首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment.  相似文献   

2.
Schizophrenia is a psychiatric disorder that is associated with impaired functioning of the fronto-striatal network, in particular during reward processing. However, it is unclear whether this dysfunction is related to the illness itself or whether it reflects a genetic vulnerability to develop schizophrenia. Here, we examined reward processing in unaffected siblings of schizophrenia patients using functional magnetic resonance imaging. Brain activity was measured during reward anticipation and reward outcome in 27 unaffected siblings of schizophrenia patients and 29 healthy volunteers using a modified monetary incentive delay task. Task performance was manipulated online so that all subjects won the same amount of money. Despite equal performance, siblings showed reduced activation in the ventral striatum, insula, and supplementary motor area (SMA) during reward anticipation compared to controls. Decreased ventral striatal activation in siblings was correlated with sub-clinical negative symptoms. During the outcome of reward, siblings showed increased activation in the ventral striatum and orbitofrontal cortex compared to controls. Our finding of decreased activity in the ventral striatum during reward anticipation and increased activity in this region during receiving reward may indicate impaired cue processing in siblings. This is consistent with the notion of dopamine dysfunction typically associated with schizophrenia. Since unaffected siblings share on average 50% of their genes with their ill relatives, these deficits may be related to the genetic vulnerability for schizophrenia.Key words: ventral striatum, orbitofrontal cortex, ventromedial prefrontal cortex, monetary incentive delay task, genetic vulnerability, cue processing  相似文献   

3.
Video game playing is a frequent recreational activity. Previous studies have reported an involvement of dopamine-related ventral striatum. However, structural brain correlates of video game playing have not been investigated. On magnetic resonance imaging scans of 154 14-year-olds, we computed voxel-based morphometry to explore differences between frequent and infrequent video game players. Moreover, we assessed the Monetary Incentive Delay (MID) task during functional magnetic resonance imaging and the Cambridge Gambling Task (CGT). We found higher left striatal grey matter volume when comparing frequent against infrequent video game players that was negatively correlated with deliberation time in CGT. Within the same region, we found an activity difference in MID task: frequent compared with infrequent video game players showed enhanced activity during feedback of loss compared with no loss. This activity was likewise negatively correlated with deliberation time. The association of video game playing with higher left ventral striatum volume could reflect altered reward processing and represent adaptive neural plasticity.  相似文献   

4.
Patients with schizophrenia show deficits in motivation, reward anticipation and salience attribution. Several functional magnetic resonance imaging (fMRI) investigations revealed neurobiological correlates of these deficits, raising the hypothesis of a common basis in midbrain dopaminergic signaling. However, investigations of drug-na?ve first-episode patients with comprehensive fMRI tasks are still missing. We recruited unmedicated schizophrenia spectrum patients (N=27) and healthy control subjects (N=27) matched for sex, age and educational levels. An established monetary reward anticipation task in combination with a novel task aiming at implicit salience attribution without the confound of monetary incentive was applied. Patients showed reduced right ventral striatal activation during reward anticipation. Furthermore, patients with a more pronounced hypoactivation attributed more salience to neutral stimuli, had more positive symptoms and better executive functioning. In the patient group, a more differentially active striatum during reward anticipation was correlated positively to differential ventral striatal activation in the implicit salience attribution task. In conclusion, a deficit in ventral striatal activation during reward anticipation can already be seen in drug-na?ve, first episode schizophrenia patients. The data suggest that rather a deficit in differential ventral striatal activation than a generally reduced activation underlies motivational deficits in schizophrenia and that this deficit is related to the aberrant salience attribution.  相似文献   

5.
Event-related potential studies of reward processing have consistently identified the feedback negativity (FN), an early neural response that differentiates feedback indicating unfavorable versus favorable outcomes. Several important questions remain, however, about the nature of this response. In this study, the FN was recorded in response to monetary gains and losses during a laboratory gambling task, and temporospatial principal components analysis was used to separate the FN from overlapping responses. The FN was identified as a positive deflection at frontocentral recording sites that was enhanced for rewards compared with nonrewards. Furthermore, source localization techniques identified the striatum as a likely neural generator. These data indicate that this apparent FN reflects increased striatal activation in response to favorable outcomes that is reduced or absent for unfavorable outcomes, thereby providing unique information about the timing and nature of basal ganglia activity related to reward processing.  相似文献   

6.
Projections from cortical and subcortical limbic structures to the basal ganglia are predominantly directed to the ventral striatum. The present study investigated how the expectation of external events with behavioral significance is reflected in the activity of ventral striatal neurons. A total of 420 neurons were studied in macaque monkeys performing in a delayed go-no-go task. Lights of different colors instructed the animal to do an arm-reaching movement or refrain from moving, respectively, when a trigger light was illuminated a few seconds later. Task performance was reinforced by liquid reward in both situations. A total of 60 ventral striatal neurons showed sustained increases of activity before the occurrence of individual task events. In 43 of these neurons, activations specifically preceded the delivery of reward, independent of the movement or no-movement reaction. In a series of additional tests, these activations were time locked to the subsequent reward, disappeared within a few trials when reward was omitted, and were temporally unrelated to mouth movements. Changes in the appetitive value of the reward liquid modified the magnitude of activations, suggesting a possible relationship to the hedonic properties of the expected event. Activations also occurred when reward was delivered in a predictable manner outside of any behavioral task. These data suggest that neurons in the ventral striatum are activated during states of expectation of individual environmental events that are predictable to the subject through its past experience. The prevalence of activations related to the expectation of reward suggests that ventral striatal neurons have access to central representations of reward and thereby participate in the processing of information underlying the motivational control of goal-directed behavior.  相似文献   

7.
BACKGROUND: Although abnormalities in reward processing have been proposed to underlie attention-deficit/hyperactivity disorder (ADHD), this link has not been tested explicitly with neural probes. METHODS: This hypothesis was tested by using fMRI to compare neural activity within the striatum in individuals with ADHD and healthy controls during a reward-anticipation task that has been shown previously to produce reliable increases in ventral striatum activity in healthy adults and healthy adolescents. Eleven adolescents with ADHD (5 off medication and 6 medication-na?ve) and 11 healthy controls (ages 12-17 y) were included. Groups were matched for age, gender, and intelligence quotient. RESULTS: We found reduced ventral striatal activation in adolescents with ADHD during reward anticipation, relative to healthy controls. Moreover, ventral striatal activation was negatively correlated with parent-rated hyperactive/impulsive symptoms across the entire sample. CONCLUSIONS: These findings provide neural evidence that symptoms of ADHD, and impulsivity or hyperactivity in particular, may involve diminished reward anticipation, in addition to commonly observed executive dysfunction.  相似文献   

8.
Despite several modifications and the wide use of the monetary incentive delay paradigm (MID; Knutson et al. in J Neurosci 21(16):RC159, 2001a) for assessing reward processing, evidence concerning its application in children is scarce. A first child-friendly MID modification has been introduced by Gotlib et al. (Arch Gen Psychiatry 67(4): 380–387, 2010); however, comparability in the results of different tasks and validity across different age groups remains unclear. We investigated the validity of a newly modified MID task for children (CID) using functional magnetic resonance imaging. The CID comprises the integration of a more age appropriate feedback phase. We focused on reward anticipation and their neural correlates. Twenty healthy young adults completed the MID and the CID. Additionally, 10 healthy children completed the CID. As expected, both paradigms elicited significant ventral and dorsal striatal activity in young adults during reward anticipation. No differential effects of the tasks on reaction times, accuracy rates or on the total amount of gain were observed. Furthermore, the CID elicited significant ventral striatal activity in healthy children. In conclusion, these findings demonstrate evidence for the validity of the CID paradigm. The CID can be recommended for the application in future studies on reward processing in children, adolescents, and in adults.  相似文献   

9.
This study investigated the processing of increasing monetary reward in nonsmoking and smoking subjects. The choice of the subject populations has been motivated by the observation of differences between nonsmokers and smokers in response to rewarding stimuli in a previous study. Subjects performed a pattern recognition task with delayed response, while rCBF was measured with [H215O] PET. Correct responses to the task were reinforced with three different amounts of monetary reward. The subjects received the sum of the rewards at the end of the experiment. The results show that a cortico-subcortical loop, including the dorsolateral prefrontal cortex, the orbitofrontal cortex, the cingulate gyrus and the thalamus is involved in processing increasing monetary reward. Furthermore, the striatal response differentiates nonsmokers from smokers. Thus, we found significant correlations between rCBF increases in striatum and increasing monetary reward and between striatal rCBF increases and mood in nonsmokers, but not in smokers. Moreover, no significant mood changes among the different monetary rewards could be observed in smokers. We infer that the response of the striatum to reward is related to changes in subjective feelings. The differences between smokers and nonsmokers confirm our previous conclusions that the association between blood flow, performance, mood and amount of reward is more direct in nonsmokers.  相似文献   

10.
Standard economic indicators provide an incomplete picture of what we value both as individuals and as a society. Furthermore, canonical macroeconomic measures, such as GDP, do not account for non-market activities (e.g., cooking, childcare) that nevertheless impact well-being. Here, we introduce a computational tool that measures the affective value of experiences (e.g., playing a musical instrument without errors). We go on to validate this tool with neural data, using fMRI to measure neural activity in male and female human subjects performing a reinforcement learning task that incorporated periodic ratings of subjective affective state. Learning performance determined level of payment (i.e., extrinsic reward). Crucially, the task also incorporated a skilled performance component (i.e., intrinsic reward) which did not influence payment. Both extrinsic and intrinsic rewards influenced affective dynamics, and their relative influence could be captured in our computational model. Individuals for whom intrinsic rewards had a greater influence on affective state than extrinsic rewards had greater ventromedial prefrontal cortex (vmPFC) activity for intrinsic than extrinsic rewards. Thus, we show that computational modeling of affective dynamics can index the subjective value of intrinsic relative to extrinsic rewards, a “computational hedonometer” that reflects both behavior and neural activity that quantifies the affective value of experience.SIGNIFICANCE STATEMENT Traditional economic indicators are increasingly recognized to provide an incomplete picture of what we value as a society. Standard economic approaches struggle to accurately assign values to non-market activities that nevertheless may be intrinsically rewarding, prompting a need for new tools to measure what really matters to individuals. Using a combination of neuroimaging and computational modeling, we show that despite their lack of instrumental value, intrinsic rewards influence subjective affective state and ventromedial prefrontal cortex (vmPFC) activity. The relative degree to which extrinsic and intrinsic rewards influence affective state is predictive of their relative impacts on neural activity, confirming the utility of our approach for measuring the affective value of experiences and other non-market activities in individuals.  相似文献   

11.

Background

Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives.

Methods

This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC).

Results

We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding.

Limitations

The results we obtained using monetary stimuli might not generalize to other forms of reward.

Conclusion

Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral–frontal brain circuitry in recovered patients suggests an elevated degree of self-regulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom–up and top–down processes may be a trait marker of the disorder.  相似文献   

12.
The monetary incentive delay (MID) task (Knutson, 2000) is an imaging paradigm used to measure neural activity of incentive receipt anticipation. The task reliably elicits striatal activation and is commonly used with both adult and adolescent populations, but is not designed for use with children. In the current article, we present data on the newly designed ‘piñata task’ a child-friendly analog of the MID task. We demonstrate the task can be used successfully in children to study the neural correlates of anticipatory incentive processing. Results from a behavioral study and a neuroimaging study are reported. In Study #1, a sample of 8- to 14-year-old children demonstrates expected behavioral effects: subjects responded most quickly and most accurately on trials with greater potential rewards; older children displayed faster reaction times than younger. In Study #2, 8- to 12-year-old children showed neural activation patterns consistent with those seen in adults in the MID task: activation was modulated by cue incentive value in reward-processing regions, including the striatum, thalamus, mesial prefrontal cortex and insula. Study results suggest that the piñata task is a valid analog of the MID task, and can be used to assess neural correlates of reward processing in children as young as 8–9 years of age.  相似文献   

13.
Choice selection and reward anticipation: an fMRI study   总被引:9,自引:0,他引:9  
We examined neural activations during decision-making using fMRI paired with the wheel of fortune task, a newly developed two-choice decision-making task with probabilistic monetary gains. In particular, we assessed the impact of high-reward/risk events relative to low-reward/risk events on neural activations during choice selection and during reward anticipation. Seventeen healthy adults completed the study. We found, in line with predictions, that (i) the selection phase predominantly recruited regions involved in visuo-spatial attention (occipito-parietal pathway), conflict (anterior cingulate), manipulation of quantities (parietal cortex), and preparation for action (premotor area), whereas the anticipation phase prominently recruited regions engaged in reward processes (ventral striatum); and (ii) high-reward/risk conditions relative to low-reward/risk conditions were associated with a greater neural response in ventral striatum during selection, though not during anticipation. Following an a priori ROI analysis focused on orbitofrontal cortex, we observed orbitofrontal cortex activation (BA 11 and 47) during selection (particularly to high-risk/reward options), and to a more limited degree, during anticipation. These findings support the notion that (1) distinct, although overlapping, pathways subserve the processes of selection and anticipation in a two-choice task of probabilistic monetary reward; (2) taking a risk and awaiting the consequence of a risky decision seem to affect neural activity differently in selection and anticipation; and thus (3) common structures, including the ventral striatum, are modulated differently by risk/reward during selection and anticipation.  相似文献   

14.
The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI < 25). Participants underwent a functional magnetic resonance imaging (fMRI) session while performing two tasks that involve the processing of food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food‐evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U‐shape association between BMI and monetary‐evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food‐evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary‐evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666–677, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
BACKGROUND: Functional disturbances in reward-related brain systems are thought to play a role in the development of mood, impulse, and substance-abuse disorders. Studies in nonhuman primates have identified brain regions, including the dorsal/ventral striatum and orbital-frontal cortex, in which neural activity is modulated by reward. Recent studies in adults have concurred with these findings by observing reward-contingent blood oxygen level-dependent (BOLD) responses in these regions during functional magnetic resonance imaging (fMRI) paradigms; however, no previous studies indicate whether comparable modulations of neural activity exist in the brain reward systems of children and adolescents. METHODS: We used event-related fMRI and a behavioral paradigm modeled on previous work in adults to study brain responses to monetary gains and losses in psychiatrically healthy children and adolescents as part of a program examining the neural substrates of anxiety and depression in youth. RESULTS: Regions and time-courses of reward-related activity were similar to those observed in adults with condition-dependent BOLD changes in the ventral striatum and lateral and medial orbital-frontal cortex; specifically, these regions showed larger responses to positive than to negative feedback. CONCLUSIONS: These results provide further evidence for the value of event-related fMRI in examining reward systems of the brain, demonstrate the feasibility of this approach in children and adolescents, and establish a baseline from which to understand the pathophysiology of reward-related psychiatric disorders in youth.  相似文献   

16.
Reward detection, surprise detection and prediction-error signaling have all been proposed as roles for the ventral striatum (vStr). Previous neuroimaging studies of striatal function in schizophrenia have found attenuated neural responses to reward-related prediction errors; however, as prediction errors represent a discrepancy in mesolimbic neural activity between expected and actual events, it is critical to examine responses to both expected and unexpected rewards (URs) in conjunction with expected and UR omissions in order to clarify the nature of ventral striatal dysfunction in schizophrenia. In the present study, healthy adults and people with schizophrenia were tested with a reward-related prediction-error task during functional magnetic resonance imaging to determine whether schizophrenia is associated with altered neural responses in the vStr to rewards, surprise prediction errors or all three factors. In healthy adults, we found neural responses in the vStr were correlated more specifically with prediction errors than to surprising events or reward stimuli alone. People with schizophrenia did not display the normal differential activation between expected and URs, which was partially due to exaggerated ventral striatal responses to expected rewards (right vStr) but also included blunted responses to unexpected outcomes (left vStr). This finding shows that neural responses, which typically are elicited by surprise, can also occur to well-predicted events in schizophrenia and identifies aberrant activity in the vStr as a key node of dysfunction in the neural circuitry used to differentiate expected and unexpected feedback in schizophrenia.  相似文献   

17.
Accumulating evidence in the past decade implicates histone-modifying enzymes, such as class I histone deacetylases (HDACs), in learning and memory and, recently, habit formation. However, it is unclear whether HDACs play roles in complex cognitive function. To address this issue, we examined the role of dorsal striatal HDAC5, a class II HDAC, in reward-guided decision-making and associated neural encoding in rats. We first injected adeno-associated virus to overexpress a nuclear-localized HDAC5 in dorsal striatum (DS). We then recorded neural correlates from dorsolateral striatum (DLS) as rats performed two reward-guided choice tasks, in which we manipulated either the size of or delay to reward. During these tasks, rats first learned which of two options led to the better reward and then reversed those contingencies in a second block of trials. We found that rats with HDAC5 overexpression in DS responded faster and chose higher value reward more often during the first block of trials but were less able to reverse those contingencies in the second block of trials. At the neural level, HDAC5 overexpression in DS elevated and reduced the number of cells in DLS that increased firing to stimuli and reward, respectively, and shifted encoding toward cues that predicted more immediate reward. These results suggest that the HDAC5 overexpression in DS contributes to inflexible decision-making, demonstrating a role of histone-modifying enzymes in complex cognitive function.SIGNIFICANCE STATEMENT HDACs are important for learning and habit formation. Here, we expanded on these functions and found that overexpression of HDAC5 produced faster and more automatic behavior, and related changes in dorsolateral striatal neural firing in rats performing a value-based decision-making task. These results implicate HDAC5 as a potential therapeutic target for psychiatric conditions that impair decision-making and executive function.  相似文献   

18.
Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine’s actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [11C]raclopride‐PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [11C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D2/3 receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus‐plus‐constant‐infusion [11C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a ‘slot‐machine’ task. The ΔBP between conditions was assessed in striatal regions‐of‐interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BPND) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BPND reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males.  相似文献   

19.
Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [11C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine‐addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine‐addicted individuals. Synapse 64:397–402, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Nusslock R, Almeida JRC, Forbes EE, Versace A, Frank E, LaBarbara EJ, Klein CR, Phillips ML. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 2012: 14: 249–260. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective: Bipolar disorder may be characterized by a hypersensitivity to reward‐relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward‐processing and approach‐related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods: Twenty‐one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card‐guessing paradigm designed to examine reward‐related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results: Region‐of‐interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right‐sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward relative to healthy controls (p < 0.05, corrected). Whole‐brain analyses indicated that bipolar disorder, relative to healthy, participants also displayed elevated left‐lateral OFC (BA 47) activity during reward anticipation (p < 0.05, corrected). Conclusions: Elevated ventral striatal and OFC activity during reward anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward‐relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward‐related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号