首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low‐density lipoprotein receptor‐related protein (LRP) 5/6 Wnt co‐receptors, thereby inhibiting Wnt/β‐catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis‐pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost?/?), Lrp5 (Lrp5?/?), or both (Sost?/?;Lrp5?/?) to elucidate the mechanism of action of Sost in vivo. Sost deficiency–induced bone gain was significantly blunted in Sost?/?;Lrp5?/? mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost?/?;Lrp5?/? mice and most bone parameters were elevated relative to wild‐type. To test whether the remaining bone increases in Sost?/?;Lrp5?/? animals depend on Lrp6, we treated wild‐type, Sost?/?, and Sost?/?;Lrp5?/? mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class–mediated Lrp6 signaling reduced cancellous bone mass and density in wild‐type mice. Surprisingly, it reversed the abnormal bone gain in Sost?/? and Sost?/?;Lrp5?/? mice to wild‐type levels irrespective of enhancement or blockage of Wnt3a class‐mediated Lrp6 activity. Thus, whereas Sost deficiency–induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class–induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss‐of‐function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options. © 2014 American Society for Bone and Mineral Research.  相似文献   

2.
Activating mutations of the putative Wnt co‐receptor Lrp5 or inactivating mutations of the secreted molecule Sclerostin cause excessive bone formation in mice and humans. Previous studies have suggested that Sclerostin functions as an Lrp5 antagonist, yet clear in vivo evidence was still missing, and alternative mechanisms have been discussed. Moreover, because osteoblast‐specific inactivation of β‐catenin, the major intracellular mediator of canonical Wnt signaling, primarily affected bone resorption, it remained questionable, whether Sclerostin truly acts as a Wnt signaling antagonist by interacting with Lrp5. In an attempt to address this relevant question, we generated a mouse model (Col1a1‐Sost) with transgenic overexpression of Sclerostin under the control of a 2.3‐kb Col1a1 promoter fragment. These mice displayed the expected low bone mass phenotype as a consequence of reduced bone formation. The Col1a1‐Sost mice were then crossed with two mouse lines carrying different high bone mass mutations of Lrp5 (Lrp5A170V and Lrp5G213V), both of them potentially interfering with Sclerostin binding. Using µCT‐scanning and histomorphometry we found that the anti‐osteoanabolic influence of Sclerostin overexpression was not observed in Lrp5A213V/A213V mice and strongly reduced in Lrp5A170V/A170V mice. As a control we applied the same strategy with mice overexpressing the transmembrane Wnt signaling antagonist Krm2 and found that the anti‐osteoanabolic influence of the Col1a1‐Krm2 transgene was not affected by either of the Lrp5 mutations. Taken together, our data support the concept that Sclerostin inhibits bone formation through Lrp5 interaction, yet their physiological relevance remains to be established. © 2015 American Society for Bone and Mineral Research.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) receptor (CNTFR) expression has been described in osteoblast-like cells, suggesting a role for CNTF in bone metabolism. When bound to CNTF, neuropoietin (NP), or cardiotrophin-like-cytokine (CLC), CNTFR forms a signaling complex with gp130 and the leukemia inhibitory factor receptor, which both play critical roles in bone cell biology. This study aimed to determine the role of CNTFR-signaling cytokines in bone. Immunohistochemistry detected CNTF in osteoblasts, osteocytes, osteoclasts, and proliferating chondrocytes. CNTFR mRNA was detected in primary calvarial osteoblasts and was upregulated during osteoblast differentiation. Treatment of osteoblasts with CNTF or CLC, but not NP, significantly inhibited mineralization and osterix mRNA levels. Twelve-week-old male CNTF −/− mice demonstrated reduced femoral length, cortical thickness, and periosteal circumference; but femoral trabecular bone mineral density (Tb.BMD) and tibial trabecular bone volume (BV/TV) were not significantly different from wild-type, indicating a unique role for CNTF in bone growth in male mice. In contrast, female CNTF −/− femora were of normal width, but femoral Tb.BMD, tibial BV/TV, trabecular number, and trabecular thickness were all increased. Female CNTF −/− tibiae also demonstrated high osteoblast number and mineral apposition rate compared to wild-type littermates, and this was intrinsic to the osteoblast lineage. CNTF is expressed locally in bone and plays a unique role in female mice as an inhibitor of trabecular bone formation and in male mice as a stimulus of cortical growth.  相似文献   

4.
Lrp5 deficiency decreases bone formation and results in low bone mass. This study evaluated the bone anabolic response to intermittent PTH treatment in Lrp5-deficient mice. Our results indicate that Lrp5 is not essential for the stimulatory effect of PTH on cancellous and cortical bone formation. INTRODUCTION: Low-density lipoprotein receptor-related protein 5 (Lrp5), a co-receptor in canonical Wnt signaling, increases osteoblast proliferation, differentiation, and function. The purpose of this study was to use Lrp5-deficient mice to evaluate the potential role of this gene in mediating the bone anabolic effects of PTH. MATERIALS AND METHODS: Adult wildtype (WT, 23 male and 25 female) and Lrp5 knockout (KO, 27 male and 26 female) mice were treated subcutaneously with either vehicle or 80 microg/kg human PTH(1-34) on alternate days for 6 weeks. Femoral BMC and BMD were determined using DXA. Lumbar vertebrae were processed for quantitative bone histomorphometry. Bone architecture was evaluated by microCT. Data were analyzed using a multiway ANOVA. RESULTS: Cancellous and cortical bone mass were decreased with Lrp5 deficiency. Compared with WT mice, cancellous bone volume in the distal femur and the lumbar vertebra in Lrp5 KO mice was 54% and 38% lower, respectively (p<0.0001), whereas femoral cortical thickness was 11% lower in the KO mice (p<0.0001). The decrease in cancellous bone volume in the lumbar vertebrae was associated with a 45% decrease in osteoblast surface (p<0.0001) and a comparable decrease in bone formation rate (p<0.0001). Osteoclast surface, an index of bone resorption, was 24% lower in Lrp5 KO compared with WT mice (p<0.007). Treatment of mice with PTH for 6 weeks resulted in a 59% increase in osteoblast surface (p<0.0001) and a 19% increase in osteoclast surface (p=0.053) in both genotypes, but did not augment cancellous bone volume in either genotype. Femur cortical thickness was 11% higher in PTH-treated mice in comparison with vehicle-treated mice (p<0.0001), regardless of genotype. CONCLUSIONS: Whereas disruption of Lrp5 results in decreased bone mass because of decreased bone formation, Lrp5 does not seem to be essential for the stimulatory effects of PTH on cancellous and cortical bone formation.  相似文献   

5.
The Lrp5 gene is a major determinant of bone mass accrual. It has been demonstrated recently to achieve this function by hampering the synthesis of gut‐derived serotonin, which is a powerful inhibitor of bone formation. In this study we analyzed plasma serotonin levels in patients with a high‐bone‐mass (HBM) phenotype owing to gain‐of‐function mutation of Lrp5 (T253I). A total of 9 HBM patients were compared with 18 sex‐ and age‐matched controls. In HBM patients, the serotonin concentrations in platelet‐poor plasma were significantly lower than in the controls (mean ± SEM: 2.16 ± 0.28 ng/mL versus 3.51 ± 0.49 ng/mL, respectively, p < .05). Our data support the hypothesis that circulating serotonin levels mediate the increased bone mass resulting from gain‐of‐function mutations in Lrp5 in humans. © 2010 American Society for Bone and Mineral Research.  相似文献   

6.
Endostatin, a fragment of collagen XVIII, can inhibit vascular endothelial growth factor (VEGF) signaling. VEGF is known to be crucial for bone development. The aims of this study were to investigate the influences of endostatin on osteoblast behavior in vitro and the roles of collagen XVIII/endostatin on bone development in vivo. For the in vitro experiments, MC3T3-E1 osteoblasts were treated with VEGF-A, 2 μg/ml endostatin, 20 μg/ml endostatin, VEGF-A + 2 μg/ml endostatin, or VEGF-A + 20 μg/ml endostatin. Osteoblast proliferation and matrix mineralization were analyzed. Faxitron, pQCT, and histological analyses were performed on hindleg bones of transgenic mice overexpressing endostatin (ES-tg) and mice lacking collagen XVIII (Col18a1 −/−) to study bone development in vivo. Treatment of cells with endostatin decreased osteoblast proliferation. Moreover, VEGF-A together with endostatin (2 μg/ml) decreased osteoblast proliferation and matrix mineralization. In vivo, Col18a1 −/− and ES-tg mice displayed no differences in bone density or mineral content during bone development, but ES-tg bones grew in length more slowly compared to the controls. The formation of secondary ossification centers was delayed in Col18a1 −/− mice. Immunohistochemistry revealed collagen XVIII in basement membranes of periosteal and bone marrow vessels and at muscle attachment sites. In conclusion, endostatin affects osteoblast behavior in vitro, the effects being boosted by simultaneous treatment with VEGF. In vivo, Col18a1 −/− and ES-tg mice show mild delays in bone development. These changes are transitory and suggest that collagen XVIII/endostatin does not play an indispensable role in skeletal development.  相似文献   

7.
Interferon-inducible transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein whose expression peaks around the early mineralization stage during the osteoblast maturation process. To investigate IFITM5 function, we first sought to identify which proteins interact with IFITM5. Liquid chromatography mass spectrometry revealed that FK506-binding protein 11 (FKBP11) co-immunoprecipitated with IFITM5. FKBP11 is the only protein it was found to interact with in osteoblasts, while IFITM5 interacts with several proteins in fibroblasts. FKBPs are involved in protein folding and immunosuppressant binding, but we could not be sure that IFITM5 participated in these activities when bound to FKBP11. Thus, we generated Ifitm5-deficient mice and analyzed their skeletal phenotypes. The skeletons, especially the long bones, of homozygous mutants (Ifitm5 −/−) were smaller than those of heterozygous mutants (Ifitm5 +/−), although we did not observe any significant differences in bone morphometric parameters. The effect of Ifitm5 deficiency on bone formation was more significant in newborns than in young and adult mice, suggesting that Ifitm5 deficiency might have a greater effect on prenatal bone development. Overall, the effect of Ifitm5 deficiency on bone formation was less than we expected. We hypothesize that this may have resulted from a compensatory mechanism in Ifitm5-deficient mice.  相似文献   

8.
Mice deficient in the chloride channel ClC-7, which is likely involved in acidification of the resorption lacuna, display severe osteopetrosis. To fully characterize the osteopetrotic phenotype, the phenotypes of osteoclasts and osteoblasts were evaluated. ClC-7−/− mice and their corresponding wild-type littermates were killed at 4–5 weeks of age. Biochemical markers of bone resorption (CTX-I), osteoclast number (TRAP5b), and osteoblast activity (ALP) were evaluated in serum. Splenocytes were differentiated into osteoclasts using M-CSF and RANKL. Mature osteoclasts were seeded on calcified or decalcified bone slices, and CTX-I, Ca2+, and TRAP were measured. Acidification rates in membrane vesicles from bone cells were measured using acridine orange. Osteoblastogenesis and nodule formation in vitro were investigated using calvarial osteoblasts. ClC-7−/− osteoclasts were unable to resorb calcified bone in vitro. However, osteoclasts were able to degrade decalcified bone. Acid influx in bone membrane vesicles was reduced by 70% in ClC-7−/− mice. Serum ALP was increased by 30% and TRAP5b was increased by 250% in ClC-7−/− mice, whereas the CTX/TRAP5b ratio was reduced to 50% of the wild-type level. Finally, evaluation of calvarial ClC-7−/− osteoblasts showed normal osteoblastogenesis. In summary, we present evidence supporting a pivotal role for ClC-7 in acidification of the resorption lacuna and evidence indicating that bone formation and bone resorption are no longer balanced in ClC-7−/− mice.  相似文献   

9.
Low‐density lipoprotein receptor‐related protein 5 (LRP5) regulates bone acquisition by controlling bone formation. Because roles of LRP6, another co‐receptor for Wnts, in postnatal bone metabolism have not been fully elucidated, we studied bone phenotype in mice harboring an Lrp6 hypomorphic mutation, ringelschwanz (rs), and characterized the mutant protein. First, we performed pQCT, bone histomorphometry, and immunohistochemistry on tibias of Lrp6rs/rs and Lrp6+/+ mice and determined biochemical parameters for bone turnover. Lrp6rs/rs mice exhibited reduced trabecular BMD in pQCT. Bone histomorphometry showed low bone volume and decreased trabecular number, which were associated with increased eroded surface. Urinary deoxypyridinoline excretion was increased in Lrp6rs/rs mice, whereas levels of serum osteocalcin were comparable between Lrp6rs/rs mice and wildtype littermates. Increase in cell number and mineralization of calvariae‐derived osteoblasts were not impaired in Lrp6rs/rs osteoblasts. Rankl expression was increased in Lrp6rs/rs osteoblasts both in vivo and in vitro, and osteoclastogenesis and bone‐resorbing activity in vitro were accelerated in Lrp6rs/rs cells. Treatment with canonical Wnt suppressed Rankl expression in both in primary osteoblasts and ST2 cells. Overexpression of Lrp6 also suppressed Rankl expression, whereas the Lrp6 rs mutant protein did not. Functional analyses of the Lrp6 rs mutant showed decreased targeting to plasma membrane because of reduced interaction with Mesoderm development (Mesd), a chaperone for Lrp6, leading to impaired Wnt/β‐catenin signaling. These results indicate that Lrp6‐mediated signaling controls postnatal bone mass, at least partly through the regulation of bone resorption. It is also suggested that the interaction with Mesd is critical for Lrp6 to function.  相似文献   

10.
11.
High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V/Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V/Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V/Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

12.
Summary In order to study the role of trace elements as potential osteoblastic toxins, we measured bone aluminum, copper, and iron in 106 ambulant patients with histologically proven liver disease. We used analytical and histochemical methods and we correlated our results with serum biochemistry, forearm and spinal bone density, and dynamic bone histomorphometry. Patients with chronic liver disease had higher iron-stained perimeters than control subjects (P<0.001). However, the mean ironstained perimeter was no greater than 5% of the total mineralized bone perimeter and did not correlate significantly with either the osteoblast perimeters or bone formation rates. The mean concentration of bone iron were 2.5 times (P<0.01) greater in the patients than in the controls although 80% of the patients fell within the normal range. There was a weak negative correlation between bone iron and the osteoblast perimeters (R=−0.18,P=ns) and between bone iron and bone formation (R=−0.30,P<0.05). There were 57 patients (56% of the total) with diminished bone formation, but only 16 had elevated bone iron concentrations. In a regression analysis, age, hypogonadism, and serum albumin concentrations were the most important predictors of osteoblast perimeters and bone formation rates.In vitro experiments using rat osteoblast-like osteosarcoma cells showed that an iron concentration of 400 μmol/liter was required to diminish cellular proliferation and function. Iron concentrations are elevated in the bones of patients with chronic liver disease. However, there is at present insufficient evidence that this metal is responsible for the osteoblast dysfunction seen in these patients. Bone aluminum and bone copper concentrations were within the relevant reference ranges in all patients.  相似文献   

13.
14.
Glucocorticoid-induced osteoporosis (GCOP) is predominantly caused by inhibition of bone formation, resulting from a decrease in osteoblast numbers. Employing mouse (MBA-15.4) and human (MG-63) osteoblast cell lines, we previously found that the glucocorticoid (GC) dexamethasone (Dex) inhibits cellular proliferation as well as activation of the MAPK/ERK signaling pathway, essential for mitogenesis in these cells, and that both these effects could be reversed by the protein tyrosine phosphatase (PTP) inhibitor vanadate. In a rat model of GCOP, the GC-induced changes in bone formation, mass, and strength could be prevented by vanadate cotreatment, suggesting that the GC effects on bone were mediated by one or more PTPs. Employing phosphatase inhibitors, qRT-PCR, Western blotting, and overexpression/knockdown experiments, we concluded that MKP-1 was upregulated by Dex, that this correlated with the dephosphorylation of ERK, and that it largely mediated the in vitro effects of GCs on bone. To confirm the pivotal role of MKP-1 in vivo, we investigated the effects of the GC methylprednisolone on the quantitative bone histology of wild-type (WT) and MKP-1 homozygous knockout (MKP-1−/−) mice. In WT mice, static bone histology revealed that GC administration for 28 days decreased osteoid surfaces, volumes, and osteoblast numbers. Dynamic histology, following time-spaced tetracycline labeling, confirmed a significant GC-induced reduction in osteoblast appositional rate and bone formation rate. However, identical results were obtained in MKP-1 knockout mice, suggesting that in these animals upregulation of MKP-1 by GCs cannot be regarded as the sole mediator of the GC effects on bone.  相似文献   

15.
The cell surface receptor low‐density lipoprotein receptor‐related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM‐causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl‐Ab). We found that antibody‐treated mice had significantly increased bone mass and strength compared to vehicle‐treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.  相似文献   

16.
Lysyl oxidase (LOX) catalyzes cross-linking of elastin and collagen, which is essential for the structural integrity and function of bone tissue. The present study examined the role of Lox gene deficiency for the osteoblast phenotype in primary calvarial osteoblasts from E18.5 Lox knockout (Lox −/− ) and wild type (wt) (C57BL/6) mice. Next to Lox gene depletion, mRNA expression of Lox isoforms, LOXL1–4, was significantly downregulated in Lox −/− bone tissue. A significant decrease of DNA synthesis of Lox −/− osteoblasts compared to wt was found. Early stages of osteoblastic apoptosis studied by annexin-V binding as well as later stages of DNA fragmentation were not affected. However, mineral nodule formation and osteoblastic differentiation were markedly decreased, as revealed by significant downregulation of osteoblastic markers, type I collagen, bone sialoprotein, and Runx2/Cbfa1.  相似文献   

17.
Previous studies have shown that disruption of von Hippel–Lindau gene (Vhl) coincides with activation of hypoxia‐inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen‐inducible manner and changes in skeletal morphology were assessed by micro–computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging‐induced bone loss. Our data suggest that the VHL‐mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Grb2-associated binder 2 (Gab2) is an adaptor molecule that can be tyrosine phosphorylated by various growth factors and cytokines. Gab2 is known to play a role in signaling pathways downstream of cytokines that regulate bone homeostasis, including M-CSF, RANKL, and IL-6. To clarify the role of Gab2 in bone homeostasis during distinct phases of skeletal development, we compared phenotypic changes in bone homeostasis in Gab2 / mice at two different ages. Although Gab2 / mice showed increased bone volume at both time points, the reasons underlying the increased bone volume differed. At 6 weeks, the increased bone volume was due to enhanced bone resorption and bone formation, indicating that Gab2 plays a negative regulatory role for both osteoclastogenesis and osteoblast differentiation. At 12 weeks, the increased bone volume resulted from reduced osteoclast differentiation, indicating that Gab2 plays a positive regulatory role for osteoclastogenesis. Thus, Gab2 plays opposite roles in osteoclastogenesis during the phases of skeletal development and maintenance.  相似文献   

19.
20.
Patients with an activation mutation of the Lrp5 gene exhibit high bone mass (HBM). Limited information is available regarding compartment‐specific changes in bone. The relationship between the phenotype and serum serotonin is not well documented. To evaluate bone, serotonin, and bone turnover markers (BTM) in Lrp5‐HBM patients, we studied 19 Lrp5‐HBM patients (T253I) and 19 age‐ and sex‐matched controls. DXA and HR‐pQCT were used to assess BMD and bone structure. Serum serotonin, sclerostin, dickkopf‐related protein 1 (DKK1), and BTM were evaluated. Z‐scores for the forearm, total hip, lumbar spine, forearm, and whole body were significantly increased (mean ± SD) between 4.94 ± 1.45 and 7.52 ± 1.99 in cases versus ?0.19 ± 1.19 to 0.58 ± 0.84 in controls. Tibial and radial cortical areas, thicknesses, and BMD were significantly higher in cases. In cases, BMD at the lumbar spine and forearm and cortical thickness were positively associated and trabecular area negatively associated with age (r = 0.49, 0.57, 0.74, and ?0.61, respectively, p < .05). Serotonin was lowest in cases (69.5 [29.9–110.4] ng/mL versus 119.4 [62.3–231.0] ng/mL, p < .001) and inversely associated with tibial cortical density (r = ?0.49, p < .05) and directly with osteocalcin (OC), bone‐specific alkaline phosphatase (B‐ALP), and procollagen type 1 amino‐terminal propeptide (PINP) (r = 0.52–0.65, p < .05) in controls only. OC and S‐CTX were lower and sclerostin higher in cases, whereas B‐ALP, PINP, tartrate‐resistant acid phosphatase (TRAP), and dickkopf‐related protein 1 (DKK1) were similar in cases and controls. In conclusion, increased bone mass in Lrp5‐HBM patients seems to be caused primarily by changes in trabecular and cortical bone mass and structure. The phenotype appeared to progress with age, but BTM did not suggest increased bone formation. © 2011 American Society for Bone and Mineral Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号