首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Catalytic subunit delta of phosphoinositide 3-kinase, p110δ, encoded by the PIK3CD gene, was recently proposed as a target for pharmacological treatment of schizophrenia. Current antipsychotic drugs were found to decrease the mRNA expression of PIK3CD, but the mechanism of this process is not known. The aim of the study was to elucidate the mechanism by which antipsychotic drugs affect the mRNA expression of PIK3CD.

Methods

The direct effect of haloperidol, clozapine, olanzapine, quetiapine and amisulpride on p110δ enzymatic activity was tested with a kinase assay, and the results were referenced against data on the mRNA expression of PIK3CD.

Results

Haloperidol, clozapine, olanzapine and quetiapine, but not amisulpride, at the concentration of 20–80?μM, were found to significantly increase enzymatic activity of p110δ by up to two times in a dose-dependent manner. Linear regression analysis revealed that more than 40% of the variance in antipsychotic drugs-induced changes in the expression of PIK3CD mRNA was explained only by changes in antipsychotic drug-regulated p110δ enzymatic activity (p?=?0.011).

Conclusions

Antipsychotic drugs differentially increase the enzymatic activity of p110δ. This effect is associated with that of mRNA expression of the PIK3CD gene. Drug-enzyme interaction may explain the effect of antipsychotic drugs on the expression of PIK3CD mRNA, however, further studies are needed to investigate this hypothesis.  相似文献   

2.

Background

VGF nerve growth factor inducible (VGF) is a neuropeptide which is expressed in neuronal cells and endocrine cells. VGF is induced by several neurotrophic factors. The expression level of VGF in patients with schizophrenia is increased in cerebrospinal fluid (CSF) and prefrontal cortex. In our previous study, we generated mice in which the expression level of VGF in the brain was increased. VGF-overexpressing mice exhibited abnormal behaviors including hyperactivity. However, it remains unknown whether VGF-overexpressing mice exhibit the endophenotype of schizophrenia and whether abnormal behaviors in these mice can be improved by antipsychotics.

Methods

In the present study, we investigated schizophrenia-like behaviors and the responsiveness to antipsychotics in transgenic mice.

Results

VGF-overexpressing mice (1) exhibited prepulse inhibition (PPI) impairment, (2) showed normalized hyperactivity following antipsychotic drug treatment, and (3) showed abnormal responsiveness to haloperidol.

Conclusion

Upregulation of VGF may be implicated in the pathophysiology of schizophrenia and abnormalities of dopaminergic signaling.  相似文献   

3.

Background

Previous clinical and preclinical studies have indicated that the N-methyl-d-aspartate (NMDA) receptor antagonist, memantine, has neuroprotective properties as well as antidepressant effects. The present study was designed to examine behavioral and molecular effects of memantine administration in rats subjected to the repeated unpredictable stress (RUS) paradigm.

Methods

Rats were split into four groups at random including control + saline, control + memantine, stressed + saline and stressed + memantine. After 10 days of exposure to the RUS paradigm, rats were administered memantine (20 mg/kg) intraperitoneally (ip) for 14 days. Depression-like behavior and memory performance were assessed by measuring immobility time in the forced swim test and passive avoidance test, respectively. The mRNA levels of BDNF and TrkB in the prefrontal cortex and hippocampus were measured by real-time quantitative PCR.

Results

Our results demonstrated that the RUS paradigm caused depression-like behavior and impairment of memory retrieval in rats. We did not find significant changes in BDNF or TrkB mRNA levels in hippocampus, but mRNA levels of TrkB in the prefrontal cortex showed a significant downregulation. Administration of memantine reversed depression-like behavior and memory impairment and significantly increased BDNF and TrkB mRNA levels in both prefrontal cortex and hippocampus of stress exposed rats.

Conclusions

Our study supports the hypothesis that drugs with antagonistic properties on the NMDA receptor, such as memantine, might be efficient in treatment of major depression. Our results also suggest that upregulated mRNA levels of BDNF and TrkB in the brain might be essential for antidepressant-like activity of memantine in stress exposed rats.  相似文献   

4.

Background

Limited data demonstrate the effect of nickel released from orthodontic appliances. The mechanism of this action is not clear. The present study aimed to investigate the role of kynurenines, oxidative stress and caspase pathway in the mechanism of nickel action.

Methods

We studied the concentration of nickel, 3-hydroxykynurenine, total oxidative status in saliva and caspase-3 in epithelial cells in 10 subjects before and one week after orthodontic treatment.

Results

Orthodontic appliances significantly enhanced the concentration of nickel, 3-hydroxykynurenine, total oxidative status and augmented the expression of caspase-3 seven days after treatment in the oral cavity in respect to pre-treatment values.

Conclusion

Our data suggest that nickel released from orthodontic appliances activate tryptophan metabolism in oral cavity via the kynurenine pathway. The metal directly or through kynurenines enhancement activates oxidative stress and then via the caspase pathway induce apoptosis of buccal epithelial cells.  相似文献   

5.
6.

Background

Methylene-tetrahydrofolate reductase (MTHFR) gene variant may play an important role in the pathophysiology of diabetes and its complications due to its influence on plasma homocysteine levels and also its effect on scavenging peroxynitrite radicals. Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. The aim of this study was to investigate the relationship between diabetic neuropathy and MTHFR gene C677T and 1298A ?C polymorphisms.

Method

Patients with type 2 diabetes N = 248 were enrolled in the study, consisting of patients with neuropathy (N = 141) and patients without neuropathy (N = 107). MTHFR C677T polymorphism was analyzed using polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) of genomic DNA for genotyping of samples. 1298A/C polymorphism was evaluated using ARMS-PCR.

Result

There was a significant difference in MTHFR polymorphism between the groups with and without neuropathy.

Conclusion

Our results suggest that MTHFR 677 variant confer risk for diabetic neuropathy among Iranian patients with type 2 diabetes.  相似文献   

7.

Background

The removal of the olfactory bulbs has been attributed to behavioral changes and neuroplasticity manifesting themselves among others like increases in brain neurotrophin expression and neurogenesis. Earlier data presented that EMD386088, a 5-HT6 receptor partial agonist, exerts antidepressant-like properties after chronic administration in olfactory bulbectomy (OB) model as was it compared with amitriptyline (AMI). The aim of this study was to compare acute and chronic biochemical effects of EMD386088, administered in its antidepressant active (2.5 mg/kg) and non-active (1.25 mg/kg) doses, found in the open field test in OB rats, with those of AMI (10 mg/kg). The levels of 5-HT6 receptor protein and selected neurotrophins in prefrontal cortex (PFC) and hippocampus (Hp) of rats have been examined.

Methods

5-HT6 receptor protein and selected neurotrophins: brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB), the product of the immediate early gene c-fos (cFos) protein levels were assessed using a Western blot analysis in PFC and Hp of bulbectomized rats after acute or chronic (14-day) EMD386088 or AMI intraperitoneal (ip) treatment.

Results

The acute treatment with EMD386088 caused significant increases in CREB and BDNF protein levels in PFC, and an increase in BDNF in Hp of OB rats, while AMI injection decreased CREB and did not change BDNF levels. After the chronic administration of EMD386088, the increasing levels of BDNF and CREB were still observed in PFC and Hp.

Conclusions

The antidepressant-like effect of EMD386088 may be associated with the neuroplasticity activation in PFC and Hp in rats.  相似文献   

8.

Background

Aging is one of the most important inevitable risk factors of Alzheimer disease (AD). Oxidative stress plays a critical role in the process of aging. Curcumin has been proposed to improve neural damage, especially neurodegenerative injury, through its antioxidant and anti-inflammatory properties. Therefore, we investigated the effects of curcumin on acrolein-induced AD-like pathologies in HT22 cells.

Methods

HT22 murine hippocampal neuronal cells were treated with 25 μM acrolein for 24 h with or without pre-treating with curcumin at the selected optimum concentration (5 μg/mL) for 30 min. Cell viability and apoptosis were measured by CCK8 assay and flow cytometric analysis. Levels of glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) were detected by a GSH assay kit or commercial assay kits, respectively. Alterations in the expression of BDNF/TrkB and key enzymes involved in amyloid precursor protein (APP) metabolism were assessed by western blotting.

Results

Data showed that curcumin significantly reversed acrolein-induced oxidative stress indicated by depletion of GSH and SOD, and elevation of MDA. The findings also suggested curcumin’s potential in protecting HT22 cells against acrolein through regulating the BDNF/TrkB signaling. In addition, acrolein-induced reduction in A-disintegrin and metalloprotease, and the increase of amyloid precursor protein, β-secretase, and receptor for advanced glycation end products were reversed either, and most of them were nearly restored to the control levels by curcumin.

Conclusion

These findings demonstrate the protective effects of curcumin on acrolein-induced neurotoxicity in vitro, which further suggests its potential role in the treatment of AD.  相似文献   

9.

Background

Recent evidence suggests that the mitogen activated protein kinase (MAPK)-associated signaling pathway in the frontal cortical areas demonstrates abnormal activity in cases of schizophrenia. Moreover, schizophrenia patients often display alterations in the regional cellular energy metabolism and blood flow of the brain; these are shown to parallel changes in angiogenesis primarily mediated by vascular endothelial growth factor (VEGF).

Methods

The present study examines the differential effects of time-dependent treatment with haloperidol, olanzapine and amisulpride (20 μM) on VEGF and MAPK mRNA expression and VEGF level, using the T98 cell line as an example of nerve cells. For the purposes of comparison, the effect of neuroprotective pituitary adenylate cyclase-activating polypeptide (PACAP) on the expression of VEGF mRNA and secretion were also evaluated in this cell model.

Results

RT-PCR analysis revealed that all the tested neuroleptics increased VEGF mRNA expression after 72-h incubation; however, only haloperidol and olanzapine also increased the level of VEGF detected by ELISA, and they demonstrated significantly stronger effects than PACAP. Haloperidol and olanzapine, but not amisulpride, decreased MAPK14 mRNA expression in T98G cells after 72-h incubation.

Conclusion

The obtained results suggest that haloperidol and olanzapine can trigger the MAPK and VEGF signaling pathway, which may contribute to their neuroprotective mechanism of action.  相似文献   

10.

Background

Parkinson’s disease (PD) is the most widespread motor-affecting disease affecting majorly middle- and late age population. Thus, in the current study, we intended to explore the neuroprotective effect of protodioscin (Proto) against 6-hydroxydopamine (6-OHDA)-induced PD rat model.

Methods

After induction of PD with the injection of 6-OHDA, the different dose of Proto was administered for the duration of experimental protocol (2 months). We have scrutinized the consequence of Proto on the cognitive behaviours via Moris water maze (MWM), and recognition of novel objects and its location tasks. The effect of Proto was also investigated on the expression of Nrf2 in human neuroblastoma SHSY5Y cells via western blot analysis.

Results

The results showed significant decrease in travelled distance as compared by the lesion treated group. Further significant difference was revealed in the latency time to detect the platform that is visible and it confirmed that, there were no noteworthy dissimilarity was observed in the visual and motor function ability. The result also suggests that, the activation of Nrf2 is the possible mechanism of neuroprotection of Proto against PD.

Conclusion

As a concluding remark, the present study confirmed the neuroprotective role of Proto against PD both in in vitro and in vivo models.  相似文献   

11.

Background

Previously, we have demonstrated that kynurenic acid (KYNA), an endogenous metabolite of tryptophan formed along kynurenine pathway, is present in synovial fluid of rheumatoid arthritis (RA) and osteoarthritis (OA) patients. In this study, the goal was to investigate the presence of quinaldic acid (QUDA), a putative metabolite of KYNA, in synovial fluid of RA and OA patients.

Methods

The effect of QUDA on proliferation and motility of synovial fibroblasts and its interaction with KYNA were determined in vitro. The study was conducted on synovial fluid obtained from 38 patients with RA and 15 patients with OA. QUDA was identified and quantified using the gas chromatography–mass spectrometry (GC–MS) method. In vitro experiments were conducted on rabbit synoviocyte cell line HIG-82.

Results

Presence of QUDA was detected in all 53 samples of synovial fluid. The concentration of QUDA in synovial fluid obtained from patients with RA was 28.6?±?14.9?pmol/ml, which was lower in comparison with OA 42.3?±?10.0?pmol/ml. QUDA content positively correlated with the number of tender joints and negatively with the total cell counts determined in synovial fluid of RA patients. It did not correlate with KYNA content. QUDA reduced both proliferation and motility of synoviocytes in a dose-dependent manner. The enhancement of antiproliferative action of QUDA by KYNA was evidenced.

Conclusions

Data show a local deficit of QUDA in RA patients and suggest its potential role as an endogenous substance controlling synoviocyte viability.  相似文献   

12.

Background

The objective of this study was to evaluate creatine as an anti-nociceptive compound in an animal model of thermal and inflammatory pain. Creatine has the structural potential to interact with acid-sensing ion channels (ASIC), which have been involved in pain sensation modulation. The hypothesis evaluated in this study was that creatine will interact with ASICs leading to decreased nociception.

Methods

Male and female C57BL/6J mice were fed with either a control diet or the control diet supplemented with creatine (6.25?g/kg diet). After one week on the diet, the mice were tested for thermal hyperalgesia and inflammatory pain response.

Results

The latency to withdraw the tail during the thermal hyperalgesia test was unaffected by sex or diet. During the formalin test, males and females responded differently to the stimulus, and the female mice supplemented with creatine seemed to recover faster than the controls. To determine whether ASICs mediate the action of creatine, GMQ, an ASIC3 agonist, was injected in one paw and pain response was quantified. Females responded more strongly to GMQ injections, and all mice fed creatine had a decreased response to GMQ.

Conclusions

These preliminary data suggest a potential effect of creatine on inflammation-based nociception that may be mediated via ASIC3. While preliminary, this study warrants further research on the potential of creatine as an analgesic and can serve as a stepping stone for the development of ASIC-based therapeutics.  相似文献   

13.

Background

The most common headache associated with epilepsy occurs after seizure activity and is called a postictal headache. Therefore, the objective of this study was to investigate the effects of low and high doses acetylsalicylic acid (aspirin) on a penicillin-induced experimental epilepsy model.

Methods

Adult male Wistar rats (n?=?28, weighing 220?±?40?g) were used in the experiments. The rats were divided into four groups as Control, Penicillin, Aspirin 150?mg/kg, Aspirin 500?mg/kg. Seizure activity was triggered by an intracortical injection of penicillin G potassium (500?IU/2.5?μl) into the sensory motor cortex. An electrocorticogram was recorded by using conductive screw electrodes. Aspirin at the doses of 500?mg/kg and 150?mg/kg was given intraperitoneally (ip) 30?min after penicillin administration.

Results

Anticonvulsant activity appeared at the 30th and 40th min after an intracortically administered injection of penicillin in the groups given aspirin doses of 500?mg/kg (ip) and 150?mg/kg (ip) respectively. The amplitude of epileptiform activity at both doses of aspirin decreased but the difference was not statistically significant.

Conclusions

The results of the present study suggest that low and high doses of aspirin may decrease epileptiform activity in penicillin-induced epilepsy. Aspirin might be suggested for headache associated with epilepsy.  相似文献   

14.

Background

Low effectiveness of anti-melanoma therapies makes it necessary to search for new drugs that could improve or replace the standard chemotherapy. Fluoroquinolones are a group of synthetic antibiotics, used in the treatment of wide range of bacterial infections. Moreover, this class of antibiotics has shown promising anti-tumor activity in several cancer cell lines. The aim of this study was to examine the effect of ciprofloxacin on cell viability, apoptosis and cell cycle distribution in COLO829 melanoma cells.

Methods

Cell viability was evaluated by the WST-1 assay. Cell cycle distribution and apoptosis in cells exposed to ciprofloxacin was analyzed by the use of fluorescence image cytometer NucleoCounter NC-3000.

Results

Ciprofloxacin decreased the cell viability in a dose- and time-dependent manner. For COLO829 cells treated with ciprofloxacin for 24?h, 48?h and 72?h the values of IC50 were found to be 0.74?mM, 0.17?mM and 0.10?mM, respectively. The oligonucleosomal DNA fragmentation was observed when the cells were exposed to ciprofloxacin in concentration of 1.0?mM for 48?h and 72?h. At lower ciprofloxacin concentrations (0.01?mM and 0.1?mM) cells were arrested in S-phase suggesting a mechanism related to topoisomerase II inhibition. Moreover, it was demonstrated that ciprofloxacin induced apoptosis as a result of mitochondrial membrane breakdown.

Conclusions

The obtained results for COLO829 melanoma cells were compared with data for normal dark pigmented melanocytes and the use of ciprofloxacin as a potential anticancer drug for the treatment of melanoma in vivo was considered.  相似文献   

15.

Background

The most frequent type of renal cell carcinoma is called clear-cell renal cell carcinoma (ccRCC) which is associated with a poor prognosis. It has been observed that miR-137 is aberrantly expressed in many different kinds of human malignancies including ccRCC. This research aims to examine the role of miR-137 in ccRCC.

Methods

Quantitative RT-PCR (qRT-PCR) was applied to measure miR-137 expression in ccRCC and adjacent noncancerous tissue. Gene expression was determined by western blot. Cell Counting Kit-8 (CCK-8) assay, flow cytometry and Transwell assay were used to determine the effects of miR-137 on cell growth, apoptosis and invasion, respectively. Moreover, xenograft and pulmonary metastasis animal models were established to investigate the role of miR-137 in vivo.

Results

Our findings show that there was significant downregulation of miR-137 in ccRCC tissue relative to corresponding non-cancerous tissue. Ectopic miR-137 expression in ccRCC cells led to suppression of cell growth and invasion, as well as apoptosis induction. In contrast, knockdown of miR-137 enhances proliferation and invasion, inhibits apoptosis. It also confirms that miR-137 plays a tumor supressor role in vivo. Mechanically, miR-137 directly targets the 3′-UTR of RLIP76 which is an established oncogene in ccRCC.

Conclusion

MiR-137 serves as a tumor suppressor, which can be considered a potential therapeutic target in ccRCC.  相似文献   

16.

Background

Tauopathies are a class of neurodegenerative illnesses associated with the aberrant accumulation of the tau protein in the brain. The best known out of these diseases is Alzheimer’s disease, a disorder where the microtubule associated tau protein becomes hyperphosphorylated (which lowers its binding affinity to microtubules) and accumulates inside neurons in the form of tangles. In this study, we attempt to find out whether brain ischemia may play an important role in tau protein gene alterations.

Methods

We have investigated the relationship between hippocampal ischemia and Alzheimer’s disease by means of a transient 10-min global brain ischemia in rats and determining the effect on Alzheimer’s disease tau protein gene expression during 2, 7 and 30?days post injury.

Results

We found the significant overexpression of tau protein gene on the 2nd day, but on day’s 7 and 30 post-ischemia there a significant opposite tendency was observed.

Conclusion

The obtained results offer a novel insight into tau protein gene in regulating delayed neuronal death in the ischemic hippocampus. Finally, these findings further elucidate the long-term impact of brain ischemia on Alzheimer’s disease development.  相似文献   

17.

Background

Accumulating data suggest an important role of disturbed kynurenine pathway and altered glutamatergic transmission in the pathogenesis of depression. In here, we focused on detailed analyses of kynurenic acid (KYNA) status in vivo following single and 14-day administration of selected tricyclic antidepressant drugs (TCAs) and serotonin selective reuptake inhibitors (SSRIs) in rats.

Methods

The effect of antidepressants on serum and brain KYNA levels, as well as on the activity of kynurenine aminotransferases (KATs I and II) and expression of Kat1 and Kat2 genes mRNA was studied in three brain regions.

Results

Chronic, but not acute, application of antidepressants invariably stimulated KYNA production in hippocampus (amitriptyline, imipramine, fluoxetine and citalopram) and sporadically in cortex (amitriptyline, fluoxetine), whereas no change in KYNA level was observed in striatum. Cortical and hippocampal expression of Kat1 and Kat2 genes was increased after chronic, but not single administration of all studied antidepressants. The activity of semi-purified enzymatic proteins, KAT I and II, was not paralleling changes of Kat1 and Kat2 genes.

Conclusion

Our data indicate that prolonged administration of antidepressants targets expression of KYNA biosynthetic enzymes. Furthermore, post-translational modulation of KATs seems to play an important role in tuning of KYNA synthesis within brain structures. We suggest that consistent increase of hippocampal KYNA levels may represent hallmark of antidepressant activity. Mechanisms governing region- and drug-selective action of antidepressants require further investigations.  相似文献   

18.

Background

Doxorubicin is an effective, potent and commonly used anthracycline-related anticancer drug; however, cardiotoxicity compromises its therapeutic potential. Apremilast, a novel phosphodiesterase type 4-inhibitor, reported to have anti-inflammatory effects and modulating many inflammatory mediators.

Methods

The present study investigated the influence of apremilast against doxorubicin-induced cardiotoxicity in male Wistar rats. A total, 24 animals were divided into four groups of six animal each. Group 1, served as control and received normal saline. Group 2 animals, received doxorubicin (20 mg kg?1, ip). Group 3 and 4, treatment group, received doxorubicin (20 mg kg?1, ip) with the same schedule as group-2, plus apremilast (10 and 20 mg kg?1 day?1, po) respectively. Oxidative stress, caspase-3 enzyme activity, gene expression and protein expression were tested.

Results

The results of the present study demonstrated that administration of apremilast reversed doxorubicin-induced cardiotoxicity.

Conclusion

These findings suggested that apremilast can attenuate doxorubicin-induced cardiotoxicity via inhibition of oxidative stress mediated activation of nuclear factor-kappa B signaling pathways.  相似文献   

19.

Background

The effects of farnesoid X receptor (FXR) antagonists on plasma lipid profile in mice have not been investigated thus far. The aim of this study was to investigate the antidyslipidemic effects of an FXR antagonist in dyslipidemic mice, and to clarify the mechanisms underlying the lipid modulatory effect.

Methods

Compound-T0 (1–100?mg/kg) was orally administered to C57BL/6J mice fed a Western-type diet or low-density lipoprotein receptor knockout (LDLR-/-) mice fed a Western-type diet for a week, and plasma lipid levels were investigated. Effects on lipid clearance, hepatic triglyceride secretion after Triton WR-1339 challenge, and intestinal lipid absorption were investigated after multiple dosing.

Results

Compound-T0 significantly increased plasma level of non-high-density lipoprotein cholesterol in both C57BL/6 and LDLR-/- mice; in addition, it significantly increased plasma triglyceride level in LDLR-/- mice. Compound-T0 failed to enhance the clearance of 3,3′-dioctadecylindocarbocyanine (DiI)-labeled LDL in C57BL/6J mice. Although compound-T0 did not affect triglyceride clearance and hepatic triglyceride secretion, it significantly increased intestinal [3H]cholesterol absorption in LDLR-/- mice.

Conclusions

It was found that the FXR antagonist, compound-T0 exacerbated dyslipidemia in mice because it enhanced intestinal lipid absorption via acceleration of bile acid excretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号