首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial disorders represent a heterogeneous group of multisystem diseases with extreme variability in clinical phenotype. The diagnosis of mitochondrial disorders relies heavily on extensive biochemical and molecular analyses combined with morphological studies including electron microscopy. Although muscle is the tissue of choice for electron microscopic studies, the authors investigated cultivated human skin fibroblasts (HSF) harboring 3 different pathologic mtDNA mutations: 3243A > G, 8344A > G, 8993T > G. They addressed to the possibility of whether mtDNA mutations influence mitochondrial morphology in HSF and if ultrastructural changes of mitochondria may be used for differential diagnostics of mitochondrial disorders caused by mtDNA mutations. Ultrastructural analysis of patients' HSF revealed a heterogeneous mixture of mainly abnormal, partially swelling mitochondria with unusual and sparse cristae. The most characteristic cristal abnormalities were heterogeneity in size and shapes or their absence. Typical filamentous and branched mitochondria with numerous cristae as appeared in control HSF were almost not observed. In all lines of cultured HSF with various mtDNA mutations, similar ultrastructural abnormalities and severely changed mitochondrial interior were found, although no alterations in function and amount of OXPHOS were detected by routinely used biochemical methods in two lines of cultured HSF. This highlights the importance of morphological analysis, even in cultured fibroblasts, in diagnostics of mitochondrial disorders.  相似文献   

2.
Mitochondrial (mt)DNA defects, both deletions and tRNA point mutations, have been associated with cardiomyopathies. The aim of the study was to determine the prevalence of pathological mtDNA mutations and to assess associated defects of mitochondrial enzyme activity in dilated cardiomyopathy (DCM) patients with ultrastructural abnormalities of cardiac mitochondria. In a large cohort of 601 DCM patients we performed conventional light and electron microscopy on endomyocardial biopsy samples. Cases with giant organelles, angulated, tubular, and concentric cristae, and crystalloid or osmiophilic inclusion bodies were selected for mtDNA analysis. Mutation screening techniques, automated DNA sequencing, restriction enzyme digestion, and densitometric assays were performed to identify mtDNA mutations, assess heteroplasmy, and quantify the amount of mutant in myocardial and blood DNA. Of 601 patients (16 to 63 years; mean, 43.5 ± 12.7 years), 85 had ultrastructural evidence of giant organelles, with abnormal cristae and inclusion bodies; 19 of 85 (22.35%) had heteroplasmic mtDNA mutations (9 tRNA, 5 rRNA, and 4 missense, one in two patients) that were not found in 111 normal controls and in 32 DCM patients without the above ultrastructural mitochondrial abnormalities. In all cases, the amount of mutant was higher in heart than in blood. In hearts of patients that later underwent transplantation, cytochrome c oxidase (Cox) activity was significantly lower in cases with mutations than in those without or controls (P = 0.0008). NADH dehydrogenase activity was only slightly reduced in cases with mutations (P = 0.0388), whereas succinic dehydrogenase activity did not significantly differ between DCM patients with mtDNA mutations and those without or controls. The present study represents the first attempt to detect a morphological, easily identifiable marker to guide mtDNA mutation screening. Pathological mtDNA mutations are associated with ultrastructurally abnormal mitochondria, and reduced Cox activity in a small subgroup of non-otherwise-defined, idiopathic DCMs, in which mtDNA defects may constitute the basis for, or contribute to, the development of congestive heart failure.  相似文献   

3.
Functional defects and morphological changes of mitochondria have been reported to be in the skeletal muscle of patients with amyotrophic lateral sclerosis (ALS). Recent studies suggested that mitochondrial abnormalities are related to the pathogenesis of ALS. The purpose of this study is to evaluate the ultrastructural changes of muscle mitochondria in ALS patients. The authors examined 49 cases of diagnostic muscle biopsy samples with definite or probable ALS by electron microscopy. Of the 49 cases, 5 (10%) had ultrastructural abnormalities of muscle mitochondria, including giant mitochondria, paracrystalline inclusions, and abnormal cristae. These abnormal mitochondria were mainly observed among subsarcolemmal mitochondrial aggregates.  相似文献   

4.
Functional defects and morphological changes of mitochondria have been reported to be in the skeletal muscle of patients with amyotrophic lateral sclerosis (ALS). Recent studies suggested that mitochondrial abnormalities are related to the pathogenesis of ALS. The purpose of this study is to evaluate the ultrastructural changes of muscle mitochondria in ALS patients. The authors examined 49 cases of diagnostic muscle biopsy samples with definite or probable ALS by electron microscopy. Of the 49 cases, 5 (10%) had ultrastructural abnormalities of muscle mitochondria, including giant mitochondria, paracrystalline inclusions, and abnormal cristae. These abnormal mitochondria were mainly observed among subsarcolemmal mitochondrial aggregates.  相似文献   

5.
3‐Methylglutaconic aciduria (3‐MGA‐uria) syndromes comprise a heterogeneous group of diseases associated with mitochondrial membrane defects. Whole‐exome sequencing identified compound heterozygous mutations in TIMM50 (c.[341 G>A];[805 G>A]) in a boy with West syndrome, optic atrophy, neutropenia, cardiomyopathy, Leigh syndrome, and persistent 3‐MGA‐uria. A comprehensive analysis of the mitochondrial function was performed in fibroblasts of the patient to elucidate the molecular basis of the disease. TIMM50 protein was severely reduced in the patient fibroblasts, regardless of the normal mRNA levels, suggesting that the mutated residues might be important for TIMM50 protein stability. Severe morphological defects and ultrastructural abnormalities with aberrant mitochondrial cristae organization in muscle and fibroblasts were found. The levels of fully assembled OXPHOS complexes and supercomplexes were strongly reduced in fibroblasts from this patient. High‐resolution respirometry demonstrated a significant reduction of the maximum respiratory capacity. A TIMM50‐deficient HEK293T cell line that we generated using CRISPR/Cas9 mimicked the respiratory defect observed in the patient fibroblasts; notably, this defect was rescued by transfection with a plasmid encoding the TIMM50 wild‐type protein. In summary, we demonstrated that TIMM50 deficiency causes a severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology, such as the maintenance of proper mitochondrial morphology, OXPHOS assembly, and mitochondrial respiratory capacity.  相似文献   

6.
Mitochondrial encephalomyopathies (MEs) encompass a heterogeneous group of disorders that frequently present a diagnostic challenge to clinicians. Historically, MEs were diagnosed by finding ragged red fibers in the muscle biopsy and confirmatory evidence was provided by the presence of numerical and/or ultrastructural abnormalities in mitochondria. In most centers diagnosis involves clinical evaluation and the morphological, histochemical, and biochemical investigation of a skeletal muscle biopsy. However, with the availability of mitochondrial DNA analysis, the necessity and role of morphological methods and, in particular, electron microscopy has been questioned. The aim of this study was to delineate the role of electron microscopy in the diagnosis of MEs.  相似文献   

7.
To investigate the clinical, enzymological and mitochondrial gene profiles of complex I deficiency in Chinese, clinical and laboratory data of the patients (79 boys, 54 girls) were retrospectively assessed. Activities of mitochondrial respiratory chain complexes in peripheral leucocytes were spectrophotometrically measured. The entire mitochondrial DNA (mtDNA) sequence was analyzed in 62 patients. Restriction fragment length polymorphism and gene sequencing analyses were performed in 15 families. Ninety‐one patients had isolated complex I deficiency; 42 had combined deficiencies of complex I and other complexes. The main clinical presentations were neuromuscular disorders (107 patients) and non‐neurological dysfunction (hepatopathy, renal damage and cardiomyopathy; 26 patients). In 32 of 62 patients who underwent mtDNA sequencing, 24 mutations were identified in 15 mitochondrial genes. The 12338T>C, 4833A>G and 14502T>C mutations were found in 12.9%, 11.3% and 4.8% patients, respectively. Seven patients had multiple mutations. Three novel mutations were identified. Chinese patients with complex I deficiency presented heterogeneous phenotypes and genotypes. Twenty‐four mutations were identified in 15 mitochondrial genes in 51.6% patients. mtDNA mutations were more common in isolated complex I deficiency than in combined complex deficiencies. The 12338T>C, 4833A>G and 14502T>C mutations were common.  相似文献   

8.
Morphological studies have traditionally played a major role in the study of adults with suspected mitochondrial diseases. Here we review their role in the investigation of paediatric patients. The morphological changes may be macroscopic, such as developmental abnormalities of the brain in pyruvate dehydrogenase deficiency, including ectopic inferior olives and the absence of corpus callosum and pyramids. Other changes are histological, such as rarefaction of the neuropil and endothelial prominence in Leigh syndrome, and spongiosis with neuronal loss and gliosis in Alpers disease. The ragged-red fibres typical of mitochondrial disease in adults are only rarely seen in skeletal muscle biopsies from children. On the other hand, dramatic ultrastructural changes involving the mitochondria may be seen in many organs, including the liver, heart and intestine. In Alpers and lethal infantile mitochondrial diseases, the hepatocytes show marked accumulation of small droplets of lipid alternating with densely packed mitochondria with pale matrix and loss of granules. These changes are associated with a marked decrease in respiratory chain enzyme activity in the liver, often without similar decrease in the skeletal muscle or fibroblasts. Enlarged mitochondria with concentric cristae are prominent in the cardiac myocytes in Barth syndrome. For the assessment of children with a suspected disorder of mitochondrial dysfunction, detailed morphological studies of the brain (at autopsy) and of biopsies (especially of the liver), including ultrastructural assessment of the mitochondria, can be a very useful preliminary investigation. The findings should then be correlated with the clinical features and used as a guide for further biochemical and molecular studies, preferably on multiple tissues.  相似文献   

9.
Mitochondrial encephalomyopathies (MEs) encompass a heterogeneous group of disorders that frequently present a diagnostic challenge to clinicians. Historically, MEs were diagnosed by finding ragged red fibers in the muscle biopsy and confirmatory evidence was provided by the presence of numerical and/or ultrastructural abnormalities in mitochondria. In most centers diagnosis involves clinical evaluation and the morphological, histochemical, and biochemical investigation of a skeletal muscle biopsy. However, with the availability of mitochondrial DNA analysis, the necessity and role of morphological methods and, in particular, electron microscopy has been questioned. The aim of this study was to delineate the role of electron microscopy in the diagnosis of MEs.  相似文献   

10.
Mitochondrial encephalomyopathies (MEs) encompass a heterogeneous group of disorders that frequently present a diagnostic challenge to clinicians. Historically, MEs were diagnosed by finding ragged red fibers in the muscle biopsy and confirmatory evidence was provided by the presence of numerical and/or ultrastructural abnormalities in mitochondria. In most centers diagnosis involves clinical evaluation and the morphological, histochemical, and biochemical investigation of a skeletal muscle biopsy. However, with the availability of mitochondrial DNA analysis, the necessity and role of morphological methods and, in particular, electron microscopy has been questioned. The aim of this study was to delineate the role of electron microscopy in the diagnosis of MEs.  相似文献   

11.
When normal human cultured skin fibroblasts were treated with the fluorescent dye rhodamine 6G (R6G), there was a drastic reduction in numbers of intact mitochondria and electron transport chain enzyme activities, despite the fact that mitochondrial DNA (mtDNA) was still present in treated cells. We used this observation to develop a novel system for generating cybrids. When cultured skin fibroblast cells from a patient with the mitochondrial encephalopathy and ragged-red fibers (MERRF) syndrome harboring the A8344G mtDNA mutation and which showed a severe reduction in cytochrome c oxidase activity were treated with R6G and fused to enucleated HeLaCOT cells, the resulting cybrid clones showed recovery of cytochrome c oxidase activity, and were shown to have mtDNA derived solely from the HeLaCOT cell line. R6G has significant advantages over ethidium bromide in removing the mitochondrial elements from cultured cells, and the results reported here demonstrate that this strategy can be used to determine the origin of the genetic defect in patients with electron transport chain abnormalities.  相似文献   

12.
Mitochondrial disorders are a large and genetically heterogeneous group of disorders posing a significant diagnostic challenge. Only approximately 10–20% of patients have identifiable alterations in their mitochondrial DNA (mtDNA). The remaining ~ 80–90% of affected patients likely harbor mutations in nuclear genes, most of which are still poorly characterized, and therefore not amenable to efficient screening using currently available molecular methods.Here we present a patient, who has been followed since birth after presenting with neonatal hyperammonemia, lactic acidosis, Reye-like syndrome episodes, and ventricular tachyarrhythmia. Initial biochemical work-up revealed hyperalaninemia, normal plasma glutamine, mild orotic aciduria and significant amounts of urinary 3-methylglutaconic (3-MGC) and 3-methylglutaric (3-MGA) acids. Muscle biopsy demonstrated the presence of ragged-red fibers and non-specific structural abnormalities of mitochondria. The activities of respiratory chain enzymes (complexes I–IV) showed no deficiency. Mutational analysis of the entire mitochondrial genome did not reveal deleterious point mutations or large deletions. Long-term follow-up was significant for a later-onset hypertrophic cardiomyopathy, muscle weakness, and exercise intolerance. Although she had frequent episodes of Reye-like episodes in infancy and early childhood, mostly triggered by illnesses, these symptoms improved significantly with the onset of puberty.In the light of recent reports linking cases of type IV 3-methylglutaconic aciduria (3-MGCA) and hypertrophic cardiomyopathy to mutations in TMEM70, we proceeded with sequencing analysis of this gene. We identified one previously reported splice site mutation, c.317-2A>G and a novel mutation c.494G>A (p.G165D) in an evolutionarily conserved region predicted to be deleterious. This variant was not identified in 100 chromosomes of healthy control subjects and 200 chromosomes of patients with cardiomyopathies. Western blotting using a polyclonal antibody against ATP5J, subunit F6 of ATP synthase, on patient's skin fibroblasts showed undetectable amount of the ATP5J protein. In comparison to the previously reported cases, we note that our patient had normal growth parameters and cognitive development, absence of structural heart and urinary tract defects, no dysmorphic features, improvement of symptoms with age, and persistence of hypertrophic cardiomyopathy.  相似文献   

13.
Mitochondrial disease can lead to clinical abnormalities in any organ system. Both inherited and spontaneous disorders are known. The spontaneous forms can occur as a mitochondrial DNA (mtDNA) mutation early in embryogenesis or, later in life, as somatic mutations that accumulate with age. The inherited forms may arise from any of >100 characterized mutations in mtDNA or from >200 nuclear gene defects that affect proteins required for mitochondrial function. Most dividing cells survive and interact normally despite their mitochondrial defects. Thus post-mitotic, terminally differentiated cells are preferentially affected in mitochondrial disease. This review emphasizes cellular metabolic co-operation and the structural and biochemical diversity of mitochondria as the framework for understanding the clinical spectrum of mitochondrial disease. The principles of the mitochondrial clinical assessment scale I (MCAS-I) are presented to assist in the development of diagnostic spectra of mitochondrial disease.  相似文献   

14.
Neurons from sensory ganglia are exposed to oxidative attack in diabetes. Altered mitochondrial morphologies are due to impaired dynamics (fusion, fission) and to cristae remodeling. This study aimed to evaluate using transmission electron microscopy mitochondrial changes in diabetic trigeminal ganglia suggestive for ignition of apoptosis, in absence of “classical” morphological signs of apoptosis. We used samples of trigeminal ganglia (from six type 2 diabetes human donors and five streptozotocin (STZ)‐induced diabetic rats). In human diabetic samples we found three main distributions of mitochondria: (a) small “dark” normal mitochondria, seemingly resulted from fission processes; (b) small “dark” damaged mitochondria, with side‐vesiculations (single‐ and double‐coated), large matrix vesicles and cytosolic leakage of reactive species, mixed with larger “light” mitochondria, swollen, and with crystolysis; (c) prevailing “light” mitochondria. In STZ‐treated rats a type (c) distribution prevailed, except for nociceptive neurons where we found a different distribution: large and giant mitochondria, suggestive for impaired mitochondrial fission, mitochondrial fenestrations, matrix vesicles interconnected by lamellar cristae, and mitochondrial leakage into the cytosol. Thus, the ultrastructural pattern of mitochondria damage in diabetic samples of sensory neurons may provide clues on the initiation of intrinsic apoptosis, even if the classical morphological signs of apoptosis are not present. Further studies, combining use of biochemical and ultrastructural techniques, may allow a better quantification of the degree in which mitochondrial damage, with membrane alterations and cytosolic leaks, may be used as morphological signs suggesting the point‐of‐no return for apoptosis. Anat Rec, 299:1561–1570, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
In this study, we report the metabolic consequences of the m.1630 A > G variant in fibroblasts from the symptomatic proband affected with the mitochondrial encephalomyopathy lactic acidosis and stroke-like episode Syndrome and her asymptomatic mother. By long-range PCR followed by massively parallel sequencing of the mitochondrial genome, we accurately measured heteroplasmy in fibroblasts from the proband (89.6%) and her mother (94.8%). Using complementary experimental approaches, we show a functional correlation between manifestation of clinical symptoms and bioenergetic potential. Our mitochondrial morphometric analysis reveals a link between defects of mitochondrial cristae ultrastructure and symptomatic status. Despite near-homoplasmic level of the m.1630A > G variant, the mother's fibroblasts have a normal OXPHOS metabolism, which stands in contrast to the severely impaired OXPHOS response of the proband's fibroblasts. The proband's fibroblasts also exhibit glycolysis at near constitutive levels resulting in a stunted compensatory glycolytic response to offset the severe OXPHOS defect. Whole exome sequencing reveals the presence of a heterozygous nonsense VARS2 variant (p.R334X) exclusively in the proband, which removes two thirds of the VARS2 protein containing key domains interacting with the mt-tRNAval and may play a role in modulating the penetrance of the m.1630A > G variant despite similar near homoplasmic levels. Our transmission electron microscopy study also shows unexpected ultrastructural changes of chromatin suggestive of differential epigenomic regulation between the proband and her mother that may explain the differential OXPHOS response between the proband and her mother. Future study will decipher by which molecular mechanisms the nuclear background influences the penetrance of the m.1630 A > G variant causing MELAS.  相似文献   

16.
Psychiatric disorders are a leading cause of morbidity and mortality, yet their underlying pathophysiology remains unclear. Searches for a genetic cause of bipolar disorder, schizophrenia, and major depressive disorder have yielded inconclusive results. There is increasing interest in the possibility that defects in the mitochondrial genome may play an important role in psychiatric illness. We undertook a review of the literature investigating mitochondria and adult psychiatric disorders. MEDLINE, PsycINFO, and EMBASE were searched from their inception through September 2011, and the reference lists of identified articles were reviewed for additional studies. While multiple lines of evidence, including clinical, genetic, ultrastructural, and biochemical studies, support the involvement of mitochondria in the pathophysiology of psychiatric illness, many studies have methodological limitations and their findings have not been replicated. Clinical studies suggest that psychiatric features can be prominent, and the presenting features of mitochondrial disorders. There is limited but inconsistent evidence for the involvement of mitochondrial DNA haplogroups and mitochondria-related nuclear gene polymorphisms, and for mitochondrial ultrastructural and biochemical abnormalities in psychiatric illness. The current literature suggests that mitochondrial dysfunction and mitochondrial genetic variations may play an important role in psychiatric disorders, but additional methodologically rigorous and adequately powered studies are needed before definitive conclusions can be drawn. ? 2012 Wiley Periodicals, Inc.  相似文献   

17.
Role of mitochondrial mutations in cancer   总被引:2,自引:0,他引:2  
A role for mitochondria in cancer causation has been implicated through identification of mutations in the mitochondrial DNA (mtDNA) and in nuclear-encoded mitochondrial genes. Although many mtDNA mutations were detected in common tumors, an unequivocal causal link between heritable mitochondrial abnormalities and cancer is provided only by the germ line mutations in the nuclear-encoded genes for succinate dehydrogenase (mitochondrial complex II) and fumarate hydratase (fumarase). The absence of evidence for highly penetrant tumors caused by inherited mtDNA mutations contrasts with the frequent occurrence of mtDNA mutations in many different tumor types. Thus, either the majority of diverse mtDNA mutations observed in tumors are not important for the process of carcinogenesis or that they play a common oncogenic role.  相似文献   

18.
The ketone body B-hydroxybutyrate (B-OHB) produces malformations and ultrastructural alterations in mitochondria of mouse embryos exposed for 24 hours to the compound in whole embryo culture. The present study was conducted to establish the time-course of the mitochondrial changes to determine whether the changes are reversible, and to relate these changes to the malformations produced by the compound. Since mitochondria also play a key role in the metabolism of ketone bodies, the capacity of the early somite embryo to metabolize B-OHB was investigated in an effort to link the morphological alterations in the mitochondria to a biochemical process. Early somite embryos were cultured 4, 8, or 24 hours in the presence of 32 mM DL-B-OHB and then cultured for an additional 24 hours in control serum. Finally, embryonic tissue during the teratogenic period was assessed for its capability to oxidize B-OHB using D-(3-14C)-B-OHB. The treated embryos showed progressive alterations in the mitochondria, beginning at 4 hours with a loss of matrix density and culminating at 24 hours with high-amplitude swelling, complete loss of matrix density, and disappearance of cristae. These alterations were reversible following removal of the embryos after 24 hours of exposure to B-OHB and culturing for an additional 24 hours in control serum. Metabolism studies demonstrated that the early somite embryo possesses a limited capacity to oxidatively metabolize B-OHB. The biochemical implications of these findings are discussed with respect to the possible role of ketone bodies in the mechanism of diabetes-induced congenital malformations.  相似文献   

19.
We studied six unrelated children with depletion of mitochondrial DNA (mtDNA). They presented with Leigh syndrome, infantile hepatocerebral mtDNA depletion syndrome, or Alpers-Huttenlocher syndrome. Several genes have been implicated in mtDNA depletion. Screening of candidate genes indicated that all six patients were compound heterozygous for missense mutations in the gene for the catalytic subunit of DNA polymerase gamma (POLG). Three of the identified mutations, c.3328C>T (p.H1110Y), c.3401A>G (p.H1134R), and c.3406G>A (p.E1136K), have not been reported earlier. To investigate the functional consequences of the mutations, we carried out a series of biochemical assays in cultured fibroblasts. These studies revealed that fibroblast cultures from the patients with infantile hepatocerebral mtDNA depletion syndrome progressively lost their mtDNA during culturing, whereas fibroblast cultures from patients presenting with Leigh syndrome or Alpers-Huttenlocher syndrome had reduced but stable levels of mtDNA. DNA polymerase gamma activity was below the normal range in all patient cultures, except for one; however, this culture showed low levels of the heterodimeric enzyme and poor DNA polymerase gamma processivity. Parental fibroblast cultures had normal catalytic efficiency of DNA polymerase gamma, consistent with the observation that all carriers are asymptomatic. Thus, we report the first patient with Leigh syndrome caused by POLG mutations. The cell culture experiments established the pathogenicity of the identified POLG mutations and helped to define the molecular mechanisms responsible for mtDNA depletion in the patients' tissues. The assays may facilitate the identification of those patients in whom screening for POLG mutations would be most appropriate.  相似文献   

20.
We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients’ fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号