首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortical, thalamic, and amygdaloid projections of the rat anterior and posterior insular cortices were examined using the anterograde transport of biocytin. Granular and dysgranular posterior insular areas between bregma and 2 mm anterior to bregma projected to the gustatory thalamic nucleus. Granular cortex projected to the subjacent dysgranular cortex which in turn projected to the agranular (all layers) and granular cortices (layers I and VI). Both granular and dysgranular posterior areas projected heavily to the dysgranular anterior insular cortex. Agranular posterior insular cortex projected to medial mediodorsal nucleus, agranular anterior insular and infralimbic cortices as well as granular and dysgranular posterior insula. No projections to the amygdala were observed from posterior granular cortex, although dysgranular cortex projected to the lateral central nucleus, dorsolateral lateral nucleus, and posterior basolateral nucleus. Agranular projections were similar, although they included medial and lateral central nucleus and the ventral lateral nucleus. Dysgranular anterior insular cortex projected to lateral agranular frontal cortex and granular and dysgranular posterior insular regions. Agranular anterior insular cortex projected to the dysgranular anterior and prelimbic cortices. Anterior insuloamygdaloid projections targeted the rostral lateral and anterior basolateral nuclei with sparse projections to the rostral central nucleus. The data suggest that the anterior insula is an interface between the posterior insular cortex and motor cortex and is connected with motor-related amygdala regions. Amygdaloid projections from the posterior insular cortex appear to be organized in a feedforward parallel fashion targeting all levels of the intraamygdaloid connections linking the lateral, basolateral, and central nuclei . J. Comp. Neurol. 399:440–468, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Projections asre described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to th mediodorsasl thalamic nucleus in the rat. These projections are very well-defined in their origin, and in their area and laminar pattern of termination. The basolateral amygdaloid nucleus can be divided into anterior and posterior divisions, based on cytoarchitectonic and connectional distinctions. In both the rat and cat the posterior division projects to the prelimbic area (area32) and the infralimbic area (area 25) on the medial surface of the hemisphere. The anterior division projects more lightly to these areas, but also sends fibers to the dorsal and posterior agrangular insular areas and the perirhinal area on the lateral surface. Furtheremore, in the cat the perirhinal area is divided into two areas(area 35 and 36) and the anterior division projects to both of these and also to a ventral part of the grangular insular area; this last area is adjacent to, but separate from the auditory insular area and the second cortical taste area. In most of these areas, the fibers from the basolateral nucleus terminate predominantly in two bands: one in the deep part of layer I and layer II, and a heavier band in layer V (in the rat) or layers V and VI (in the cat). The lateral amygdaloid nucleus projects heavily to the perirhinal area, and also to the posterior agranular insular area. These fibers terminate predominantly in the midle layers of the cortex, although the cellular lamination in these two areas is relatively indistinct. The anterior cortical amygdaloid nucleus and the prepiriform cortex both project to th infralimbic area and the ventral agranular insular area, and the anterior cortical nucleus also projects to the posterior agranular area and the perirhinal area. In all of these areas, the fibers from these olfactory-relasted structures terminate in the middle of layer I. In the rat, the two divisions of the basolateral nucleus also project to the medial segment of the mediodorsasl thalamic nucleus, with the anterior division projecting mainly to the posterior part of this segment and the posterior division to the anterior part. The endopiriform nucleus, deep to the prepiriform cortex, projects to the central segment of the mediodorsasl nucleus, since little or no projection could be demonstrated from the prepiriform cortex itself. Projections to the mediodorsal nucleus have not been found in the cat.  相似文献   

3.
Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine‐stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross‐reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross‐reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine‐stimulated Fos‐immunoreactive neurons in two taste‐associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine‐stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine‐stimulated neurons were found throughout the gustatory cortex, but a “hot spot” was observed in its anterior–posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine‐elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine‐stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. J. Comp. Neurol. 522:2498–2517, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Thalamic and cortical afferents to the insular and perirhinal cortex of the rat were investigated. Unilateral injections of horseradish peroxidase (HRP) were made iontophoretically along the rhinal sulcus. HRP injections covered or invaded areas along the rhinal fissure from about the level of the middle cerebral artery to the posterior end of the fissure. The most anterior injection labeled a few cells in the mediodorsal nucleus. More posterior injections labeled neurons in the basal portion of the nucleus ventralis medialis, thus suggesting that this cortical region constitutes the rat's gustatory (insular) cortex. We consider the cortex situated posterior to the gustatory cortex in and above the rhinal sulcus as the core region of the rat's (associative) insular cortex, as this cortex receives afferents from the regions of and between the nuclei suprageniculatus and geniculatus medialis, pars magnocellularis. It includes parts of the cortex termed perirhinal in other studies. The cortex dorsal and posterior to the insular cortex we consider auditory cortex, as it receives afferents from the principal part of the medial geniculate nucleus, and the cortex ventral to the insular cortex (below the fundus of the rhinal sulcus) we consider to constitute the prepiriform cortex, which is athalamic. The posterior part of the perirhinal cortex (area 35) receives afferents from nonspecific thalamic nuclei (midline nuclei). Cortical afferents to the injection loci arise from a number of regions, above all from regions of the medial and sulcal prefrontal cortex. Those injections confined to the projection cortex of the suprageniculate-magnocellular medial geniculate nuclear complex also led to labeling in contralateral prefrontal regions, particularly in area 25 (infralimbic region). A comparison of our results with those on the insular cortex of cats and monkeys suggests that on the basis of thalamocortical connections, topographical relations, and involvements of neurons in information processing and overt behavior, the insular cortex has to be regarded as a heterogeneous region which may be separated into prefrontal insular, gustatory (somatosensory) insular, and associative insular portions.  相似文献   

5.
The insular areas of the cerebral cortex in carnivores remain vaguely defined and fragmentarily characterized. We have examined the cortical microarchitecture and thalamic connections of the insular region in cats, as a part of a broader study aimed to clarify their subdivisions, functional affiliations, and eventual similarities with other mammals. We report that cortical areas, which resemble the insular fields of other mammals, are located in the cat's orbital gyrus and anterior rhinal sulcus. Our data suggest four such areas: (a) a “ventral agranular insular area” in the lower bank of the anterior rhinal sulcus, architectonically transitional between iso- and allocortex and sparsely connected to the thalamus, mainly with midline nuclei; (b) a “dorsal agranular insular area” in the upper bank of the anterior rhinal sulcus, linked to the mediodorsal, ventromedial, parafascicular and midline nuclei; (c) a “dysgranular insular area” in the anteroventral half of the orbital gyrus, characterized by its connections with gustatory and viscerosensory portions of the ventroposterior complex and with the ventrolateral nucleus; and (d) a “granular insular area”, dorsocaudal in the orbital gyrus, which is chiefly bound to spinothalamic-recipient thalamic nuclei such as the posterior medial and the ventroposterior inferior. Three further fields are situated caudally to the insular areas. The anterior sylvian gyrus and dorsal lip of the pseudosylvian sulcus, which we designate “anterior sylvian area”, is connected to the ventromedial, suprageniculate, and lateralis medialis nuclei. The fundus and ventral bank of the pseudosylvian sulcus, or “parainsular area”, is associated with caudal portions of the medial geniculate complex. The rostral part of the ventral bank of the anterior ectosylvian sulcus, referred to as “ventral anterior ectosylvian area”, is heavily interconnected with the lateral posterior-pulvinar complex and the ventromedial nucleus. Present results reveal that these areas interact with a wide array of sensory, motor, and limbic thalamic nuclei. In addition, these data provide a consistent basis for comparisons with cortical fields in other mammals. J. Comp. Neurol. 384:456–482, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
The existence, location and interrelationships of cortical gustatory association areas in primates and rodents are discussed. Based on previous proposals, and on anatomical, physiological and lesion data, we propose that in addition to primary gustatory cortex, located in primate opercular cortex and rodent granular insular cortex, three association areas exist. A secondary area is located in dysgranular insular cortex, a tertiary area in agranular insular cortex, and the terminus of the cortical gustatory analyzer is located in perirhinal cortex. We propose that the subjective awareness of flavor is most probably due to neuronal activities in agranular insular cortex.  相似文献   

7.
The thalamic projections to the cortical gustatory area in the cat were studied using the horseradish peroxidase (HRP) method. The gustatory area extends from the lateral lip of the presylvian sulcus (posterior two-thirds) to the posterior part of the orbital gyrus. It is bounded anteriorly by area 6a beta, laterally by the first somatosensory area, medially by the fundus and medial bank of the presylvian sulcus (prefrontal area), and posteriorly by the insular area. The cortical gustatory area receives fibers mainly from the medial smaller-celled part of the posteromedial ventral nucleus (VPMM). Cortical projections of the VPMM are organized topically; the anterior part of the gustatory cortex receives fibers from the anterodorsal and posteroventral portions of the anterior two-thirds of the VPMM, whereas the posterior gustatory cortex receives fibers from the anteroventral, posterodorsal and posterior portions of the posterior two-thirds of the VPMM. In addition, there appears to be a mediolateral organization of the cortical projections of the VPMM to the gustatory area. The cortical gustatory area receives a few projections from the ventral lateral, ventral medial, submedial, paracentral, lateral central, parafascicular and medial central nuclei.  相似文献   

8.
The distribution of surface positive cortical potentials evoked by electrical stimulation of the chorda tympani, glossopharyngeal and lingual nerves which innervate the tongue was mapped in rabbits. All projections were bilateral. Judging from the extent of the cortical response area and the amplitude and latency of the responses, the major projection of the chorda tympani was ipsilateral, whereas that of the lingual and the glossopharyngeal nerves was contralateral. Both the chorda tympani and the glossopharyngeal nerve project to a confined area in the insular cortex and the lingual nerve projects to the appropriate part of the somatotopic pattern of somatic sensory area I. Further, a single unit study was undertaken to characterize the response of units in the cerebral cortex which was induced by gustatory stimulation of the anterior tongue, Twenty-four gustatory units were found in the insular cortex and the claustrum. The gustatory units were divided into an early response type (21 units) and a late response type (3 units) based on latency measurements. Gustatory units were also classified according to discharge patterns into excitation type (21 units) and inhibition type (4 units). Eleven units responded to 1 or 2 kinds of conventional taste stimuli, and 13 units responded to more than 3 different taste stimuli. Sensitivities of cortical units to the 4 conventional taste stimuli were found to be mutually independent and randomly distributed among cortical units. The frequency of discharges increased in the excitation type units and decreased in the inhibition type units monotonically with the excitation type units and decreased in the inhibition type units monotonically with an increse of NaCl concentration exfept at the highest concentrations.  相似文献   

9.
The projection from the parabrachial nucleus (PB) to the cerbral cortex in the rat was studied in detail using the autoradiographic method for tracing anterograde axonal transport and the wheat germ agglutinin-horseradish peroxidase (WGA-HRP) method for both anterograde and retrograde tracing. PB innervates layers I, V and VI of a continuous sheet of cortex extending from the posterior insular cortex caudally, through the dorsal agranular and the granular anterior insular cortex and on rostrally into the lateral prefrontal cortex. Within the prefrontal area, PB fibers innervate primarily layer V of the ventrolateral cortex caudally, but more rostrally the innervated region includes progressively more dorsal portions of the prefrontal area, until by the frontal pole the entire lateral half of the hemisphere is innervated. This projection originates for the most part in a cluster of neurons in the caudal ventral part of the medial PB subdivision, although a few neurons in the adjacent parts of the PB, the Kolliker-Fuse nucleus and the subcoeruleus region also participate.After injection of WGA-HRP into the PB region, retrogradely labeled neurons were found in layer V of the same cortical areas which receive PB inputs. The importance of this monosynaptic reciprocal brainstem-cortical projection as a possible anatomical substrate for the regulation of cortical arousal is discussed.  相似文献   

10.
The fastigiocerebral projection in the cat was investigated electrophysiologically by recording field potentials and unit activities and also morphologically by anterograde and retrograde HRP methods. Three cortical areas mostly hidden in sulci, two in the frontal cortex and one in the insular cortex, were responsive to fastigial stimulation under pentobarbital anesthesia. The responsive areas in the frontal cortex were the ventral bank of the cruciate sulcus and the area surrounding the fundus of the presylvian sulcus; the latter area corresponds to a subregion of the frontal eye field. The responsive area in the insular cortex was the ventral bank of the anterior ectosylvian sulcus, which overlaps largely with the "anterior ectosylvian visual area." The response in the frontal cortex was a surface-positive, depth-negative wave, whereas the response in the insular cortex was a surface-negative, depth-positive wave. Anterogradely labeled terminals of the fastigiothalamic projection were most dense in the ventromedial (VM) nucleus in which retrogradely labeled neurons were numerous when WGA-HRP was injected into any one of the three cortical areas. In agreement with the results of the HRP studies, units that responded orthodromically to fastigial stimulation and antidromically to cortical stimulation were located in the thalamic VM nucleus. There was a marked difference between the frontal and insular cortices in laminar distribution of terminals of the thalamocortical projection fibers. Anterogradely labeled terminals after injection of WGA-HRP into the VM nucleus were distributed mainly in layers I and III in the frontal cortex, whereas they were distributed mainly in layer I in the insular cortex.  相似文献   

11.
The precise cytoarchitectural localization of taste-elicited cortical responses in the rat was studied using a combination of anatomical and physiological techniques. Multi-unit responses to tongue tactile, thermal and gustatory stimuli were recorded along 97 electrode penetrations positioned parallel to the lateral convexity of the brain and marking lesions were placed at the sites of transitions in these functional properties. Lesions made at sites that received different sensory inputs were consistently located within different cytoarchitectural subdivisions. In this manner, taste cortex in the rat was localized to the agranular insular cytoarchitectural region, in contrast to its traditional assignation to granular insular cortex. Instead, tongue temperature was found to be represented in the cortical area previously termed gustatory, i.e., in ventral granular cortex where layer IV attenuates.  相似文献   

12.
Dual separate pathways for sensory and hedonic aspects of taste   总被引:5,自引:0,他引:5  
It is proposed that in the gustatory system there exist separate sensory and hedonic (reward-aversion) representations in each of the primary structures in which processing of gustatory stimuli occurs. Anatomical and physiological data are used to determine putative separate sensory and hedonic representations in the nucleus of the solitary tract, parabrachial complex, gustatory thalamus, and cortical gustatory areas. In the nucleus of the solitary tract, the sensory representation is located in the rostralmost part of the nucleus, and the hedonic representation most probably in the intermediate parts. In the parabrachial complex, the sensory representation is located in the central medial and ventral lateral subnuclei, and in the waist area, and the hedonic representation in the inner division of the external lateral subnucleus and in the external medial subnucleus. In the rodent gustatory thalamic relay, the sensory representation occurs in the dorsal lateral parts of the nucleus, and the hedonic representation in the ventromedial parts. In rodent gustatory insular cortex, the sensory representation is found in anterior parts of the gustatory area, and the hedonic representation caudal to the sensory representation. The function of the separate sensory and hedonic representations is discussed in relation to the conditioned taste aversion paradigm.  相似文献   

13.
The thalamo-cortical and cortico-cortical afferents of the cat's insular cortex were investigated with the retrograde horseradish peroxidase technique. The most prominent loci of thalamic labeling were the suprageniculate nucleus and parts of the posterolateral nucleus. Injections into the anterior part of the insular cortex also resulted in labeled cells in the ventromedial posterior nucleus and in the intralaminar nuclei, while injections into posterior parts revealed projections from the medial and dorsal parts of the medial geniculate nucleus. Only the anterior and most ventral parts of the insular cortex overlying the anterior rhinal sulcus were connected with the mediodorsal nucleus of the thalamus. All injections into the gyrus sylvius anterior showed a specific pattern of cortical afferents: With the exception of the labeling in the prefrontal cortex and the inferotemporal region, the labeled cells were very narrowly restricted to the presylvian, the suprasylvian, and the splenial sulcus. The thalamic neurons projecting to the cortex were generally organized in a bandlike pattern which crossed nuclear borders. The majority of the cortico-cortical connections originated from sulcal areas next to the prefrontal, parietal, and cingulate cortex, that is, next to so-called association cortices. In the light of the present results the role of the insular cortex as a multifunctional association area is discussed, as well as its relation to other cortical centers.  相似文献   

14.
The posterior nuclear complex of the thalamus in rhesus, pigtailed and squirrel monkeys consists of the combined suprageniculate-limitans nucleus and an ill defined region of heterogeneous cell types extending anteriorly from the dorsal lobe of the medial geniculate body towards the posterior pole of the ventral nuclear complex. This region is referred to as the posterior nucleus. The cortical projections of each of these nuclei, together with those of the adjacent ventral, pulvinar and medial geniculate complexes, have been studied by means of the autoradiographic tracing technique. The suprageniculate-limitans nucleus, the main input to which is the superior colliculus, projects upon the granular insular area of the cortex. The medial portion of the posterior nucleus projects to the retroinsular field lying posterior to the second somatic sensory area. There is clinical and electrophysiological evidence to suggest that the retroinsular area may form part of a central pain pathway. The lateral portion of the posterior nucleus which is closely related to certain elements of the medial geniculate complex, projects to the postaditory cortical field. The ventroposterioinferior nucleus, which may be involved in vestibular function, projects to the dysgranular insular field. The principal medial geniculate nucleus can be subdivided into a ventral division that projects to field AI of the auditory cortex and a dorsal division that merges with the posterior nucleus; it is further subdivided into an anterodorsal component that projects to two fields on the superior temporal gyrus, together with a posterodorsal component in which separate cell populations project to areas lying anterior and medial to AI. The magnocellular medial geniculate nucleus, sometimes considered a part of the posterior complex, appears to project diffusely to layer I of all the auditory fields. The Auditory fields are bounded on three sides by the projection field of the medial nucleus of the pulvinar which also extends into the upper end of the lateral sulcus to bound the fields receiving fibers from the posterior nucleus. The topography of the areas receiving fibers from the posterior, medial geniculate and pulvinar complexes, taken in conjunction with the rotation of the primate temporal lobe, permits all of these fields to be compared with similar, better known areas in the cat brain.  相似文献   

15.
The granular and dysgranular insular subregions of the cortical taste area in rats are shown to connect anatomically with the homotopical regions in the opposite hemisphere through the corpus callosum. Cells of callosal efferents and terminals of callosal fibers were found in almost all cortical layers. The findings clarify the current understanding of the morphological substrate of callosal interactions in the gustatory system.  相似文献   

16.
The connections of the amygdala with the insular and temporal cortices were examined by injecting wheat germ agglutinin conjugated to HRP (WGA-HRP) into the rat cortex. Following injections into the posterior agranular insular area (AIp) or perirhinal cortex (PR), bands of labeled neurons extending across nuclear boundaries were observed in the amygdala. These neuronal bands involved cells in the lateral, basolateral, and basomedial nuclei as well as the periamygdaloid cortex. Other nuclei of the corticomedial amygdala and the ventral endopiriform nucleus also exhibited retrogradely labeled cells. Anterograde label was observed in nuclei containing labeled neurons and in the central nucleus. Injections into gustatory, somatosensory, and auditory neocortical areas located dorsal to AIp and PR labeled small numbers of cells in the lateral and basolateral nuclei. Injections into AIp, PR, and, to a lesser extent, dorsally adjacent neocortical areas produced both retrograde and anterograde labeling in the contralateral amygdala. The main nuclei with contralateral insular and temporal projections are the basomedial nucleus, ventral endopiriform nucleus, and nucleus of the lateral olfactory tract. The contralateral central nucleus and to a lesser extent the lateral nucleus exhibited anterograde labeling. The pattern of retrograde labeling seen with injections at different rostrocaudal levels of the AIp-PR continuum indicates that amygdalocortical projections to these areas exhibit an overlapping topographical organization. Comparison of the results of this study with findings on amygdaloprefrontal cortical efferents suggests that amygdaloid projections to the entire fronto-insulo-temporal mesocortical field are topographically organized.  相似文献   

17.
The orbitofrontal cortex of the monkey can be subdivided into a caudal agranular sector, a transitional dysgranular sector, and an anterior granular sector. The neural input into these sectors was investigated with the help of large horseradish peroxidase injections that covered the different sectors of orbitofrontal cortex. The distribution of retrograde labeling showed that the majority of the cortical projections to orbitofrontal cortex arises from a restricted set of telencephalic sources, which include prefrontal cortex, lateral, and inferomedial temporal cortex, the temporal pole, cingulate gyrus, insula, entorhinal cortex, hippocampus, amygdala, and claustrum. The posterior portion of the orbitofrontal cortex receives additional input from the piriform cortex and the anterolateral portion from gustatory, somatosensory, and premotor areas. Thalamic projections to the orbitofrontal cortex arise from midline and intralaminar nuclei, from the anteromedial nucleus, the medial dorsal nucleus, and the pulvinar nucleus. Orbitofrontal cortex also receives projections from the hypothalamus, nucleus basalis, ventral tegmental area, the raphe nuclei, the nucleus locus coeruleus, and scattered neurons of the pontomesencephalic tegmentum. The non-isocortical (agranular-dysgranular) sectors of orbitofrontal cortex receive more intense projections from the non-isocortical sectors of paralimbic areas, the hippocampus, amygdala, and midline thalamic nuclei, whereas the isocortical (granular) sector receives more intense projections from the dorsolateral prefrontal area, the granular insula, granular temporopolar cortex, posterolateral temporal cortex, and from the medial dorsal and pulvinar thalamic nuclei. Retrograde labeling within cingulate, entorhinal, and hippocampal cortices was most pronounced when the injection site extended medially into the dysgranular paraolfactory cortex of the gyrus rectus, an area that can be conceptualized as an orbitofrontal extension of the cingulate complex. These observations demonstrate that the orbitofrontal cortex has cytoarchitectonically organized projections and that it provides a convergence zone for afferents from heteromodal association and limbic areas. The diverse connections of orbitofrontal cortex are in keeping with the participation of this region in visceral, gustatory, and olfactory functions and with its importance in memory, motivation, and epileptogenesis.  相似文献   

18.
Recordings were made from taste neurons in granular and dysgranular areas of the insular cortex of anesthetized SD-rats from the age of 4 days to over 90 days (adults). Almost all of the taste neurons were detected in the dysgranular area prior to weaning, but the number in the granular area increased with age and exceeded the number in the dysgranular area after the age of 50 days. In the dysgranular area, most taste neurons, irrespective of the postnatal age, were located at layer 5. However, in the granular area they were found at a deeper layer, with the advance in age; e.g. layer 2-3 at 14-20 days to layer 5 in adults. Thus, taste afferents in granular and dysgranular areas of the insular cortex differ with advance in age.  相似文献   

19.
To examine whether cortical taste neurons use spatial codes for discriminating taste information, we investigated the spatial aspects of optical intrinsic signal (OIS) responses in the gustatory insular cortex (GC) elicited by the administration of two essential tastants, sucrose and NaCl, on the tongue. OIS responses to sucrose appeared in the rostral part of the GC, whereas those to NaCl appeared in the central part of the GC. Local anesthetization of the tongue abolished OIS responses, and the administration of distilled water elicited no OIS response. Thus, taste information elicited by sucrose and NaCl from the peripheral sensory organs is segregated in the GC, suggesting that the information from two essential tastants is assembled as spatial codes in the primary cortical taste area through the process of taste quality perception.  相似文献   

20.
The insula sends neural efferents to cortical areas from which it receives reciprocal afferent projections. A collective consideration of afferents and efferents indicates that the insula has connections with principal sensory areas in the olfactory, gustatory, somesthetic (SI and SII), and auditory AI and AII) modalities. There are additional connections with association areas for the visual (TEm), auditory (supratemporal plane), and somesthetic (posterior parietal cortex) modalities; with parameter cortex (area 6 and perhaps MII); with polymodal association cortex; and with a wide range of paralimbic areas in the orbital, temporopolar, and cingulate areas. The topographic distribution of these connections suggests that the posterodorsal insula is specialized for auditory-somesthetic-skeletomotor function whereas the anteroventral insula is related to olfactory-gustatory-autonomic function. Most of the insula, especially its anteroventral portions, have extensive interconnections with limbic structures. Through its connections with the amygdala, the insula provides a pathway for somatosen-sory, auditory, gustatory, olfactory, and visceral sensations to reach the limbic system. The cortical areas connected with the granular sector of the insula are also granular in architecture whereas virtually all the connections of the agranular insula arise from allocortical, agranular, or dysgranular areas. Thus, there is a correspondence between the architecture of insular sectors and the areas with which they have connections. The insula is heavily interconnected with temporopolar and lateral orbital areas. Furthermore, many cortical connections of the lateral orbital cortex are quite similar to those of the insula. These common connectivity patterns support the conclusion, based on architectonic observations, that the insulo-orbito-tempo-ropolar component of the paralimbic brain should be considered as an integrated unit of cerebral organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号