D578N) and c.1404_1405insG (p.A469fsX487)] segregating in two consanguineous Pakistani families are associated with neurosensory hearing loss. Both of these mutant alleles are predicted to affect the actin-binding motif of radixin. Sequence analysis of RDX in the DNA samples from the original DFNB24 family revealed a c.463C>T transition substitution that is predicted to truncate the protein in the FERM domain (F for 4.1, E for ezrin, R for radixin, and M for moesin) (p.Q155X). We also report a more complete gene and protein structure of RDX, including four additional exons and five new isoforms of RDX that are expressed in human retina and inner ear. Further, high-resolution confocal microscopy in mouse inner ear demonstrates that radixin is expressed along the length of stereocilia of hair cells from both the organ of Corti and the vestibular system.  相似文献   

19.
20.
Non-syndromic sensorineural deafness is an extremely genetically heterogeneous condition. We have used autozygosity mapping in a large consanguineous United Arab Emirate family to identify a novel locus for autosomal recessive non-syndromic sensorineural deafness, DFNB27, on chromosome 2q23-q31, with a maximum two-point lod score of 5.18 at theta = 0 for marker D2S2257. The DFNB27 locus extends over a 17 cM region between D2S2157 and D2S2273, and may overlap the DFNA16 locus for dominantly inherited, fluctuating, progressive non-syndromal hearing loss. However, genotype data suggests that the locus is likely to be refined to between D2S326 and D2S2273 and thus distinct from the DFNA16 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号