首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that in a genetically mixed assemblage of worker honey bees, individual workers would behave differently toward unfamiliar sisters than toward unfamiliar nonsisters. Groups of worker honey bees of mixed genetic composition were assembled by collecting pupae from separate colonies and placing the worker bees together on eclosion. A total of 10 workers, 5 from each of two kin groups, were used to form each group. When the workers were 5 days old, a worker of one of the two kin groups was introduced into the mixed group. This worker had previously been held in a group of its sisters, without contact with queen or nonsister bees. The interactions with the introduced bee indicate that in a mixed kin group, individual workers learn the composite identity of the group and do not attack unfamiliar bees differentially on the basis of kinship. However, kinship does influence the total number of interactions in which an introduced bee engages when placed in a genetically mixed group; bees interacted significantly more often with sisters than with nonsisters. There was a trend for bees to be involved in more feeding interactions with sisters. This finding indicates an ability of a bee to learn and use its own cues. In mixed groups, each bee maintains its genotypically correlated identity; the bees' odors do not comingle into a “group” or “gestalt” odor. The significance of these results is discussed in light of the genetic structure of natural colonies of honey bees.  相似文献   

2.
Queen pheromone modulates brain dopamine function in worker honey bees   总被引:1,自引:0,他引:1  
Honey bee queens produce a sophisticated array of chemical signals (pheromones) that influence both the behavior and physiology of their nest mates. Most striking are the effects of queen mandibular pheromone (QMP), a chemical blend that induces young workers to feed and groom the queen and primes bees to perform colony-related tasks. But how does this pheromone operate at the cellular level? This study reveals that QMP has profound effects on dopamine pathways in the brain, pathways that play a central role in behavioral regulation and motor control. In young worker bees, dopamine levels, levels of dopamine receptor gene expression, and cellular responses to this amine are all affected by QMP. We identify homovanillyl alcohol as a key contributor to these effects and provide evidence linking QMP-induced changes in the brain to changes at a behavioral level. This study offers exciting insights into the mechanisms through which QMP operates and a deeper understanding of the queen's ability to regulate the behavior of her offspring.  相似文献   

3.
4.
Previous research showed that the presence of older workers causes a delayed onset of foraging in younger individuals in honey bee colonies, but a specific worker inhibitory factor had not yet been identified. Here, we report on the identification of a substance produced by adult forager honey bees, ethyl oleate, that acts as a chemical inhibitory factor to delay age at onset of foraging. Ethyl oleate is synthesized de novo and is present in highest concentrations in the bee's crop. These results suggest that worker behavioral maturation is modulated via trophallaxis, a form of food exchange that also serves as a prominent communication channel in insect societies. Our findings provide critical validation for a model of self-organization explaining how bees are able to respond to fragmentary information with actions that are appropriate to the state of the whole colony.  相似文献   

5.
Three experiments were performed to determine the role of juvenile hormone (JH) in worker reproduction in queenless colonies of honey bees. In Experiment 1, egg-laying workers had low hemolymph titers of JH, as did bees engaged in brood care, while foragers had significantly higher titers. Experiment 2 confirmed these findings by demonstrating that laying workers have significantly lower rates of JH biosynthesis than foragers do. In Experiment 3, ovary development was inhibited slightly by application of the JH analog methoprene to 1-day-old bees, but was not affected by application to older bees, at least some already displaying egg-laying behavior. These results, which are consistent with earlier findings for queen honey bees, are contrary to a common model of insect reproduction, in which elevated JH titers trigger ovary development, which then leads to oviposition. Previous experiments have demonstrated that JH regulates nonreproductive behavior in workers that is associated with colony division of labor; perhaps this function is incompatible with a traditional role for JH in reproduction.  相似文献   

6.
Life expectancy of honey bees (Apis mellifera L.) is of general interest to gerontological research because its variability among different groups of bees is one of the most striking cases of natural plasticity of aging. Worker honey bees spend their first days of adult life working in the nest, then transition to foraging and die between 4 and 8 weeks of age. Foraging is believed to be primarily responsible for the early death of workers. Three large-scale experiments were performed to quantitatively assess the importance of flight activity, chronological age, extrinsic mortality factors and foraging specialization. Forager mortality was higher than in-hive bee mortality. Most importantly however, reducing the external mortality hazards and foraging activity did not lead to the expected strong extension of life. Most of the experimental effects were attributable to an earlier transition from hive tasks to foraging. This transition is accompanied by a significant mortality peak. The age at the onset of foraging is the central variable in worker life-history and behavioral state was found more important than chronological age for honey bee aging. However, mortality risk increased with age and the negative relation between pre-foraging and foraging lifespan indicate some senescence irrespective of behavioral state. Overall, honey bee workers exhibit a logistic mortality dynamic which is mainly caused by the age-dependent transition from a low mortality pre-foraging state to a higher mortality foraging state.  相似文献   

7.
Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.  相似文献   

8.
The robustness and plasticity of working memory were investigated in honey bees by using a delayed matching-to-sample (DMTS) paradigm. The findings are summarized as follows: first, performance in the DMTS task decreases as the duration between the presentation of the sample stimulus and the presentation of the comparison stimuli is increased. This decrease is well approximated by an exponential decay function. Performance is significantly better than random-choice level even at delays as long as 5 sec and is reduced to random-choice levels at an average delay time of 8.68 +/- 0.06 sec. Second, when the DMTS task involves two samples (one relevant, the other irrelevant), bees can be trained to learn to use the relevant sample to perform the task if (i) the relevant sample is always at a fixed position, or (ii) the relevant sample always has the same place in the sequence of presentation (always first or always second). Bees that have learned to use the relevant sample and to ignore the irrelevant sample can generalize this learning, and apply it to novel sets of sample and comparison stimuli that they have never previously encountered. The findings point to a remarkably robust, and yet plastic, working memory in the honey bee.  相似文献   

9.
10.
Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.  相似文献   

11.
Honey bees (Apis mellifera) are eusocial insects that exhibit striking caste-specific differences in longevity. Queen honey bees live on average 1–2 years whereas workers live on average 15–38 days in the summer and 150–200 days in the winter. Previous studies of senescence in the honey bee have focused on establishing the importance of extrinsic mortality factors (predation, weather) and behavior (nursing and foraging) in worker bee longevity. However, few studies have tried to elucidate the mechanisms that allow queen honey bees to achieve their long lifespan without sacrificing fecundity. Here, we review both types of studies and emphasize the importance of understanding both proximate and ultimate causes of the unusual life history of honey bee queens.  相似文献   

12.
Sleep is essential for basic survival, and insufficient sleep leads to a variety of dysfunctions. In humans, one of the most profound consequences of sleep deprivation is imprecise or irrational communication, demonstrated by degradation in signaling as well as in receiving information. Communication in nonhuman animals may suffer analogous degradation of precision, perhaps with especially damaging consequences for social animals. However, society-specific consequences of sleep loss have rarely been explored, and no function of sleep has been ascribed to a truly social (eusocial) organism in the context of its society. Here we show that sleep-deprived honey bees (Apis mellifera) exhibit reduced precision when signaling direction information to food sources in their waggle dances. The deterioration of the honey bee's ability to communicate is expected to reduce the foraging efficiency of nestmates. This study demonstrates the impact of sleep deprivation on signaling in a eusocial animal. If the deterioration of signals made by sleep-deprived honey bees and humans is generalizable, then imprecise communication may be one detrimental effect of sleep loss shared by social organisms.  相似文献   

13.
A series of experiments with honey bees demonstrate that their small brains nevertheless possess the ability for topological perception. Bees rapidly learned to discriminate patterns that are topologically different, and they generalized the learned cue to other novel patterns. By contrast, discrimination of topologically equivalent patterns was learned much more slowly and not as well. Thus, although the global nature of topological properties makes their computation difficult, topology may be a fundamental component of the vocabulary by which visual systems represent and characterize objects.  相似文献   

14.
Honey bees, Apis mellifera, acquire nest-mate recognition cues from wax, the predominant material used in nest construction. Exposure of a newly emerged worker bee to wax-comb substrate significantly reduced the acceptability of that worker to sister bees. Cues acquired from the comb provided colony-specific information about the identity of worker bees; moreover, the effect of comb exposure has been previously shown to override individually produced cues. Food odors (anise oil), when dissolved in paraffin wax, affected worker-recognition characteristics but food odors did not affect these characteristics when fed to bees in sugar candy. Paraffin wax alone did not affect the recognition cues of bees, showing that the wax can be a neutral medium for the transmission of cues. The wax comb in the colony and the hydrocarbon outer layer of the bee cuticle may be a continuous medium for any hydrocarbon-soluble substances used by honey bees in nest-mate recognition; if so, a mechanism by which environmental cues are acquired by honey bees is provided.  相似文献   

15.
16.
The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.  相似文献   

17.
18.
Aging is associated with cognitive impairment in numerous animal species. Across taxa, decline in learning performance is linked to chronological age. The honey bee (Apis mellifera), in contrast, offers an opportunity to study such aspects of aging largely independent of age per se. This is because foraging onset can be decoupled from chronological age, although workers typically first perform tasks inside the nest and later forage outside the hive. Further, early phases of foraging are characterized by growth of specific brain neuropiles, whereas late phases of the forager life-stage are accompanied by accelerated rates of physiological senescence. Yet, it is unclear if these patterns of senescence include cognitive function. The flexibility of worker ontogeny, however, suggests that the bee can become an attractive model for studies of plasticity in cognitive aging that ultimately may lead to insight into mechanisms that govern age-related cognitive decline. To address this potential, we studied effects of honey bee chronological age and of social role on sensory sensitivity and associative olfactory learning performance. Our results show a decline in olfactory acquisition performance that is linked to social role, but not to chronological age. This decline occurs only in foragers with long foraging duration, but at the same time the foragers show less generalization of odors, which is indicative of more precise learning. Foragers that are reversed from foraging to nest tasks, furthermore, do not show deficits in olfactory acquisition. These results point to complex effects of aging on associative learning in honey bees.  相似文献   

19.
20.
The concentration of fluorescent pigment associated with the oxidation of polyunsaturated lipids is significantly higher in old worker bees than in newly emerged worker adults. Pentane and hexane are produced by bees, presumably by decomposition of lipid hydroperoxides formed by peroxidation of membrane lipids. Protection against lipid peroxidation by vitamin E and glutathione peroxidase appears to be minimal in bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号