首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McKeown MJ 《NeuroImage》2000,11(1):24-35
fMRI data are commonly analyzed by testing the time course from each voxel against specific hypothesized waveforms, despite the fact that many components of fMRI signals are difficult to specify explicitly. In contrast, purely data-driven techniques, by focusing on the intrinsic structure of the data, lack a direct means to test hypotheses of interest to the examiner. Between these two extremes, there is a role for hybrid methods that use powerful data-driven techniques to fully characterize the data, but also use some a priori hypotheses to guide the analysis. Here we describe such a hybrid technique, HYBICA, which uses the initial characterization of the fMRI data from Independent Component Analysis and allows the experimenter to sequentially combine assumed task-related components so that one can gracefully navigate from a fully data-derived approach to a fully hypothesis-driven approach. We describe the results of testing the method with two artificial and two real data sets. A metric based on the diagnostic Predicted Sum of Squares statistic was used to select the best number of spatially independent components to combine and utilize in a standard regressional framework. The proposed metric provided an objective method to determine whether a more data-driven or a more hypothesis-driven approach was appropriate, depending on the degree of mismatch between the hypothesized reference function and the features in the data. HYBICA provides a robust way to combine the data-derived independent components into a data-derived activation waveform and suitable confounds so that standard statistical analysis can be performed.  相似文献   

2.
Fetal magnetocardiography (fMCG) is the only noninvasive technique allowing effective assessment of fetal cardiac electrical activity during the prenatal period. The reconstruction of reliable magnetic field mapping associated with fetal heart activity would allow three-dimensional source localization. The efficiency of independent component analysis (ICA) in restoring reliable fetal traces from multichannel fMCG has already been demonstrated. In this paper, we describe a method of reconstructing a complete set of fetal signals hidden in multichannel fMCG preserving their correct spatial distribution, waveform, polarity and amplitude. Fetal independent components, retrieved with an ICA algorithm (FastICA), were interpolated (fICI method) using information gathered during FastICA iterations. The restored fetal signals were used to reconstruct accurate magnetic mapping for every millisecond during the average beat. The procedure was validated on fMCG recorded from the 22nd gestational week onward with a multichannel MCG system working in a shielded room. The interpolated traces were compared with those obtained with a standard technique, and the consistency of fetal mapping was checked evaluating source localizations relative to fetal echocardiographic information. Good magnetic field distributions during the P-QRS-T waves were attained with fICI for all gestational periods; their reliability was confirmed by three-dimensional source localizations.  相似文献   

3.
A visual task for semantic access involves a number of brain regions. However, previous studies either examined the role of each region separately using univariate approach, or analyzed a single brain network using covariance connectivity analysis. We hypothesize that these brain regions construct several functional networks underpinning a word semantic access task, these networks being engaged in different cognitive components with distinct temporal characters. In this paper, multivariate independent component analysis (ICA) was used to reveal these networks based on functional magnetic resonance imaging (fMRI) data acquired during a visual and an auditory word semantic judgment task. Our results demonstrated that there were three task-related independent components (ICs), corresponding to various cognitive components involved in the visual task. Furthermore, ICA separation on the auditory task showed consistency of the results with our hypothesis, regardless of the input modalities.  相似文献   

4.
The analysis of magnetogastrographic (MGG) signals has been limited to epochs of data with limited interference from extraneous signal components that are often present and may even dominate MGG data. Such artifacts can be of both biological (cardiac, intestinal and muscular activities, motion artifacts, etc) and non-biological (environmental noise) origin. Conventional methods-such as Butterworth and Tchebyshev filters-can be of great use, but there are many disadvantages associated with them as well as with other typical filtering methods because a large amount of useful biological information can be lost, and there are many trade-offs between various filtering methods. Moreover, conventional filtering cannot always fully address the physicality of the signal-processing problem in terms of extracting specific signals due to particular biological sources of interest such as the stomach, heart and bowel. In this paper, we demonstrate the use of fast independent component analysis (FICA) for the removal of both biological and non-biological artifacts from multi-channel MGG recordings acquired using a superconducting quantum intereference device (SQUID) magnetometer. Specifically, we show that the signal of gastric electrical control activity (ECA) can be isolated from SQUID data as an independent component even in the presence of severe motion, cardiac and respiratory artifacts. The accuracy of the method is analyzed by comparing FICA-extracted versus electrode-measured respiratory signals. It is concluded that, with this method, reliable results may be obtained for a wide array of magnetic recording scenarios.  相似文献   

5.
The saccadic eye movement system provides an excellent model for investigating basic cognitive processes and flexible control over behaviour. While the mechanism of pro-saccades (PS) is well known, in the case of the anti-saccade task (AS) it is still not clear which brain regions play a role in the inhibition of reflexive saccade to the target, nor what is the exact mechanism of vector inversion (i.e. orienting in the opposite direction). Independent component analysis (ICA) is one of the methods being used to establish temporally coherent brain regions, i.e. neural networks related to the task. In the present study ICA was applied to fMRI data from PS and AS experiments. The study revealed separate networks responsible for saccade generation into the desired direction, the inhibition of automatic responses, as well as vector inversion. The first function is accomplished by the eye fields network. The inhibition of automatic responses is associated with the executive control network. Vector inversion seems to be accomplished by the network comprising a large set of areas, including intraparietal sulcus, precuneus/posterior cingulate cortices, retrosplenial and parahippocampal. Those regions are associated with the parieto-medial temporal pathway, so far linked only to navigation. These results provide a new insight into understanding of the processes of the inhibition and vector inversion.  相似文献   

6.
The connectivity information contained in diffusion tensor imaging (DTI) has previously been used to parcellate cortical and subcortical regions based on their connectivity profiles. The aim of the current study is to investigate the utility of a novel approach to connectivity based parcellation of the thalamus using probabilistic tractography and independent component analysis (ICA). We use ICA to identify spatially coherent tractograms as well as their underlying seed regions, in a single step. We compare this to seed-based tractography results and to an established and reliable approach to parcellating the thalamus based on the dominant cortical connection from each thalamic voxel (Behrens et al., 2003a,b). The ICA approach identifies thalamo-cortical pathways that correspond to known anatomical connections, as well as parcellating the underlying thalamus in a spatially similar way to the connectivity based parcellation. We believe that the use of such a multivariate method to interpret the complex datasets created by probabilistic tractography may be better suited than other approaches to parcellating brain regions.  相似文献   

7.
利用独立成分分析实现成组的fMRI信号的盲分离   总被引:2,自引:1,他引:2  
独立成分分析(ICA)作为盲源分离的一种有效方法已经被成功的用于处理功能磁共振成像(fMRI)数据,但是通常人们只是考虑处理单个被试的数据,对于多个被试的情况却很少有人考虑,本文中分析了目前国际上比较流行的三种用ICA来处理多个被试的fMRI数据的方法,并且利用其中最好的一种方法对我们实验中获得的fMRI数据进行处理,结果表明这种方法可以快速有效地处理多个被试的fMRI数据.  相似文献   

8.
Task-related motion is a major source of noise in functional magnetic-resonance imaging (fMRI) time series. The motion effect usually persists even after perfect spatial realignment is achieved. Here, we propose a new method to remove a certain type of task-related motion effect that persists after realignment. The procedure consists of the following: the decomposition of the realigned time-series data into spatially-independent components using independent-component analysis (ICA); the automatic classification and rejection of the ICs of the task-related residual motion effects; and finally, a reconstruction without them. To classify the ICs, we utilized the associated task-related changes in signal intensity and variance. The effectiveness of the method was verified using an fMRI experiment that explicitly included head motion as a main effect. The results indicate that our ICA-based method removed the task-related motion effects more effectively than the conventional voxel-wise regression-based method.  相似文献   

9.
We present an MEG/EEG framework to reveal statistically significant brain areas engaged in the same cognitive process across trials without resort to averaging procedures. The variability of neuronal responses is assumed to take place only in the reconstructed time series of cortical sources and not in their positions. This hypothesis allows the use of the surrogate data method to detect recurrently active brain areas across trials adjusted with any cortically constrained focal MEEG inverse solution. Results obtained from synthetic data show that considering several trials enhances the accuracy of the source localisation. We apply this approach on MEG data recorded during a simple visual stimulation. The considered stimulus is frequency tagged in order to reveal the neural network correlated to its perception using phase synchronisation analysis. The results show consistent patterns of distributed synchronous networks centred on occipital areas.  相似文献   

10.
Delorme A  Sejnowski T  Makeig S 《NeuroImage》2007,34(4):1443-1449
Detecting artifacts produced in EEG data by muscle activity, eye blinks and electrical noise is a common and important problem in EEG research. It is now widely accepted that independent component analysis (ICA) may be a useful tool for isolating artifacts and/or cortical processes from electroencephalographic (EEG) data. We present results of simulations demonstrating that ICA decomposition, here tested using three popular ICA algorithms, Infomax, SOBI, and FastICA, can allow more sensitive automated detection of small non-brain artifacts than applying the same detection methods directly to the scalp channel data. We tested the upper bound performance of five methods for detecting various types of artifacts by separately optimizing and then applying them to artifact-free EEG data into which we had added simulated artifacts of several types, ranging in size from thirty times smaller (-50 dB) to the size of the EEG data themselves (0 dB). Of the methods tested, those involving spectral thresholding were most sensitive. Except for muscle artifact detection where we found no gain of using ICA, all methods proved more sensitive when applied to the ICA-decomposed data than applied to the raw scalp data: the mean performance for ICA was higher and situated at about two standard deviations away from the performance distribution obtained on raw data. We note that ICA decomposition also allows simple subtraction of artifacts accounted for by single independent components, and/or separate and direct examination of the decomposed non-artifact processes themselves.  相似文献   

11.
Real-time functional magnetic resonance imaging (fMRI) enables one to monitor a subject's brain activity during an ongoing session. The availability of online information about brain activity is essential for developing and refining interactive fMRI paradigms in research and clinical trials and for neurofeedback applications. Data analysis for real-time fMRI has traditionally been based on hypothesis-driven processing methods. Off-line data analysis, conversely, may be usefully complemented by data-driven approaches, such as independent component analysis (ICA), which can identify brain activity without a priori temporal assumptions on brain activity. However, ICA is commonly considered a time-consuming procedure and thus unsuitable to process the high flux of fMRI data while they are acquired. Here, by specific choices regarding the implementation, we exported the ICA framework and implemented it into real-time fMRI data analysis. We show that, reducing the ICA input to a few points within a time-series in a sliding-window approach, computational times become compatible with real-time settings. Our technique produced accurate dynamic readouts of brain activity as well as a precise spatiotemporal history of quasistationary patterns in the form of cumulative activation maps and time courses. Results from real and simulated motor activation data show comparable performances for the proposed ICA implementation and standard linear regression analysis applied either in a sliding-window or in a cumulative mode. Furthermore, we demonstrate the possibility of monitoring transient or unexpected neural activities and suggest that real-time ICA may provide the fMRI researcher with a better understanding and control of subjects' behaviors and performances.  相似文献   

12.
The simultaneous recording of EEG and fMRI is a promising method for combining the electrophysiological and hemodynamic information on cerebral dynamics. However, EEG recordings performed in the MRI scanner are contaminated by imaging, ballistocardiographic (BCG) and ocular artifacts. A number of processing techniques for the cancellation of fMRI environment disturbances exist: the most popular is averaged artifact subtraction (AAS), which performs well for the imaging artifact, but has some limitations in removing the BCG artifact, due to the variability in cardiac wave duration and shape; furthermore, no processing method to attenuate ocular artifact is currently used in EEG/fMRI, and contaminated epochs are simply rejected before signal analysis. In this work, we present a comprehensive method based on independent component analysis (ICA) for simultaneously removing BCG and ocular artifacts from the EEG recordings, as well as residual MRI contamination left by AAS. The ICA method has been tested on event-related potentials (ERPs) obtained from a visual oddball paradigm: it is very effective in attenuating artifacts in order to reconstruct clear brain signals from EEG acquired in the MRI scanner. It performs significantly better than the AAS method in removing the BCG artifact. Furthermore, since ocular artifacts can be completely suppressed, a larger number of trials is available for analysis. A comparison of ERPs inside the magnetic environment with those obtained out of the MRI scanner confirms that no systematic bias in the ERP waveform is produced by the ICA method.  相似文献   

13.

Background

In Cardiovascular Magnetic Resonance (CMR), the synchronization of image acquisition with heart motion is performed in clinical practice by processing the electrocardiogram (ECG). The ECG-based synchronization is well established for MR scanners with magnetic fields up to 3 T. However, this technique is prone to errors in ultra high field environments, e.g. in 7 T MR scanners as used in research applications. The high magnetic fields cause severe magnetohydrodynamic (MHD) effects which disturb the ECG signal. Image synchronization is thus less reliable and yields artefacts in CMR images.

Methods

A strategy based on Independent Component Analysis (ICA) was pursued in this work to enhance the ECG contribution and attenuate the MHD effect. ICA was applied to 12-lead ECG signals recorded inside a 7 T MR scanner. An automatic source identification procedure was proposed to identify an independent component (IC) dominated by the ECG signal. The identified IC was then used for detecting the R-peaks. The presented ICA-based method was compared to other R-peak detection methods using 1) the raw ECG signal, 2) the raw vectorcardiogram (VCG), 3) the state-of-the-art gating technique based on the VCG, 4) an updated version of the VCG-based approach and 5) the ICA of the VCG.

Results

ECG signals from eight volunteers were recorded inside the MR scanner. Recordings with an overall length of 87 min accounting for 5457 QRS complexes were available for the analysis. The records were divided into a training and a test dataset. In terms of R-peak detection within the test dataset, the proposed ICA-based algorithm achieved a detection performance with an average sensitivity (Se) of 99.2%, a positive predictive value (+P) of 99.1%, with an average trigger delay and jitter of 5.8 ms and 5.0 ms, respectively. Long term stability of the demixing matrix was shown based on two measurements of the same subject, each being separated by one year, whereas an averaged detection performance of Se = 99.4% and +P = 99.7% was achieved.Compared to the state-of-the-art VCG-based gating technique at 7 T, the proposed method increased the sensitivity and positive predictive value within the test dataset by 27.1% and 42.7%, respectively.

Conclusions

The presented ICA-based method allows the estimation and identification of an IC dominated by the ECG signal. R-peak detection based on this IC outperforms the state-of-the-art VCG-based technique in a 7 T MR scanner environment.  相似文献   

14.
We introduce two independent component analysis (ICA) methods, spatiotemporal ICA (stICA) and skew-ICA, and demonstrate the utility of these methods in analyzing synthetic and event-related fMRI data. First, stICA simultaneously maximizes statistical independence over both time and space. This contrasts with conventional ICA methods, which maximize independence either over time only or over space only; these methods often yield physically improbable solutions. Second, skew-ICA is based on the assumption that images have skewed probability density functions (pdfs), an assumption consistent with spatially localized regions of activity. In contrast, conventional ICA is based on the physiologically unrealistic assumption that images have symmetric pdfs. We combine stICA and skew-ICA, to form skew-stICA, and use it to analyze synthetic data and data from an event-related, left-right visual hemifield fMRI experiment. Results obtained with skew-stICA are superior to those of principal component analysis, spatial ICA (sICA), temporal ICA, stICA, and skew-sICA. We argue that skew-stICA works because it is based on physically realistic assumptions and that the potential of ICA can only be realized if such prior knowledge is incorporated into ICA methods.  相似文献   

15.
Cerebellar functional circuitry has been examined in several prior studies using resting fMRI data and seed-based procedures, as well as whole-brain independent component analysis (ICA). Here, we hypothesized that ICA applied to functional data from the cerebellum exclusively would provide increased sensitivity for detecting cerebellar networks compared to previous approaches. Consistency of group-level networks was assessed in two age- and sex-matched groups of twenty-five subjects each. Cerebellum-only ICA was compared to the traditional whole-brain ICA procedure to examine the potential gain in sensitivity of the novel method. In addition to replicating a number of previously identified cerebellar networks, the current approach revealed at least one network component that was not apparent with the application of whole brain ICA. These results demonstrate the gain in sensitivity attained through specifying the cerebellum as a target structure with regard to the identification of robust and reliable networks. The use of similar procedures could be important in further expanding on previously defined patterns of cerebellar functional anatomy, as well as provide information about unique networks that have not been explored in prior work. Such information may prove crucial for understanding the cognitive and behavioral importance of the cerebellum in health and disease.  相似文献   

16.
Linked independent component analysis for multimodal data fusion   总被引:1,自引:0,他引:1  
In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automatically find patterns of related changes across multiple modalities, when they exist. Independent Component Analysis (ICA) is a popular unsupervised learning method that can be used to find the modes of variation in neuroimaging data across a group of subjects. When multimodal data is acquired for the subjects, ICA is typically performed separately on each modality, leading to incompatible decompositions across modalities. Using a modular Bayesian framework, we develop a novel "Linked ICA" model for simultaneously modelling and discovering common features across multiple modalities, which can potentially have completely different units, signal- and contrast-to-noise ratios, voxel counts, spatial smoothnesses and intensity distributions. Furthermore, this general model can be configured to allow tensor ICA or spatially-concatenated ICA decompositions, or a combination of both at the same time. Linked ICA automatically determines the optimal weighting of each modality, and also can detect single-modality structured components when present. This is a fully probabilistic approach, implemented using Variational Bayes. We evaluate the method on simulated multimodal data sets, as well as on a real data set of Alzheimer's patients and age-matched controls that combines two very different types of structural MRI data: morphological data (grey matter density) and diffusion data (fractional anisotropy, mean diffusivity, and tensor mode).  相似文献   

17.
18.
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time-frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32±12s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time-intensity curves from .84±.19 before registration to .96±.06 after registration.  相似文献   

19.
背景:诱发响应信号足由刺激的时间锁定的,对于一些特定的刺激呈现小的个人差距,脑磁图数据中诱发响应的提取对人脑功能的认识很重要.目的:将独立元分析应用于分离混迭的脑磁图多通道信号中的信号源,提出一个简单有效的基于独立元分析的腑磁图数据分析和处理方法。设计:单一样本分析.单位:复旦大学电子工程系和复旦大学脑科学研究中心.对象:实验于2002—09在日本通信综合研究所关西先端研究中心完成,选择日本东京药科大学的健康志愿者1例,男性;年龄23岁。受试者自愿参加。方法:①对脑磁图进行必要的预处理,如低通滤波和主成分分解。②采用独立元分析的方法对取自148个通道的脑磁图的数据进行分析和处理,尤其是诱发反应的提取。③对提取的各独立成分进行周期平均。主要观察指标:应用独立元分析方法对脑磁图数据分析。结果:①脑磁图信号有较高的冗余度,信号能量的绝大部分集中在前30个主成分中,从前30个主成分中抽取干扰源和诱发响应活动源。②眼动干扰源仍被清楚地检测和分离在第1个独立元中,心电干扰被分离在第20个独立元中。③α波呈现在第2,3,7和9等独立元中。波(13-30Hz)呈现在第11和第12独立元中.④诱发响应是响应于刺激的周期性波形,集中在第5独立元中。结论:利用独立元分析,可从混迭的脑磁图数据中分离这些干扰源,更进一步,消除这些于扰成分,可得到净化的脑磁图数据。借助独立元分析,有效的分离α波、β波以及眼动、眨眼等神经活动源,有可能为它们的脑神经活动研究提供新的方法和途径.利用独立元分析方法成功的进行了听觉诱发反应的分离和提取.  相似文献   

20.
背景:诱发响应信号是由刺激的时间锁定的,对于一些特定的刺激呈现小的个人差距,脑磁图数据中诱发响应的提取对人脑功能的认识很重要。目的:将独立元分析应用于分离混迭的脑磁图多通道信号中的信号源,提出一个简单有效的基于独立元分析的脑磁图数据分析和处理方法。设计:单一样本分析。单位:复旦大学电子工程系和复旦大学脑科学研究中心。对象:实验于2002-09在日本通信综合研究所关西先端研究中心完成,选择日本东京药科大学的健康志愿者1例,男性;年龄23岁。受试者自愿参加。方法:①对脑磁图进行必要的预处理,如低通滤波和主成分分解。②采用独立元分析的方法对取自148个通道的脑磁图的数据进行分析和处理,尤其是诱发反应的提取。③对提取的各独立成分进行周期平均。主要观察指标:应用独立元分析方法对脑磁图数据分析。结果:①脑磁图信号有较高的冗余度,信号能量的绝大部分集中在前30个主成分中,从前30个主成分中抽取干扰源和诱发响应活动源。②眼动干扰源仍被清楚地检测和分离在第1个独立元中,心电干扰被分离在第20个独立元中。③α波呈现在第2,3,7和9等独立元中。波(13~30Hz)呈现在第11和第12独立元中。④诱发响应是响应于刺激的周期性波形,集中在第5独立元中。结论:利用独立元分析,可从混迭的脑磁图数据中分离这些干扰源,更进一步,消除这些干扰成分,可得到净化的脑磁图数据。借助独立元分析,有效的分离α波、β波以及眼动、眨眼等神经活动源,有可能为它们的脑神经活动研究提供新的方法和途径。利用独立元分析方法成功的进行了听觉诱发反应的分离和提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号