首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic (As), a class one carcinogen, reflects a disastrous environmental threat due to its presence in each and every compartment of the environment. The high toxicity of As is notably present in its inorganic forms. Irrigation with As contaminated groundwater in rice fields increases As concentration in topsoil and its bioavailability for rice crops. However, most of the As in paddy field topsoils is present as As(III) form, which is predominant in rice grain. According to the OECD-FAO, rice is the second most extensively cultivated cereal throughout the world. This cereal is a staple food for a large number of populations in most of the developing countries in sub-Saharan Africa, Latin America, South and South-east Asia. Rice consumption is one of the major causes of chronic As diseases including cancer for Asian populations. Thus, this review provides an overview concerning the conditions involved in soil that leads to As entrance into rice crops, phytotoxicity and metabolism of As in rice plants. Moreover, the investigations of the As uptake in raw rice grain are compiled, and the As biotransfer into the human diet is focused. The As uptake by rice crop represents an important pathway of As exposure in countries with high rice and rice-based food consumption because of its high (more than the hygienic level) As levels found in edible plant part for livestock and humans.  相似文献   

2.
Arsenic burden of cooked rice: Traditional and modern methods.   总被引:1,自引:0,他引:1  
Arsenic contamination of rice by irrigation with contaminated groundwater and secondarily increased soil arsenic compounds the arsenic burden of populations dependent on subsistence rice-diets. The arsenic concentration of cooked rice is known to increase with the arsenic concentration of the cooking water but the effects of cooking methods have not been defined. We tested the three major rice cooking procedures followed globally. Using low-arsenic water (As < 3 microg/L), the traditional method of the Indian subcontinent (wash until clear; cook with rice: water::1:6; discard excess water) removed up to 57% of the arsenic from rice containing arsenic 203-540 microg/kg. Approximately half of the arsenic was lost in the wash water, half in the discard water. A simple inexpensive rice cooker based on this method has been designed and used for this purpose. Despite the use of low-arsenic water, the contemporary method of cooking unwashed rice at rice:water::1:1.5-2.0 until no discard water remains did not modify the arsenic content. Preliminary washing until clear did remove 28% of the rice arsenic. The results were not influenced by water source (tubewell, dug well, pond or rain); cooking vessel (aluminium, steel, glass or earthenware); or the absolute weight of rice or volume of water. The use of low-As water in the traditional preparation of arsenic contaminated rice can reduce the ingested burden of arsenic.  相似文献   

3.
An investigation of total arsenic in food composites, collected from the villagers, was carried out in arsenic-affected areas of the Murshidabad district, West Bengal where the agricultural system is mostly groundwater dependent. The shallow, large-diameter tubewells installed for agricultural irrigation contain an appreciable amount of arsenic (mean 0.085 mg/l, n=6). Even the soil is arsenic-contaminated (mean 11.35 mg/kg, n=36), so some arsenic can be expected in the food chain from crops cultivated in this area. The results revealed that the individual food composite and food groups containing the highest mean arsenic concentrations (microg/kg) are potato skin (292.62 and 104), leaf of vegetables (212.34 and 294.67), arum leaf (331 and 341), papaya (196.50 and 373), rice (226.18 and 245.39), wheat (7 and 362), cumin (47.86 and 209.75), turmeric powder (297.33 and 280.9), cereals and bakery goods (156.37 and 294.47), vegetables (91.73 and 123.22), spices (92.22 and 207.60) and miscellaneous items (138.37 and 137.80) for the Jalangi and Domkal blocks, respectively. Arsenic is absorbed by the skin of most of the vegetables. The arsenic concentration in fleshy vegetable material is low (mean 2.72 microg/kg, n=45). Higher levels of arsenic were observed in cooked items compared with raw. Daily dietary intakes of arsenic (microg) from the foodstuffs for adults are 171.20 and 189.13 and for children are 91.89 and 101.63 in the Jalangi and Domkal blocks, respectively.  相似文献   

4.
The aim of this paper is to estimate the levels of arsenic (As) ingestion through cooked foods consumed in an arsenic endemic area and the assessment of their dietary intake of As. The study was conducted in two villages: a population chronically exposed to a high concentration of As via drinking water (410+/-35 microg/l) and to a low-exposure group (12+/-4 microg/l). A 24-h dietary recall questionnaire was applied to about 25 adult participants in each community. Samples of cooked food, ready for intake, were collected separately from each family's participants. To obtain the As estimate for each food item consumed, the mean quantity of food ingested in grams (wet weight) was calculated and the concentrations of total arsenic (TAs) in each cooked food were determined. The estimations of TAs intake were based on the sum over mean of As ingested from each food item consumed during the 24-h period for each participant. For the estimation of total daily As intake, we summed the mean obtained from food, plain water and hot beverage intakes. The TAs average intakes calculated for low-As-exposure group were 0.94 and 0.76 microg/kg body weight/day, for both summer and winter exposure scenarios, respectively. These values are 44.7 and 36% of the provisional tolerable daily intake (PTDI) for inorganic arsenic (2.14 microg/kg body weight/day), established by the World Health Organization (WHO) in 1989. The WHO reference value was obtained on a weekly basis intake estimation assuming an average body weight of 68 kg in adults. In contrast, for the high-exposure group the TAs average intakes were 16.6 and 12.3 microg/kg body weight/day for summer and winter, respectively. Ingestion via cooked food represented 32.5 and 43.9% of the total daily As intake in the high-exposure group; for summer and winter, respectively. None the less, the bioavailability of As through food can be different than via drinking water.  相似文献   

5.
A market basket survey of inorganic arsenic in food.   总被引:12,自引:0,他引:12  
Dietary arsenic intake estimates based on surveys of total arsenic concentrations appear to be dominated by intake of the relatively non-toxic, organic arsenic forms found in seafood. Concentrations of inorganic arsenic in food have not been not well characterized. Accurate dietary intake estimates for inorganic arsenic are needed to support studies of arsenic's status as an essential nutrient, and to establish background levels of exposure to inorganic arsenic. In the market basket survey reported here, 40 commodities anticipated to provide at least 90% of dietary inorganic arsenic intake were identified. Four samples of each commodity were collected. Total arsenic was analysed using an NaOH digestion and inductively coupled plasma-mass spectrometry. Separate aliquots were analysed for arsenic species using an HCl digestion and hydride atomic absorption spectroscopy. Consistent with earlier studies, total arsenic concentrations (all concentrations reported as elemental arsenic per tissue wet weight) were highest in the seafoods sampled (ranging from 160 ng/g in freshwater fish to 2360 ng/g in saltwater fish). In contrast, average inorganic arsenic in seafood ranged from less than 1 ng/g to 2 ng/g. The highest inorganic arsenic values were found in raw rice (74 ng/g), followed by flour (11 ng/g), grape juice (9 ng/g) and cooked spinach (6 ng/g). Thus, grains and produce are expected to be significant contributors to dietary inorganic arsenic intake.  相似文献   

6.
This study has measured the content of total and inorganic forms of arsenic in seaweed available on retail sale for consumption, to provide data for dietary exposure estimates and to support advice to consumers. A total of 31 samples covering five varieties of seaweed were collected from various retail outlets across London and the internet. All of the samples were purchased as dried product. For four of the five varieties, soaking was advised prior to consumption. The recommended method of preparation for each individual sample was followed, and total and inorganic arsenic were analysed both before and after preparation. The arsenic remaining in the water used for soaking was also measured. Arsenic was detected in all samples with total arsenic at concentrations ranging from 18 to 124 mg/kg. Inorganic arsenic, which can cause liver cancer, was only found in the nine samples of hijiki seaweed that were analysed, at concentrations in the range 67-96 mg/kg. Other types of seaweed were all found to contain less than 0.3mg/kg inorganic arsenic, which was the limit of detection for the method used. Since consumption of hijiki seaweed could significantly increase dietary exposure to inorganic arsenic, the UK Food Standards Agency (FSA) issued advice to consumers to avoid eating it.  相似文献   

7.
The understanding of the biomethylation process of arsenic is essential to uncover the mechanisms of arsenic toxicity. This work analyzes the time course of arsenic species in the brain and liver of adult mice, after a single oral administration of three arsenate doses [2.5, 5.0 and 10 mg As(V)/kg]. Quantification of arsenic species was performed by means of liquid chromatography coupled to atomic fluorescence 2, 5, 8, 12 and 24 h after administration. The results show that 2 h after arsenate administration inorganic arsenic arrives to the liver and its concentration diminishes gradually until becoming non-detectable at 12 h. Arsenic takes longer to appear in the brain and it is present only as dimethyl arsinic acid. Since arsenic concentration decreases in liver while it increases in the brain, this suggests that the arsenic metabolite reaches the brain after formation in the liver. Importantly, the fact that dimethyl arsinic acid is no longer present after 24 h suggests the existence of a mechanism to clear this metabolite from brain tissue.  相似文献   

8.
Inorganic arsenic, a human carcinogen, can be found in the environment and food. In the first Hong Kong Total Diet Study, the dietary exposure of the Hong Kong people, including various age-gender subgroups, to inorganic arsenic was estimated for assessing the associated health risk. Food samples, which represented the Hong Kong people’s diet, were collected and prepared “as consumed” for analysis. Concentrations of inorganic arsenic, as sum of arsenite (As(III)) and arsenate (As(V)) were determined in 600 composite samples by using inductively coupled plasma mass spectrometry. The dietary exposures were estimated by combining the analytical results with the local food consumption data of the adult population. The mean and 95th percentile of inorganic arsenic exposures of the Hong Kong people were 0.22 and 0.38 μg/kg body weight (bw)/day, respectively. Among the 12 age-gender subgroups, the respective exposures ranged from 0.19 to 0.26 μg/kg bw/day and from 0.33 to 0.46 μg/kg bw/day. The main food category that contributed inorganic arsenic was “cereals and their products” (53.5% of the total exposure), particularly rice. Having considered the carcinogenic risk of inorganic arsenic to humans, it is suggested that efforts should be made to reduce the inorganic arsenic exposure of the Hong Kong population.  相似文献   

9.
The element arsenic is a carcinogen and toxic for humans and other living organisms. Some seaweeds contain high amounts of inorganic arsenic (iAs). In particular, Hijikia fusiforme has a high iAs content of approximately 50%. In this study, we examined the absorption, metabolism, excretion, and accumulation of arsenic compounds in mice after the administration of Hijiki. The single-dose experiment, wherein a single dose of cooked Hijiki was administered to the mice, revealed that the urinary and fecal excretion of arsenic compounds was the highest on the first day of dosing, and it became clear that 66–92% of arsenic was excreted within 3 days after administration of the first dose. The repeated-dose experiment, wherein repeated doses of cooked or dried Hijiki were adminstered to the mice, arsenic was detected in all the tissues, but only approximately 5% of the administered dose of arsenic was detected as residual arsenic. These results suggest that the arsenic present in cooked Hijiki is accumulated in very small amounts in mice.  相似文献   

10.
Although inorganic arsenate (iAsV) and arsenite (iAsIII) are metabolized in liver and excreted into bile and urine, the metabolites in the bile after the oral intake of iAs remain unclear. Male Sprague-Dawley rats were orally (po) or intravenously (iv) exposed to iAs and methylated arsenics, and the arsenic speciation in the urine and bile was analyzed by high performance liquid chromatography-inductively coupled argon plasma mass spectrometry. Arsenic caused induction of multidrug resistance-associated protein 2 (MRP2), and changes of glutathione (GSH) levels in the liver and bile were also determined. The metabolic speciation studies revealed that arsenic was excreted into bile in the methylarsenic-diglutathione (MADG) and/or dimethylarsenic acid (DMAV) forms in iAsIII- or iAsV-po rats, but that MADG and arsenic-triglutathione (ATG) are the main forms excreted into bile both in iAsIII- and iAsV-iv rats. In MADG-po rats, the MADG was excreted into bile in the MADG and DMAV forms. Monomethylarsonic acid (MMAV)- and DMAV-iv rats did not excrete significant amounts of either MMAV or DMAV into bile and mostly excreted into urine in the unchanged chemical forms. Taken together, the DMAV detected in the bile is mostly supposed to be the dissociation of dimethylarsenic-glutathione (DMAG). Urinary arsenic speciation showed that arsenic metabolized to 43% methylated DMAV, 47% unmethylated iAsIII, and 10% iAsV in iAsIII-iv rats, whereas only 3% methylated DMAV, 87% unmethylated iAsV, and 10% iAsIII were detected in iAsV-iv rats. Arsenic was accumulated dose dependently, and arsenic concentration was significantly higher in the iAsIII-po rat liver than in the iAsV-po rat liver. GSH levels in the bile were decreased by relatively higher doses of iAsV-po, but significantly increased by iAsIII- or iAsV-iv. iAs-exposure increased the expression of MRP2 in the liver. Pretreatment with buthionine sulfoximine predominantly inhibited arsenic excretion into bile in iAs-iv rats. In conclusion, our data demonstrated that biliary and urinary arsenic excretion and speciation are affected by the route, dose, and chemical forms of arsenical administration, and GSH plays a key role in arsenic metabolism. We are also first to show that DMAV that probably originated from DMAG is excreted into the bile in iAs-po rats.  相似文献   

11.
Arsenic species were determined in rice and bulgur samples that were collected from 50 participants who also supplied exposure related information through a questionnaire survey. Speciation analysis was conducted using an HPLC–ICP-MS system. Ingestion exposure to arsenic and associated health risks were assessed by combining the concentration and questionnaire data both for individual participants and the subject population. Inorganic arsenic dominated both in rice and bulgur but concentrations were about an order of magnitude higher in rice (160 ± 38 ng/g) than in bulgur. Because participants also consumed more rice than bulgur, exposures were significantly higher for rice resulting in carcinogenic risks above acceptable level for 53% and 93% of the participants when the in-effect and the proposed potencies were used, respectively, compared to 0% and 5% for bulgur. An inorganic arsenic standard for rice would be useful to lower the risks while public awareness about the relation between excessive rice consumption and health risks is built, and bulgur consumption is promoted.  相似文献   

12.
To evaluate the main intake source of arsenic by the villagers from arsenic-affected families in Jalangi and Domkol blocks in Mushidabad district, West Bengal-India, we determined the concentrations of arsenic in tube-well water and in food composites, mainly including vegetables and cereals collected from the surveyed families which were cultivated in that region. The daily dietary intakes of arsenic by the villagers were estimated and the excretions of arsenic through urine and hair were determined. The arsenic concentrations in hair and urine of the studied population living in mild (2.78 microg/L), moderate (30.7 microg/L) and high (118 microg/L) arsenic-affected families were 133, 1,391 and 4,713 microg/kg and 43.1, 244 and 336 microg/L, respectively. The linear regressions show good correlations between arsenic concentrations in water vs hair (r(2)=0.928, p<0.001) and water vs urine (r(2)=0.464, p<0.01). Approximately 29.4%, 58.1% and 62.1% of adult population from mild, moderate and high arsenic-affected families were suffering from arsenical skin manifestations. The mean arsenic concentrations of food composites (vegetables and cereals) in high arsenic-affected families are not significantly different from mild arsenic-affected families. The daily dietary intakes of arsenic from water and food composites of the studied population, living in high, moderate and mild arsenic-affected families were 568, 228 and 137 microg, respectively. The linear regressions show good correlations between arsenic concentrations in hair vs daily dietary intake (r(2)=0.452, p<0.001) and urine vs daily dietary intake (r(2)=0.134, p<0.001). The water for drinking contributed 6.07%, 26.7% and 58.1% of total arsenic in our study from mild, moderate and high arsenic-affected families. The result suggested that the contaminated water from high arsenic-affected families should be the main source for intake of arsenic. On contrary, the contribution of arsenic-contaminated food composites from mild and moderate arsenic-affected families might be the main source for intake of arsenic. The Food and Agriculture Organization/World Health Organization (FAO/WHO) provisional tolerable weekly intake (PTWI) values of arsenic in our study were 3.32, 5.75 and 12.9 microg/kg body weight/day from mild, moderate and high arsenic-affected families, respectively, which is higher than the recommended PTWI value of arsenic (2.1 microg/kg body weight/day).  相似文献   

13.
the fate of arsenite was studied in rabbits injected i.p. with 1 μg As/kg body wt as 74As labelled AsO2?. Eight tissues plus plasma and urine were analyzed for 74As content at different times. Arsenic was rapidly metabolized and poorly retained in the tissues. The main metabolite present in urine and plasma was dimethylarsinic acid. Sixty percent of the dose was excreted via urine and 6% with feces during the first day. In plasma arsenic was present mainly in a diffusible form, showing a very poor binding afffinity to plasma proteins. Chromatographic separations and membrane ultrafiltrations showed that in liver and kidney cytosols, arsenic was significantly associated to proteins. the diffusible fraction disappeared within 48 h. The fraction of arsenic bound to proteins was suggested to be inorganic arsenic whereas the methylation process was closly related to the elimination and the detoxification of inorganic arsenic.  相似文献   

14.
Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (As(III)) and arsenate (As(V)), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V)) were determined. Primary methylation index [PMI = MMA(V)/(As(III) + As(V))] and secondary methylation index (SMI = DMA(V)/MMA(V)) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMA(V). The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P < 0.05, trend test); and for PMI < or = 1.77 and SMI > 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI < or = 6.93, and PMI < or = 1.77 and SMI < or = 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P < 0.05, trend test). It was concluded that individuals with a higher arsenic exposure and a lower capacity to methylate inorganic arsenic to DMA(V) have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan.  相似文献   

15.
Dietary arsenic exposure and chronic health outcomes are of interest, due in part to increased awareness and data available on inorganic arsenic levels in some foods. Recent concerns regarding levels of inorganic arsenic, the primary form of arsenic of human health concern, in foods are based on extrapolation from adverse health effects observed at high levels of inorganic arsenic exposure; the potential for the occurrence of these health effects from lower levels of dietary inorganic arsenic exposure has not been established. In this review, longitudinal cohort studies are evaluated for their utility in estimating dietary inorganic arsenic exposure and quantifying statistically reliable associations with health outcomes. The primary limiting factor in longitudinal studies is incomplete data on inorganic arsenic levels in foods combined with the aggregation of consumption of foods with varying arsenic levels into a single category, resulting in exposure misclassification. Longitudinal cohort studies could provide some evidence to evaluate associations of dietary patterns related to inorganic arsenic exposure with risk of arsenic-related diseases. However, currently available data from longitudinal cohort studies limit causal analyses regarding the association between inorganic arsenic exposure and health outcomes. Any conclusions should therefore be viewed with knowledge of the analytical and methodological limitations.  相似文献   

16.
Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (∼8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period.  相似文献   

17.
牛黄解毒片中砷元素分析   总被引:1,自引:0,他引:1  
目的对牛黄解毒片中总砷、可溶性砷、可溶性砷(Ⅲ)和砷(Ⅴ)进行分析,为评价牛黄解毒片的安全性提供依据。方法采用微波消解-原子荧光法测定牛黄解毒片中的总砷含量,50%甲醇浸提-原子荧光法测定可溶性砷,717阴离子交换树脂分离-原子荧光法测定可溶性砷(Ⅲ)和砷(Ⅴ)。结果3种牛黄解毒片制剂中总砷含量为65.72~75.79g/kg,可溶性砷占总砷百分比为0.43%~1.23%,其中可溶性砷(Ⅲ)含量0.19~0.55g/kg,可溶性砷(Ⅴ)含量范围在0.09~0.44g/kg。结论不同的牛黄解毒片中可溶性砷及其中两种价态砷的含量差异较大,因此有必要对牛黄解毒片中砷的含量进行质量控制。  相似文献   

18.
Arsenic is a potent human carcinogen of skin, lung, and urinary bladder. Freshwater clam Corbicula fluminea is a commercially important native species in Taiwan. C. fluminea is also a suitable biomonitoring test organism. Little is known, however, about the actual effects of arsenic on C. fluminea. The objectives of this study were to provide information on the acute toxicity and bioaccumulation kinetics of arsenic in C. fluminea. We carried out a 14-day exposure experiment to obtain bioaccumulation parameters. Uptake was very rapid when C. fluminea was first exposed and then slightly decayed during the uptake phase of the experiment and an uptake rate constant of 1.718 +/- 6.70 (mean +/- SE) mL g(-1) d(-1) was estimated. The elimination of arsenic from C. fluminea obeyed first-order depuration kinetics (r(2) = 0.85, p < 0.05) with a calculated half-life of 6.80 days. The derived bioaccumulation factor of 16.84 suggests that arsenic has a high potential for bioaccumulation in C. fluminea. This had important implications for dietary exposure of arsenic to humans who eat contaminated clams, because the soft tissue usually constitutes the majority of tissue consumed. The 96-h LC50 value was estimated to be 20.74 (95% CI: 11.74-30.79) mg L(-1) obtained from a 7-day acute toxicity bioassay. We also kinetically linked an acute toxicity model and a Hill sigmoid model to reconstruct an internal effect concentration based dose-response profile to assess the effect of soft tissue arsenic burden on the C. fluminea mortality. This result could be used to support the establishment of an ecological risk assessment to prevent possible ecosystem and human health consequences.  相似文献   

19.
The cytotoxicity of trivalent and pentavalent inorganic arsenic salts was determined in mouse fibroblasts in vitro. Concentrations of As (III) in the M range led to a reduction of proliferation and viability with a concomitant increase in LDH release and stimulation of lactic acid production. Similar effects were noted with approximately 10-fold greater molar concentrations of As(V). Cells pretreated with a low As(III) concentration are less sensitive to toxic doses of As(III) or As(V).Uptake of As(III) by the fibroblasts is greater than that of As(V). Both forms of inorganic arsenic are converted intracellularly to monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are then released into the culture medium. In As-pretreated cells, which are more resistant to As toxicity, biotransformation of inorganic arsenic to MMA and DMA is increased.  相似文献   

20.
Tea is one of the most popular non-alcoholic beverages consumed in the world. Arsenic including species totalling to 47 Chinese tea samples from 18 tea-producing provinces in China were analyzed. By simulating the infusion process, leaching characters, effects of extraction time and temperature on arsenic extraction were investigated. Total amount of arsenic in tea leaf samples was in the range below the detection limit to 4.81 μg/g. Leaching of arsenic was strongly affected by extraction time and temperature. Because arsenic leaching ability by hot water was low and most of the arsenic was left in tea leaf residues after infusion, the concentration of arsenic in tea infusion was low even when some original tea leaf samples contained high level of arsenic. The major species in tea infusion were inorganic arsenic form (arsenite AsIII and arsenate AsV). Compared with the amount of arsenic in infusion, more organic arsenic species were found in the original tea leaf samples. The contents of extractable inorganic arsenic in tea leaf samples were in the range below the detection limit to 226 ng/g. Considering ingestion dose and assuming one person (60 kg body weight) consumes 10 g of Chinese tea per day, the maximum inorganic arsenic contribution from tea infusion is 2.26 μg, which is equal to 0.038 μg/kg/d excluding water contribution. This value only accounts for 1.8% of provisional tolerable weekly intake (PTWI) (2.1 μg/kg/d) recommended by the Food and Agriculture Organization/World Health Organization [FAO/WHO, 1989. Evaluation of certain food additives and contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 776, Geneva, World Health Organization].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号