首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Holzer P 《Neuroscience letters》2004,361(1-3):192-195
The gut is a neurological organ, which implies that many neuroactive drugs such as opioid analgesics can seriously disturb gastrointestinal function, because many of the transmitters and transmitter receptors present in the brain are also found in the enteric nervous system. One of the most common manifestations of opioid-induced bowel dysfunction is constipation which results from blockade of peristalsis and intestinal fluid secretion. The discovery of opioid receptor antagonists with a peripherally restricted site of action, such as N-methylnaltrexone and alvimopan, makes it possible to normalize bowel function in opiate-treated patients without compromising central opioid analgesia. There is emerging evidence that opioid receptor antagonists may also have prokinetic actions, reversing pathological states of gastrointestinal hypomotility that are due to overactivity of the enteric opioid system.  相似文献   

2.
Inflammatory bowel disease is a chronic intestinal inflammatory condition, the pathology of which is incompletely understood. Gut inflammation causes significant changes in neurally controlled gut functions including cramping, abdominal pain, fecal urgency, and explosive diarrhea. These symptoms are caused, at least in part, by prolonged hyperexcitability of enteric neurons that can occur following the resolution of colitis. Mast, enterochromaffin and other immune cells are increased in the colonic mucosa in inflammatory bowel disease and signal the presence of inflammation to the enteric nervous system. Inflammatory mediators include 5-hydroxytryptamine and cytokines, as well as reactive oxygen species and the production of oxidative stress. This review will discuss the effects of inflammation on enteric neural activity and potential therapeutic strategies that target neuroinflammation in the enteric nervous system.  相似文献   

3.
Chagas disease is one of the most serious parasitic diseases of Latin America, with a social and economic impact far outweighing the combined effects of other parasitic diseases such as malaria, leishmaniasis, and schistosomiasis. In the chronic phase of this disease, the destruction of enteric nervous system components leads to megacolon development. Besides neurons, the enteric nervous system is constituted by enteric glial cells, representing an extensive but relatively poorly described population within the gastrointestinal tract. Several lines of evidence suggest that enteric glial cells represent an equivalent of central nervous system astrocytes. Previous data suggest that enteric glia and neurons are active in the enteric nervous system during intestinal inflammatory and immune responses. To evaluate whether these cells act as antigen-presenting cells, we investigated the expression of molecules responsible for activation of T cells, such as HLA-DR complex class II and costimulatory molecules (CD80 and CD86), by neurons and enteric glial cells. Our results indicate that only enteric glial cells of chagasic patients with megacolon express HLA-DR complex class II and costimulatory molecules, and hence they present the attributes necessary to act as antigen-presenting cells.  相似文献   

4.
Intestinal motility disorders are a common complication after surgery for neonatal intestinal atresia. Although intestinal atresia causes alterations in the enteric nervous system, especially in its inner structures (nervous fibers in the mucosa, submucous and deep muscular plexuses), how these alterations develop is unclear. The chick model is a useful research tool for investigating the ontogenesis of the enteric nervous system and the pathogenesis of congenital bowel diseases. More information is needed on the overlap between the developing enteric nervous system and intestinal atresia. Because vasoactive intestinal polypeptide and substance P are typical intestinal neuropeptides, and vasoactive intestinal polypeptide acts as a modulator in neurodevelopment and an inhibitor of smooth muscle cell proliferation, our aim in this study was to investigate the distribution of their immunoreactivity in the developing enteric nervous system of normal and experimental chick models. We studied gut specimens excised from normal chick embryos (aged 12–20 days) and experimental chick embryos (aged 15–20 days) that underwent surgical intervention on day 12 to induce intestinal atresia (atresic embryos) or simply to grasp the bowel loop (sham-operated embryos). In normal chick embryos we showed vasoactive intestinal polypeptide and substance P immunoreactivity from day 12 in the submucous and myenteric plexuses. The distribution of peptide immunoreactivity differed markedly in atresic and normal or sham-operated gut embryos. These differences especially affected the inner structures of the enteric nervous system of specimens proximal to atresia and were related to the severity of dilation. Because nerve structures in the gut wall mucosa and submucous and deep muscular plexuses play a role in motility control and stretch sensation in the intestinal wall, our findings in the chick embryo may help to explain how gut motility disorders develop after surgery for neonatal intestinal atresia.  相似文献   

5.
Intestinal epithelial cell regulation of mucosal inflammation   总被引:3,自引:0,他引:3  
The intestinal epithelium serves as one of human's primary interfaces with the outside world. This interface is very heavily colonized with bacteria and yet permits absorption of life-sustaining nutrients while protecting the tissues below from microbial onslaught. Although the gut epithelium had been classically thought to achieve this function primarily by functioning as a passive, albeit highly selective, barrier, research over the last decade has demonstrated that in fact the epithelium plays a very active role in protecting the host from the bacteria that colonize it. As a consequence of its mediation of mucosal immunity, intestinal epithelial dysfunction appears to be central to diseases associated with aberrant gut mucosal immune responses such as inflammatory bowel disease (IBD). This article reviews: (1) how the gut epithelium participates in regulating innate immune inflammatory responses to enteric pathogens, (2) how these responses may regulate the adaptive immune system, (3) mechanisms that may resolve acute inflammation, and (4) how epithelial dysfunction may participate in regulating both the active and chronic phases of IBD.  相似文献   

6.
Most of the avian enteric nervous system is derived from the vagal neural crest, but a minority of the neural cells in the hindgut, and to an even lesser extent in the midgut, are of lumbo-sacral crest origin. Since the lumbo-sacral contribution was not detected or deemed negligible in the absence of vagal cells, it had been hypothesised that lumbo-sacral neural crest cells require vagal crest cells to contribute to the enteric nervous system. In contrast, zonal aganglionosis, a rare congenital human bowel disease led to the opposite suggestion, that lumbo-sacral cells could compensate for the absence of vagal cells to construct a complete enteric nervous system. To test these notions, we combined E4 chick midgut and hindgut, isolated prior to arrival of neural precursors, with E1. 7 chick vagal and/or E2.7 quail lumbo-sacral neural tube as crest donors, and grafted these to the chorio-allantoic membrane of E9 chick hosts. Double and triple immuno-labelling for quail cells (QCPNA), neural crest cells (HNK-1), neurons and neurites (neurofilament) and glial cells (GFAP) indicated that vagal crest cells produced neurons and glia in large ganglia throughout the entire intestinal tissues. Lumbo-sacral crest contributed small numbers of neurons and glial cells in the presence or absence of vagal cells, chiefly in colorectum, but not in nearby small intestinal tissue. Thus for production of enteric neural cells the avian lumbo-sacral neural crest neither requires the vagal neural crest, nor significantly compensates for its lack. However, enteric neurogenesis of lumbo-sacral cells requires the hindgut microenvironment, whereas that of vagal cells is not restricted to a particular intestinal region.  相似文献   

7.
8.
In order to gain insight into the process of colonization of the bowel by the neural crest-derived precursors of enteric neurons, the development of the enteric nervous system was examined in lethal spotted mutant mice, a strain in which a segment of bowel is congenitally aganglionic. In addition, nerve fibers within the ganglionic and aganglionic zones of the gut of adult mutant mice were investigated with respect to their content of acetylcholinesterase, immunoreactive substance P, vasoactive intestinal polypeptide and serotonin, and their ability to take up [3Hserotonin. In both the fetal gut of developing mutant mice and in the mature bowel of adult animals abnormalities were limited to the terminal 2 mm of colon. The enteric nervous system in the proximal alimentary tract was indistinguishable from that of control animals for all of the parameters examined. In the terminal bowel, the normal plexiform pattern of the innervation and ganglion cell bodies were replaced by a coarse reticulum of nerve fibers that stained for acetylcholineserase and were continuous with extrinsic nerves running between the colon and the pelvic plexus. These coarse nerve bundles contained greatly reduced numbers of fibers that displayed substance P- and vasoactive intestinal polypeptide-like immunoreactivity, but a serotonergic innervation was totally missing from the aganglionic bowel. During development, acetylcholineserase and uptake of [3Hserotonin appeared in neural elements in the foregut of mutant mice on the 12th day of embryonic life (E12), about the same time these markers appeared in the forgut in normal mice. By day E14, neurons expressing one or the other marker were recognizable as far distally as about 2 mm from the anus. The appearance of neurons in segments of gut grown for 2 weeks as expiants in culture was used as an assay for the presence of neuronal progenitor cells in the segments of fetal bowel at the time of explantation. Both acetyl- cholinesterase activity and uptake of [3Hserotonin developed in neuronsin vitro in expiants of proximal bowel between days E10 and E17. At all times, however, the terminal 2mm of mutant but not normal fetal gut gave rise to aneuronal cultures. In some mutant mice rare, small, ectopically-situated pelvic ganglia were found just outside aganglionic segments of fetal colon. Uptake of [3Hserotonin, normally a marker for intrinsic enteric neurites, was found in these ganglia.The experiments suppport the hypothesis that the terminal 2 mm of the gut in lethal spotted mutant mice is intrinsically abnormal and thus cannot be colonized by the precursors of enteric neurons. The defect seems to be specific in that both cells and processes of intrinsic enteric neurons, including all serotonergic and most peptidergic neurites, seem to be excluded from the abnormal region while extrinsic nerve fibers, including sympathetic and sensory axons, are able to enter the aganglionic zones. Since examination of neural progenitor cells has failed to reveal a significant proximo-distal displacement of these cells through the enteric tube during development of the murine bowel, a defect in the migration of precursor cells down the alimentary tract to the terminal gut seems unlikely to be substantially involved in the pathogenesis of aganglionosis. This conclusion is supported by the normal enteric nervous system in proximal regions of the mutant gut and the presence of enteric type neurons outside of, but at the same level as the aganglionic region.  相似文献   

9.
Repulsive guidance molecules (RGMs) are recently identified proteins implicated in neuronal differentiation, migration, and apoptosis. However, in non-neural tissues a specific biological function of RGM is still unknown. In this study, we describe the expression patterns of the RGM members (a, b, and c) during embryonic and postnatal development of the small and large murine intestine. We demonstrated by RT-PCR, in situ hybridization, Western blot, and immunocytochemistry that subtypes RGMa and RGMb but not RGMc were strongly expressed in enteric ganglia cells of the fetal and adult gut. In contrast to the enteric nervous system, RGMa and RGMb expression in the intestinal epithelium started during postnatal gut development. Interestingly, both subtypes were predominantly expressed in the proliferative crypt compartment of the gut epithelium and in paneth cells of small intestine. The development-dependent expression in enteric ganglia and intestinal epithelial cells suggests that RGM may be involved in cell migration, differentiation, and apoptosis with similar cellular mechanisms as described in the central nervous system.  相似文献   

10.
The enteric nervous system (ENS) controls gastrointestinal key functions and is mainly characterized by two ganglionated plexus located in the gut wall: the myenteric plexus and the submucous plexus. The ENS harbors a high number and diversity of enteric neurons and glial cells, which generate neuronal circuitry to regulate intestinal physiology. In the past few years, the pivotal role of enteric neurons in the underlying mechanism of several intestinal diseases was revealed. Intestinal diseases are associated with neuronal death that could in turn compromise intestinal functionality. Enteric neurogenesis and regeneration is therefore a crucial aspect within the ENS and could be revealed not only during embryogenesis and early postnatal periods, but also in the adulthood. Enteric glia and/or enteric neural precursor/progenitor cells differentiate into enteric neurons, both under homeostatic and pathologic conditions beyond the perinatal period. The unique role of the intestinal microbiota and serotonin signaling in postnatal and adult neurogenesis has been shown by several studies in health and disease. In this review article, we will mainly focus on different recent studies, which advanced the concept of postnatal and adult ENS neurogenesis. Moreover, we will discuss the key factors and underlying mechanisms, which promote enteric neurogenesis. Finally, we will shortly describe neurogenesis of transplanted enteric neural progenitor cells. Anat Rec, 302:1345–1353, 2019. © 2019 Wiley Periodicals, Inc.  相似文献   

11.
Parkinson’s disease (PD) is a complicated neurodegenerative disease attributed to multifactorial changes. However, its pathological mechanism remains undetermined. Accumulating evidence has revealed the emerging functions of gut microbiota and microbial metabolites, which can affect both the enteric nervous system and the central nervous system via the microbiota-gut-brain axis. Accordingly, intestinal dysbiosis might be closely associated with PD. This review explores alterations to gut microbiota, correlations with clinical manifestations of PD, and briefly probes the underlying mechanisms. Next, the highly controversial roles of microbial metabolites including short-chain fatty acids (SCFAs), H2 and H2S are discussed. Finally, the pros and cons of the current treatments for PD, including those targeting microbiota, are assessed. Advancements in research techniques, further studies on levels of specific strains and longitudinal prospective clinical trials are urgently needed for the identification of early diagnostic markers and the development of novel therapeutic approaches for PD.  相似文献   

12.
The enteric nervous system is formed by neural crest cells that migrate, proliferate, and differentiate into neurons and glia distributed in ganglia along the gastrointestinal tract. In the developing embryo some enteric crest cells cease their caudal movements, whereas others continue to migrate. Subsequently, the enteric neurons form a reticular network of ganglia interconnected by axonal projections. We studied the developing avian gut to characterize the pattern of migration of the crest cells, and the relationship between migration and differentiation. Crest cells at the leading edge of the migratory front appear as strands of cells; isolated individual crest cells are rarely seen. In the foregut and midgut, these strands are located immediately beneath the serosa. In contrast, crest cells entering the colon appear first in the deeper submucosal mesenchyme and later beneath the serosa. As the neural crest wavefront passes caudally, the crest cell cords become highly branched, forming a reticular lattice that presages the mature organization of the enteric nervous system. Neurons and glia first appear within the strands at the advancing wavefront. Later neurons are consistently located at the nodes where branches of the lattice intersect. In the most rostral foregut and in the colon, some neurons initially appear in close association with extrinsic nerve fibers from the vagus and Remak's nerve, respectively. We conclude that crest cells colonize the gut as chains of cells and that, within these chains, both neurons and glia appear close to the wavefront.  相似文献   

13.
14.
An increasing body of evidence has accumulated in recent years supporting the existence of neural stem cells in the adult gut. There are at least three groups that have obtained them using different methodologies and have described them in vitro. There is a growing amount of knowledge on their biology, but many questions are yet unanswered. Among these questions is whether these cells are part of a permanent undifferentiated pool or are recruited in a regular basis; in addition, the factors and genes involved in their survival, proliferation, migration, and differentiation are largely unknown. Finally, with between 10 and 20% of adults suffering from diseases involving the enteric nervous system, most notably irritable bowel syndrome and gastroesophageal reflux, what is the possible role of enteric nervous stem cells in health and disease? Developmental Dynamics 236:20–32, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

15.
Cell migration is fundamental to organogenesis. During development, the enteric neural crest cells (ENCCs) that give rise to the enteric nervous system (ENS) migrate and colonize the entire length of the gut, which undergoes substantial growth and morphological rearrangement. How ENCCs adapt to such changes during migration, however, is not fully understood. Using time-lapse imaging analyses of mouse ENCCs, we show that a population of ENCCs crosses from the midgut to the hindgut via the mesentery during a developmental time period in which these gut regions are transiently juxtaposed, and that such 'trans-mesenteric' ENCCs constitute a large part of the hindgut ENS. This migratory process requires GDNF signaling, and evidence suggests that impaired trans-mesenteric migration of ENCCs may underlie the pathogenesis of Hirschsprung disease (intestinal aganglionosis). The discovery of this trans-mesenteric ENCC population provides a basis for improving our understanding of ENS development and pathogenesis.  相似文献   

16.
Hirschsprung disease (distal intestinal aganglionosis, HSCR) is a multigenic disorder with incomplete penetrance, variable expressivity, and a strong male gender bias. Recent studies demonstrated that these genetic patterns arise because gene interactions determine whether enteric nervous system (ENS) precursors successfully proliferate and migrate into the distal bowel. We now demonstrate that male gender bias in the extent of distal intestinal aganglionosis occurs in mice with Ret dominant-negative mutations (RetDN) that mimic human HSCR. We hypothesized that male gender bias could result from reduced expression of a gene already known to be essential for ENS development. Using quantitative real-time polymerase chain reaction (PCR) we demonstrated reduced levels of endothelin converting enzyme-1 and endothelin-3 mRNA in the male mouse bowel at the time that ENS precursors migrate into the colon. Other HSCR-associated genes are expressed at comparable levels in male and female mice. Testosterone and Mullerian inhibiting substance had no deleterious effect on ENS precursor development, but adding EDN3 peptide to E11.5 male RetDN heterozygous mouse gut explants in organ culture significantly increased the rate of ENS precursor migration through the bowel.  相似文献   

17.
人类肠道微生态是一个包含大量肠道微生物的复杂生态系统,近年来研究发现肠道细菌过度繁殖可导致胃肠道动力失调及内脏神经敏感性改变,最终导致肠易激综合征的发生,而肠道菌群引起的肠粘膜异常免疫应答损伤被认为是炎症性肠病发病机制的关键所在,另外,肠道微生态还可过参与炎症性肠病的病理生理过程或直接代谢产生致癌物质影响肠道肿瘤的发生发展。由此我们发现,肠道微生态不仅参与了消化吸收、物质代谢等胃肠道基本生理过程,还直接关系到肠道疾病的发生。本文将就目前肠道微生态与肠道疾病的研究进展进行简单综述。  相似文献   

18.
The enteric nervous system shares embryological, morphological, neurochemical, and functional features with the central nervous system. In addition to neurons and glia, the CNS includes a third component, microglia, which are functionally and immunophenotypically similar to macrophages, but a similar cell type has not previously been identified in enteric ganglia. In this study we identify a population of macrophages in the enteric ganglia, intermingling with the neurons and glia. These intraganglionic macrophages (IMs) are highly ramified and express the hematopoietic marker CD45, major histocompatibility complex (MHC) class II antigen, and chB6, a marker specific for B cells and microglia in avians. These IMs do not express antigens typically associated with T cells or dendritic cells. The CD45+/ChB6+/MHCII+ signature supports a hematopoietic origin and this was confirmed using intestinal chimeras in GFP‐transgenic chick embryos. The presence of green fluorescent protein positive (GFP+)/CD45+ cells in the intestinal graft ENS confirms that IMs residing within enteric ganglia have a hematopoietic origin. IMs are also found in the ganglia of CSF1RGFP chicken and CX3CR1GFP mice. Based on the expression pattern and location of IMs in avians and rodents, we conclude that they represent a novel non‐neural crest‐derived microglia‐like cell population within the enteric ganglia.  相似文献   

19.
Alteration in gastrointestinal (GI) motility occurs in a variety of clinical settings which include acute enteritis, inflammatory bowel disease, intestinal pseudo-obstruction and irritable bowel syndrome (IBS). Most disorders affecting the GI tract arise as a result of noxious stimulation from the lumen via either microbes or chemicals. However, it is not clear how injurious processes initiated in the mucosa alter function in the deeper motor apparatus of the gut wall. Activation of immune cells may lead to changes in motor-sensory function in the gut resulting in the development of an efficient defence force which assists in the eviction of the noxious agent from the intestinal lumen. This review addresses the interface between immune and motor system in the context of host resistance based on the studies in murine model of enteric nematode parasite infection. These studies clearly demonstrate that the infection-induced T helper 2 type immune response is critical in producing the alterations of infection-induced intestinal muscle function in this infection and that this immune-mediated alteration in muscle function is associated with host defence mechanisms. In addition, by manipulating the host immune response, it is possible to modulate the accompanying muscle function, and this may have clinical relevance. These observations not only provide valuable information on the immunological control of gut motor function and its role in host defence in enteric infection, but also provide a basis for understanding pathophysiology of gastrointestinal motility disorders such as in IBS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号