首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Bardoxolone methyl (RTA 402, CDDOMe) has been long known for its anti-inflammatory and exceptional cytotoxic activity. The biological responses to CDDOMe are truly dose dependent. And owing to the structural modifications introduced in its parent molecule oleanolic acid, CDDOMe is able to form reversible adducts with cellular proteins containing redox sensitive cysteine residues. This nature of CDDOMe makes it a multifunctional molecule targeting multiple signaling pathways. This study was initiated to study the response of Neuro2a, a mouse neuroblastoma cell line to CDDOMe.

Methods

Neuro2a cells were treated with CDDOMe and all trans retinoic acid (ATRA) for 4 days and observed for neurite outgrowth. The neurite length was estimated using ImageJ software (Neuron growth plugin). Cell viability was investigated using MTT dye reduction and trypan blue dye exclusion method. Gene expression of differentiation markers was analyzed using quantitative PCR. Cellular localization of Tuj1 and synaptophysin in differentiated Neuro2a cells was observed using immunofluorescence.

Results

CDDOMe ceased proliferation and induced dramatic neurite outgrowth in Neuro2a cells. These morphological changes were accompanied by time dependent increase in the mRNA levels of tyrosine hydroxylase, neurofilament 200 and synaptophysin. Besides, cytoskeleton protein Tuj1 and the synaptic vesicle protein synaptophysin were also observed to be localized in the neurites induced by CDDOMe.

Conclusions

These early shreds of evidence suggest that CDDOMe induces differentiation in Neuro2a cells at concentrations ranging from 0.2 to 0.4 μM and indeed contributes the existing knowledge on CDDOMe induced activities in cells.  相似文献   

2.

Background

The development of multidrug resistance to chemotherapy remains a challenge in the treatment of cancer and is a major factor causing failure of many forms of chemotherapy. The ATP binding cassette (ABC) family of proteins are efflux pumps that transport various potentially dangerous substances out of the cells. Several of the ABC transporters are related to chemoresistance, as the rapidly dividing malignant cells use them to protect themselves from medical interventions. Inhibitors of ABC transporters have the potential to enhance the efficacy of anticancer drugs. Two new synthetic compounds, AD-06 and AD-013, were tested as possible multidrug resistance inhibitors in MCF-7 cells.

Methods

The cytotoxicity of new compounds was tested in MCF-7 and MCF-10A cell lines using the MTT method. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by flow cytometry and ELISA. A method based on the use of a fluorescent dye, being a marker of the ABC transporter activity, was used for screening the tested compounds as potential multidrug resistance inhibitors.

Results

AD-06 and AD-013 down-regulated NF-κB mRNA levels and decreased the population of cells with activated NF-κB. Both compounds were found to be strong ABCB1 and ABCG2 transporter inhibitors. They showed synergistic effects when incubated with taxol or oxaliplatin.

Conclusions

α-Methylene-γ- and -δ-lactones AD-06 and AD-013 are promising lead structures for further development as multidrug resistance inhibitors.  相似文献   

3.

Background

Nitidine chloride (NC) is known to exert anticancer and anti-metastatic effects on a variety of tumors. Recently, NC has also been shown to inhibit PIK3/AKT/mTOR axis in U87 human glioma cells.

Methods

The study shows NC employing pDok2, caspase 3 dependent cell death in C6 rat glioma and U87 human malignant glioblastoma cells. The effect of NC on glioblastoma cell lines was accessed by MTT, clonogenic and wound healing assays. Cell cycle analysis was performed by FACS. Moreover, the effect of NC on downstream target proteins, such as caspase3, pDok2, PARP, and Gsk3 beta, were measured by western blotting.

Results

Overexpressed pDok2 protein has recently been reported as a prognostic marker with poor outcomes for human glioblastoma multiformae. We found that NC inhibits pDok2 in U87 cells in a concentration-dependent way. We further showed that cleaved PARP and cleaved caspase 3 protein expressions were increased in C6 cells treated with NC in a dose-dependent way. NC effectively attenuated C6 cells growth and colony formation at 8 μM (micromoles) concentration. Cell cycle arrest in G2/M phase was further confirmed by flow cytometry. NC also exhibited its inhibitory effect on Gsk3 beta, which has been proven to be altered in glioma biology.

Conclusions

Collectively, we predicted that NC could be employed as a potential anti-glioma mediator that needs attention to explore the mechanisms of its activity.  相似文献   

4.

Background

Emerging treatment options for colon cancer are needed to overcome the limitations regarding the side effects of current chemotherapeutics and drug resistance. The goal of this study was to assess the antitumor actions of PEGylated long-circulating liposomes (LCL) co-delivering curcumin (CURC) and doxorubicin (DOX) on murine colon carcinoma cells (C26).

Methods

The cytotoxicity of CURC and DOX, administered alone or in combination, either in free or LCL form, was evaluated with regard to antiproliferative effects on C26 cells and to protumor processes that might be affected.

Results

Our results indicated that PEGylated LCL-CURC-DOX exerted strong antiproliferative effects on C26 cells, slightly exceeding those induced by free CURC-DOX, but higher than either agent administered alone in their free form. These effects of LCL-CURC-DOX were due to the inhibition of the production of angiogenic/inflammatory proteins in a NF-κB-dependent manner, but were independent of ROS production or AP-1 c-Jun activation. Notable, the anti-angiogenic actions of LCL-CURC-DOX appeared to be much stronger than those induced by the co-administration of CURC and DOX in their free form, on C26 colon cancer cells.

Conclusion

LCL-CURC-DOX demonstrated enhanced cytotoxicity on C26 murine colon cancer cells by inhibiting the production of the majority of factors involved in tumor-associated angiogenesis and inflammation and is now being evaluated in vivo regarding its efficacy towards tumor growth in colon cancer.  相似文献   

5.

Background

Tauopathies are a class of neurodegenerative illnesses associated with the aberrant accumulation of the tau protein in the brain. The best known out of these diseases is Alzheimer’s disease, a disorder where the microtubule associated tau protein becomes hyperphosphorylated (which lowers its binding affinity to microtubules) and accumulates inside neurons in the form of tangles. In this study, we attempt to find out whether brain ischemia may play an important role in tau protein gene alterations.

Methods

We have investigated the relationship between hippocampal ischemia and Alzheimer’s disease by means of a transient 10-min global brain ischemia in rats and determining the effect on Alzheimer’s disease tau protein gene expression during 2, 7 and 30?days post injury.

Results

We found the significant overexpression of tau protein gene on the 2nd day, but on day’s 7 and 30 post-ischemia there a significant opposite tendency was observed.

Conclusion

The obtained results offer a novel insight into tau protein gene in regulating delayed neuronal death in the ischemic hippocampus. Finally, these findings further elucidate the long-term impact of brain ischemia on Alzheimer’s disease development.  相似文献   

6.

Background

Aging is one of the most important inevitable risk factors of Alzheimer disease (AD). Oxidative stress plays a critical role in the process of aging. Curcumin has been proposed to improve neural damage, especially neurodegenerative injury, through its antioxidant and anti-inflammatory properties. Therefore, we investigated the effects of curcumin on acrolein-induced AD-like pathologies in HT22 cells.

Methods

HT22 murine hippocampal neuronal cells were treated with 25 μM acrolein for 24 h with or without pre-treating with curcumin at the selected optimum concentration (5 μg/mL) for 30 min. Cell viability and apoptosis were measured by CCK8 assay and flow cytometric analysis. Levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) were detected by a GSH assay kit or commercial assay kits, respectively. Alterations in the expression of BDNF/TrkB and key enzymes involved in amyloid precursor protein (APP) metabolism were assessed by western blotting.

Results

Data showed that curcumin significantly reversed acrolein-induced oxidative stress indicated by depletion of GSH and SOD, and elevation of MDA. The findings also suggested curcumin’s potential in protecting HT22 cells against acrolein through regulating the BDNF/TrkB signaling. In addition, acrolein-induced reduction in A-disintegrin and metalloprotease, and the increase of amyloid precursor protein, β-secretase, and receptor for advanced glycation end products were reversed either, and most of them were nearly restored to the control levels by curcumin.

Conclusion

These findings demonstrate the protective effects of curcumin on acrolein-induced neurotoxicity in vitro, which further suggests its potential role in the treatment of AD.  相似文献   

7.

Background

Acute lymphoblastic leukemia (ALL) is the most common fatal cancer in people younger than 20 years of age. This study was designed to explore the anti-leukemia activity of physcion 8-O-β-glucopyranoside (PG) in B-cell ALL.

Methods

NALM6 and SupB15 cells were used as model cell lines. Cell viability, cell apoptosis, cell cycle distribution were determined by CCK-8 assay, DNA fragmentation assay and flow cytometry, and flow cytometry, respectively. Expression of proteins involved in cell apoptosis and cell cycle regulation was determined by western blot and the levels of ceramide and sphingosine 1-phosphate (S1P) were determined by ELISA. Activity of sphingosine kinase 1 (SphK1) was also determined with a Sphingosine Kinase Assay Kit. In the present study, both model cell lines were transfected with siRNA targeting SphK1 or an overexpression plasmid to examine the role of SphK1 in the anti-leukemia activity of PG. Moreover, the efficacy of PG was examined in vivo in a mouse model by measuring survival and spleen weight.

Results

Our results provided experimental evidence that PG could significantly induce apoptosis and cell cycle arrest in vitro. Mechanistically, the anti-leukemia activity of PG was mediated by its ability to repress SphK1 and thus modulate ceramide-S1P rheostat. Moreover, the anti-leukemia activity of PG was also verified in a murine model.

Conclusion

Collectively, our results indicate that PG may be a promising agent for the treatment of B-cell leukemia.  相似文献   

8.

Background

Parkinson’s disease (PD) is the most widespread motor-affecting disease affecting majorly middle- and late age population. Thus, in the current study, we intended to explore the neuroprotective effect of protodioscin (Proto) against 6-hydroxydopamine (6-OHDA)-induced PD rat model.

Methods

After induction of PD with the injection of 6-OHDA, the different dose of Proto was administered for the duration of experimental protocol (2 months). We have scrutinized the consequence of Proto on the cognitive behaviours via Moris water maze (MWM), and recognition of novel objects and its location tasks. The effect of Proto was also investigated on the expression of Nrf2 in human neuroblastoma SHSY5Y cells via western blot analysis.

Results

The results showed significant decrease in travelled distance as compared by the lesion treated group. Further significant difference was revealed in the latency time to detect the platform that is visible and it confirmed that, there were no noteworthy dissimilarity was observed in the visual and motor function ability. The result also suggests that, the activation of Nrf2 is the possible mechanism of neuroprotection of Proto against PD.

Conclusion

As a concluding remark, the present study confirmed the neuroprotective role of Proto against PD both in in vitro and in vivo models.  相似文献   

9.

Background

Long term use of glucocorticoids is one of the most common causes of secondary osteoporosis. Osteocyte, the most abundant cell type in bone, coordinates the function of osteoblast and osteoclast. This study evaluates the protective effect of alpinumisoflavone (AIF), a naturally occurring flavonoid compound, on dexamethasone (Dex)-induced apoptosis of osteocytes.

Methods

MLO-Y4 cell was used as a cell model. The effect of AIF on the cell viability was assessed by MTT assay. Apoptosis of MYL-Y4 cells was determined by DNA fragment detection ELISA kit and flow cytometry. Intracellular ROS level was determined by DCFH-DA staining. mRNA and protein expression of target genes were determined by qRT-PCR and western blot, respectively.

Results

AIF effectively protected MLO-Y4 cells against Dex-induced apoptosis, which was associated with attenuation of Dex-induced ROS generation in MLO-Y4 cells. Furthermore, our data indicated that the expression of NAD(P)H oxidase 2 (Nox2) was suppressed by AIF, which in turn mediated the attenuating effect on Dex-induced ROS generation and apoptosis in MLO-Y4 cells. Moreover, our results showed that AIF modulated the expression of Nox2 by activating AMPK signaling.

Conclusion

AIF activated AMPK-dependent Nox2 signaling pathway to suppress Dex-induced ROS production in cultured osteocytes, which might explain its anti-apoptotic effect. These results indicate that activation of AMPK pathway by AIF could have beneficial effects on bone damage induced by excessive oxidative stress and osteocyte apoptosis.  相似文献   

10.
11.

Aim:

Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside found in plants of the genera Hypericum and Crataegus, which exhibits anticancer, anti-oxidant, and anti-inflammatory activities. In this study we investigated whether autophagy was involved in the anticancer mechanisms of hyperoside in human non-small cell lung cancer cells in vitro.

Methods:

Human non-small cell lung cancer cell line A549 was tested, and human bronchial epithelial cell line BEAS-2B was used for comparison. The expression of LC3-II, apoptotic and signaling proteins was measured using Western blotting. Autophagosomes were observed with MDC staining, LC3 immunocytochemistry, and GFP-LC3 fusion protein techniques. Cell viability was assessed using MTT assay.

Results:

Hyperoside (0.5, 1, 2 mmol/L) dose-dependently increased the expression of LC3-II and autophagosome numbers in A549 cells, but had no such effects in BEAS-2B cells. Moreover, hyperoside dose-dependently inhibited the phosphorylation of Akt, mTOR, p70S6K and 4E-BP1, but increased the phosphorylation of ERK1/2 in A549 cells. Insulin (200 nmol/L) markedly enhanced the phosphorylation of Akt and decreased LC3-II expression in A549 cells, which were reversed by pretreatment with hyperoside, whereas the MEK1/2 inhibitor U0126 (20 μmol/L) did not blocked hyperoside-induced LC3-II expression. Finally, hyperoside dose-dependently suppressed the cell viability and induced apoptosis in A549 cells, which were significantly attenuated by pretreatment with the autophagy inhibitor 3-methyladenine (2.5 mmol/L).

Conclusion:

Hyperoside induces both autophagy and apoptosis in human non-small cell lung cancer cells in vitro. The autophagy is induced through inhibiting the Akt/mTOR/p70S6K signal pathways, which contributes to anticancer actions of hyperoside.  相似文献   

12.

Background

Thyroid hormones (TH) are involved in modulation of the immune system and inflammation. TH dysregulation is associated with depressive disorders. The iodothyronine deiodinases (DIOs), the key enzymes for TH synthesis, can be affected and induced by pro-inflammatory cytokines. We aimed to investigate the levels of and correlation between type 2 DIO (DIO2) and interferon-gamma (IFN-?) in patients with recurrent depressive disorders (rDD).

Methods

Data from 91 rDD patients and 105 healthy controls were analyzed. The diagnoses are based on the ICD-10 criteria (F33.0-F33.8). Expression levels of DIO2 and IFN-? were estimated using the method based on the polymerase chain reaction and the enzyme-linked immunosorbent assay (ELISA).

Results

The DIO2 expression on mRNA/protein levels in rDD patients (both female and males) was reduced as compared with the control subjects. No correlation between DIO2 and IFN-? expression was observed.

Conclusion

This is the first study to reveal that one may cautiously suggest that DIO2 may be involved in the development and/or progression of rDD. The mechanisms of TH regulation on depression, however, need further investigation.  相似文献   

13.

Background

The objective of this study was to evaluate creatine as an anti-nociceptive compound in an animal model of thermal and inflammatory pain. Creatine has the structural potential to interact with acid-sensing ion channels (ASIC), which have been involved in pain sensation modulation. The hypothesis evaluated in this study was that creatine will interact with ASICs leading to decreased nociception.

Methods

Male and female C57BL/6J mice were fed with either a control diet or the control diet supplemented with creatine (6.25?g/kg diet). After one week on the diet, the mice were tested for thermal hyperalgesia and inflammatory pain response.

Results

The latency to withdraw the tail during the thermal hyperalgesia test was unaffected by sex or diet. During the formalin test, males and females responded differently to the stimulus, and the female mice supplemented with creatine seemed to recover faster than the controls. To determine whether ASICs mediate the action of creatine, GMQ, an ASIC3 agonist, was injected in one paw and pain response was quantified. Females responded more strongly to GMQ injections, and all mice fed creatine had a decreased response to GMQ.

Conclusions

These preliminary data suggest a potential effect of creatine on inflammation-based nociception that may be mediated via ASIC3. While preliminary, this study warrants further research on the potential of creatine as an analgesic and can serve as a stepping stone for the development of ASIC-based therapeutics.  相似文献   

14.

Aim:

To investigate the role of LKB1 in regulation of mTOR signaling in non-small cell lung cancer (NSCLC) cells.

Methods:

LKB1 protein expression and phosphorylation of AMPK, 4E-BP1 and S6K in the cells were assessed using Western blotting in various NSCLC cell lines (A549, H460, H1792, Calu-1 and H1299). Energy stress was mimicked by treating the cells with 2-deoxyglucose (2-DG). Compound C was used to inhibit AMPK activity. Cell growth was measured using the MTS assay.

Results:

LKB1 protein was expressed in LKB1 wild-type Calu-1, H1299 and H1792 cells, but it was undetected in LKB1 mutant A549 and H460 cells. Treatment of the LKB1 wild-type cells with 2-DG (5, 10 and 25 mmol/L) augmented the phosphorylation of AMPK in dose- and time-dependent manners. In the LKB1 wild-type cells, 2-DG dramatically suppressed the phosphorylation of two mTOR targets, 4E-BP1 and S6K, whereas the LKB1 mutant A549 and H460 cells were highly resistant to 2-DG-induced inhibition on mTOR activity. In addition, stable knockdown of LKB1 in H1299 cells impaired 2-DG-induced inhibition on mTOR activity. Pretreatment of H1299 and H1792 cells with the AMPK inhibitor compound C (10 μmol/L) blocked 2-DG-induced inhibition on mTOR activity. 2-DG inhibited the growth of H1299 cells more effectively than that of H460 cells; stable knockdown of LKB1 in H1299 cells attenuated the growth inhibition caused by 2-DG.

Conclusion:

In non-small cell lung cancer cells, LKB1/AMPK signaling negatively regulates mTOR activity and contributes to cell growth inhibition in response to energy stress.  相似文献   

15.

Background

Low effectiveness of anti-melanoma therapies makes it necessary to search for new drugs that could improve or replace the standard chemotherapy. Fluoroquinolones are a group of synthetic antibiotics, used in the treatment of wide range of bacterial infections. Moreover, this class of antibiotics has shown promising anti-tumor activity in several cancer cell lines. The aim of this study was to examine the effect of ciprofloxacin on cell viability, apoptosis and cell cycle distribution in COLO829 melanoma cells.

Methods

Cell viability was evaluated by the WST-1 assay. Cell cycle distribution and apoptosis in cells exposed to ciprofloxacin was analyzed by the use of fluorescence image cytometer NucleoCounter NC-3000.

Results

Ciprofloxacin decreased the cell viability in a dose- and time-dependent manner. For COLO829 cells treated with ciprofloxacin for 24?h, 48?h and 72?h the values of IC50 were found to be 0.74?mM, 0.17?mM and 0.10?mM, respectively. The oligonucleosomal DNA fragmentation was observed when the cells were exposed to ciprofloxacin in concentration of 1.0?mM for 48?h and 72?h. At lower ciprofloxacin concentrations (0.01?mM and 0.1?mM) cells were arrested in S-phase suggesting a mechanism related to topoisomerase II inhibition. Moreover, it was demonstrated that ciprofloxacin induced apoptosis as a result of mitochondrial membrane breakdown.

Conclusions

The obtained results for COLO829 melanoma cells were compared with data for normal dark pigmented melanocytes and the use of ciprofloxacin as a potential anticancer drug for the treatment of melanoma in vivo was considered.  相似文献   

16.

Background

The association between p53 protein phosphorylated at serine 15 (Ser15), serine 20 (Ser20) and ovarian tumor cell sensitivity after chemotherapy was analyzed in order to define the influence of p53 activation on tumor cell sensitivity to chemotherapy.

Methods

The study was performed on ovarian cancer cell line (OvBH-1), colon adenocarcinoma metastasis to ovary (SW626) and on cells isolated from ascitic fluids from patients with ovarian cancer: with (p53+) or without (p53?) p53 nuclear protein accumulation. p53 protein, Ser15, Ser20, Bax, Noxa and PgP protein expression was evaluated by means of immunocytochemical staining before and after chemotherapy. Cell viability after treatment was estimated using MTT assay.

Results

Cell lines and tumor cells p53+, p53- revealed a significant decrease in cell survival after camptothecin, paclitaxel, cisplatin treatment, compared to the control group (p?<?0.01). In p53+ group, the expression of Ser20 significantly increased after camptothecin and paclitaxel (p?<?0.05). Ser15, Ser20, Bax, Noxa expression correlated with MTT and depended on p53+, p53? tumor cell and the drug used (p?<?0.05). Expression of Bax and Noxa were dependent on the type of tumor cells and drug used. The correlation between Ser15, Ser20 and Bax, Noxa expression was found in cell lines and tumor cells (p?<?0.05).

Conclusions

Our study suggests that the relation between Ser15 or Ser20 and tumor cell viability might reflect their role in tumor sensitivity on chemotherapy in dependent p53 protein status. Revealed association between p53 protein phosphorylated at Ser15, Ser20 and Bax, Noxa protein expression determined the apoptotic activity of tumor cells.  相似文献   

17.

Background

To evaluate the protective effect of nebivolol against kidney damage and elucidate the underlying mechanism in a two-kidney, one-clip (2K1C) rat model.

Methods

2K1C rats were obtained by clipping left renal artery of male Wistar rats and were considered hypertensive when systolic blood pressure (SBP) was ≥160 mmHg 4 weeks after surgery. The 2K1C hypertensive rats were divided into untreated, nebivolol (10 mg/kg, ig), and atenolol (80 mg/kg, ig) treatment groups. The treatments lasted for 8 weeks. SBP, kidney structure and function, plasma and kidney angiotensin (Ang) II, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and the oxidant status were examined. Kidney protein expression of NADPH oxidase (Nox) isoforms and its subunit p22phox, nitric oxide synthase (NOS) isoforms, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 was tested by western blotting.

Results

Nebivolol and atenolol exerted similar hypotensive effects. However, atenolol had little effect while nebivolol significantly ameliorated the functional decline and structural damage in the kidney, especially in non-clipped kidney (NCK), which was associated with the reduction of Ang II in NCK. Moreover, nebivolol inhibited the NCK production of reactive oxygen species (ROS) by decreasing Nox2, Nox4, and p22phox expression. Further, nebivolol reduced the plasma and kidney ADMA levels by increasing DDAH2 expression and decreasing PRMT1 expression. Nebivolol also increased the NCK NO level by ameliorating the expression of kidney NOS isoforms.

Conclusions

Our results demonstrated that long-term treatment with nebivolol had renoprotective effect in 2K1C rats partly via regulation of kidney ROS-ADMA-NO pathway.  相似文献   

18.

Background

Stigmasterol, a naturally occurring phytoestrogen has been reported to possess many pharmacological activities. The aim of the present study was to screen the effect of stigmasterol against ketamine-induced mice model of psychosis.

Methods

The behavioural studies included an assessment of locomotor activity, stereotypic behaviours, immobility duration, step down latency and effects on catalepsy. Biochemical estimations involved the estimations of GABA, dopamine, GSH, MDA, TNF-α, total protein content and AChE activity. Histopathological changes and effect on androgenic parameters were also evaluated.

Results

Stigmasterol treated animals showed significant decrease in locomotor activity, stereotypic behaviours, immobility duration and increased step down latency. Biochemical estimations revealed increased GABA, GSH levels and decreased dopamine, MDA, TNF-α levels and AChE activity. These findings were confirmed by histopathological changes in the cortex part of the brain. Further, stigmasterol was not found to cause catalepsy and any adverse effect on the reproductive system.

Conclusion

This study concluded that stigmasterol could ameliorate ketamine-induced behavioral, biochemical and histopathological alterations in mice showing its potential effects in the management of psychotic symptoms.  相似文献   

19.
20.

Background

Doxorubicin is an effective, potent and commonly used anthracycline-related anticancer drug; however, cardiotoxicity compromises its therapeutic potential. Apremilast, a novel phosphodiesterase type 4-inhibitor, reported to have anti-inflammatory effects and modulating many inflammatory mediators.

Methods

The present study investigated the influence of apremilast against doxorubicin-induced cardiotoxicity in male Wistar rats. A total, 24 animals were divided into four groups of six animal each. Group 1, served as control and received normal saline. Group 2 animals, received doxorubicin (20 mg kg?1, ip). Group 3 and 4, treatment group, received doxorubicin (20 mg kg?1, ip) with the same schedule as group-2, plus apremilast (10 and 20 mg kg?1 day?1, po) respectively. Oxidative stress, caspase-3 enzyme activity, gene expression and protein expression were tested.

Results

The results of the present study demonstrated that administration of apremilast reversed doxorubicin-induced cardiotoxicity.

Conclusion

These findings suggested that apremilast can attenuate doxorubicin-induced cardiotoxicity via inhibition of oxidative stress mediated activation of nuclear factor-kappa B signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号