首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lampreys are useful models for studying the evolution of the nervous system of vertebrates. Here we used immunofluorescence and tract-tracing methods to study new aspects of the neuropeptide Y-immunoreactive (NPY-ir) system in larval sea lampreys. NPY-ir neurons were observed in brain nuclei that contain NPY-ir cells in other lamprey species. Moreover, a group of NPY-ir cells that migrated away the periventricular layer was observed in the lateral part of the dorsal hypothalamus, which suggests a role for NPY in feeding behavior in lampreys. We also report NPY-ir cells in the dorsal column nucleus, which appears to be unique among vertebrates, and in the habenula. A combination of tract-tracing and immunohistochemical labeling demonstrated the presence of spinal projecting NPY-ir reticular cells in the anterior rhombencephalic reticular formation, and the relationships between the NPY-ir system and the reticulospinal nuclei and some afferent systems. The colocalization of catecholamines and GABA in lamprey NPY-ir neurons was investigated by double immunofluorescence methods. Colocalization of tyrosine hydroxylase (TH) and NPY immunoreactivities was not observed in any brain neuron, although reported in amphibians and mammals. The frequent presence of NPY-ir terminals on TH-ir cells suggests that NPY modulates the activity of some dopaminergic nuclei in lampreys. Colocalization of NPY and GABA immunoreactivities was frequently observed in neurons of different rhombencephalic and diencephalic NPY-ir populations. These results in lampreys suggest that the coexpression of NPY and GABA in neurons appeared early on in the brains of vertebrates.  相似文献   

2.
In order to analyze the presence of a reelin-like protein in the brain of a primitive vertebrate with a laminar-type brain, such as the sea lamprey, Western blot and immunohistochemical approaches were employed by using the G10 and 142 reelin-specific monoclonal antibodies. Western blots of lamprey brain extracts showed bands of about 400 kDa, 180 kDa and others below 100 kDa; similar bands were observed in samples from rat cerebellum. In different larval stages there was a prominent reelin immunolabeling associated with the olfactory bulb, pallial regions, habenula, hypothalamus and optic tectum. In addition, the olfactory and optic tracts, as well as the afferent and efferent (fasciculus retroflexus) tracts of the habenular ganglion, also showed immunopositivity in these stages. Interestingly, the highest level of labeling was observed in premetamorphic larvae, just prior to entering the metamorphic stage. These data indicate that reelin expression is also prominent in brains of primitive vertebrates without layered cortical regions, suggesting that some physiological roles of reelin not related to the regulation of neuronal migration in layered cortical regions (i.e. involvement in axon pathfinding, synaptogenesis, dendritic arborization and neuronal plasticity) might have appeared earlier in evolution.  相似文献   

3.
4.
Colocalization of the classic neurotransmitters serotonin (5-HT) and γ-aminobutyric acid (GABA) (or the enzyme that synthesizes the latter, glutamate decarboxylase) has been reported in a few neurons of the rat raphe magnus-obscurus nuclei. However, there are no data on the presence of neurochemically similar neurons in the brain of non-mammalian vertebrates. Lampreys are the oldest extant vertebrates and may provide important data on the phylogeny of neurochemical systems. The colocalization of 5-HT and GABA in neurons of the sea lamprey brain was studied using antibodies directed against 5-HT and GABA and confocal microscopy. Colocalization of the neurotransmitters was observed in the diencephalon and the isthmus. In the diencephalon, about 87% of the serotonergic cells of the rostral tier of the dorsal thalamus (close to the zona limitans) exhibited GABA immunoreactivity. In addition, occasional cells double-labelled for GABA and 5-HT were observed in the hypothalamic tuberal nucleus and the pretectum. Of the three serotonergic isthmic subgroups already recognized in the sea lamprey isthmus (dorsal, medial and ventral), such double-labelled cells were only observed in the ventral subgroup (about 61% of the serotonergic cells in the ventral subgroup exhibited GABA immunoreactivity). An equivalence between these lamprey isthmic cells and the serotonergic/GABAergic raphe cells of mammals is suggested. Present findings suggest that serotonergic/GABAergic neurons are more extensive in lampreys than in the rat and probably appeared before the separation of agnathans and gnathostomes. Cotransmission by release of 5-HT and GABA by the here-described lamprey brain neurons is proposed.  相似文献   

5.
6.
Songbirds produce learned vocalizations that are controlled by a specialized network of neural structures, the song control system. Several nuclei in this song control system demonstrate a marked degree of adult seasonal plasticity. Nucleus volume varies seasonally based on changes in cell size or spacing, and in the case of nucleus HVC and area X on the incorporation of new neurons. Reelin, a large glycoprotein defective in reeler mice, is assumed to determine the final location of migrating neurons in the developing brain. In mammals, reelin is also expressed in the adult brain but its functions are less well characterized. We investigated the relationships between the expression of reelin and/or its receptors and the dramatic seasonal plasticity in the canary (Serinus canaria) brain. We detected a broad distribution of the reelin protein, its mRNA and the mRNAs encoding for the reelin receptors (VLDLR and ApoER2) as well as for its intracellular signaling protein, Disabled1. These different mRNAs and proteins did not display the same neuroanatomical distribution and were not clearly associated, in an exclusive manner, with telencephalic brain areas that incorporate new neurons in adulthood. Song control nuclei were associated with a particular specialized expression of reelin and its mRNA, with the reelin signal being either denser or lighter in the song nucleus than in the surrounding tissue. The density of reelin-immunoreactive structures did not seem to be affected by 4 weeks of treatment with exogenous testosterone. These observations do not provide conclusive evidence that reelin plays a prominent role in the positioning of new neurons in the adult canary brain but call for additional work on this protein analyzing its expression comparatively during development and in adulthood with a better temporal resolution at critical points in the reproductive cycle when brain plasticity is known to occur.  相似文献   

7.
8.
Since its discovery, the possible corelease of classic neurotransmitters from neurons has received much attention. Colocalization of monoamines and amino acidergic neurotransmitters [mainly glutamate and dopamine (DA) or serotonin] in mammalian neurons has been reported. However, few studies have dealt with the colocalization of DA and γ‐aminobutyric acid (GABA) in neurons. With the aim of providing some insight into the colocalization of neurotransmitters during early vertebrate phylogeny, we studied GABA expression in dopaminergic neurons in the sea lamprey brain by using double‐immunofluorescence methods with anti‐DA and anti‐GABA antibodies. Different degrees of colocalization of DA and GABA were observed in different dopaminergic brain nuclei. A high degree of colocalization (GABA in at least 25% of DA‐immunoreactive neurons) was observed in populations of the caudal rhombencephalon, ventral isthmus, postoptic commissure nucleus, preoptic nucleus and in granule‐like cells of the olfactory bulb. A new DA‐immunoreactive striatal population that showed colocalization with GABA in about a quarter of its neurons was observed. In the periventricular hypothalamus, colocalization was observed in only a few cells, despite the abundance of DA‐ and GABA‐immunoreactive neurons, and no double‐labelled cells were observed in the paratubercular nucleus. The frequent colocalization of DA and GABA reveals that the dopaminergic populations of lampreys are more complex than previously reported. Double‐labelled fibres or terminals were observed in different brain regions, suggesting possible corelease of DA and GABA by these lamprey neurons. The present results suggest that colocalization of DA and GABA in neurons appeared early in vertebrate evolution.  相似文献   

9.
To study the regional and cellular distribution of xeroderma pigmentosum group A and B (XPA and XPB) proteins, two nucleotide excision repair (NER) factors, in the mammalian brain we used immunohistochemistry and triple fluorescent immunostaining combined with confocal microscope scanning in brain slices of adult rat brain, including the cerebral cortex, striatum, substantia nigra compacta, ventral tegmental area, red nucleus, hippocampus, and cerebellum. Both XPA and XPB proteins were mainly expressed in neurons, because the XPA‐ or XPB‐immunopositive cells were only costained with NeuN, a specific neuronal marker, but not with glial fibrillary acidic acid, a specific astrocyte marker, in the striatum. Furthermore, XPA‐ and XPB‐positive staining were observed in the neuronal nuclei. Such subcellular distribution was consistent with the location of the NER in the cells. This study provides the first evidence that NER factors XPA and XPB exist in the nuclei of neurons in the brain, suggesting that the NER may play important roles in the process of DNA repair in adult brain neurons. Anat Rec, 291:775–780, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
We examined the distribution of Rlim, a homologue to Xlim-1, in the rat brain. Rlim, a LIM class homeodomain gene, was isolated from rat brain, and localized in the adult brain by in situ hybridization histochemistry. The expression of Rlim was found in discrete regions, such as the Purkinje cell layer of the cerebellum and several nuclei of the hypothalamus, midbrain and pons. This suggests that Rlim is related to regulation of genes that are specific to some neurons such as Purkinje cells in the adult.  相似文献   

11.
Cortical migration defects are often associated with epilepsy. In mesial temporal lobe epilepsy (MTLE), granule cell dispersion (GCD), a migration defect of dentate granule cells, is frequently observed. Little is known how GCD develops and to which extent it contributes to the development of seizure activity. Since the reelin-deficient reeler mouse mutant shows a similar migration defect of dentate cells, we performed a series of studies investigating whether reelin deficiency is involved in GCD development. We show that in MTLE patients and in a mouse model of MTLE, the development of GCD correlates with a loss of the extracellular matrix protein reelin. In addition, we present evidence that GCD occurs in the absence of neurogenesis, thus representing a displacement of mature neurons due to a reelin deficiency. Accordingly, antibody blockade of reelin function in naïve, adult mice induced GCD. Finally, we show that GCD formation can be prevented by infusion of exogenous reelin. In summary, these studies show that in epilepsy reelin dysfunction causes GCD development and that reelin is important for the maintenance of layered structures in the adult brain.  相似文献   

12.
The organization and development of the descending spinal projections from serotonergic rhombencephalic neurons in the larval sea lamprey were investigated by double labeling, tract-tracing methods and immunocytochemistry against serotonin. The results showed that two serotonergic populations of the isthmic and vagal reticular regions present reticulospinal neurons from the beginning of the larval period. Of the three serotonergic subpopulations recognized in the isthmic reticular group [Abalo, X.M., Villar-Cheda, B., Meléndez-Ferro, M., Pérez-Costas, E., Anadón, R., Rodicio, M.C., 2007. Development of the serotonergic system in the central nervous system of the sea lamprey. J. Chem. Neuroanat. 34, 29-46], only two - the medial and ventral subpopulations - project to the spinal cord, with most of the projecting cells in the caudal part of the medial isthmic subpopulation. Occasional cells projecting to the spinal cord were observed in the ventral subpopulation. The vagal reticular serotonergic nucleus situated in the caudal rhombencephalon also presents cells with descending projections. The early development of the brainstem serotonergic projections to the spinal cord appears to be a conserved trait in all vertebrates studied. Although a serotonergic hindbrain-spinal projection system appears to have been present before the divergence of agnathans and gnathostomes, no serotonergic cells were observed in the raphe region in lamprey. Moreover, proportionally more rostral hindbrain serotonergic cells contribute to the spinal serotonergic projections in the sea lamprey than in jawed vertebrates.  相似文献   

13.
The protein doublecortin (DCX) is expressed in post-mitotic migrating and differentiating neurons in the developing vertebrate brain and, as a part of the microtubule machinery, is required for neuronal migration. DCX expression is generally maximal during embryonic and early post-natal life but decreases markedly and almost disappears in older animals in parallel with the major decrease or cessation of neurogenesis. In several seasonally breeding songbird species such as canaries, the volume of several song control nuclei in the brain varies seasonally such that the largest nuclei are observed in the late spring and early summer. This variation is based on changes in cell size, dendritic branching, and, in nucleus HVC, on the incorporation of neurons newly born in adulthood. Because songbirds maintain an active neurogenesis and neuronal incorporation in their telencephalon throughout their lives, we investigated here the distribution of DCX-immunoreactive (ir) structures in the brain of adult male canaries. Densely stained DCX-ir cells were found exclusively in parts of the telencephalon that are known to incorporate new neurons in adulthood, in particular the nidopallium. Within this brain region, the boundaries of the song control nucleus HVC could be clearly distinguished from surrounding structures by a higher density of DCX-ir structures. In most telencephalic areas, about two thirds of these cells displayed a uni- or bipolar fusiform morphology suggesting they were migrating neurons. The rest of the DCX-ir cells in the telencephalon were larger and had a round multipolar morphology. No such staining was found in the rest of the brain. The broad expression of DCX specifically in adult brain structures that exhibit the characteristic of active incorporation of new neurons suggests that DCX plays a key role in the migration of new neurons in the brain of adult songbirds as it presumably does during ontogeny.  相似文献   

14.
The detailed distribution of somatostatinergic neurons and fibre tracts in the brain of larval lamprey was studied in serially sectioned material using immunocytochemical techniques. Neurons were found to be arranged in four nuclei: a hypothalamic nucleus consisting of both small cerebrospinal fluid-contacting neurons and larger non-contacting neurons, a thalamomesencephalic nucleus and two isthmotrigeminal reticular nuclei. The hypothalamic nucleus is the first to differentiate. Analysis of young larvae showed that somatostatin-immunoreactivity first appeared in hypothalamic cells (12 mm larvae), while it appeared later in the other nuclei. The different somatostatin-immunoreactive fibre tracts innervate different regions of the brain. In addition, somatostatin-immunoreactive fibres originating from hypothalamic neurons were found in the anterior neurohypophysis, which suggests the presence of a hypothalamohypophysial somatostatinergic system in lampreys.  相似文献   

15.
The detailed distribution of somatostatinergic neurons and fibre tracts in the brain of larval lamprey was studied in serially sectioned material using immunocytochemical techniques. Neurons were found to be arranged in four nuclei: a hypothalamic nucleus consisting of both small cerebrospinal fluid-contacting neurons and larger non-contacting neurons, a thalamomesencephalic nucleus and two isthmotrigeminal reticular nuclei. The hypothalamic nucleus is the first to differentiate. Analysis of young larvae showed that somatostatin-immunoreactivity first appeared in hypothalamic cells (12 mm larvae), while it appeared later in the other nuclei. The different somatostatin-immunoreactive fibre tracts innervate different regions of the brain. In addition, somatostatin-immunoreactive fibres originating from hypothalamic neurons were found in the anterior neurohypophysis, which suggests the presence of a hypothalamohypophysial somatostatinergic system in lampreys.  相似文献   

16.
NGF在成年猴脑的分布   总被引:1,自引:1,他引:1  
为了解NGF在成年猴脑的分布,采用免疫组化SP法对成年猴脑多个冠状位切片进行免疫组化反应。结果证明,NGF阳性反应神经元主要分布于大脑皮质Ⅲ、V层,小脑Purkinje细胞,海马,齿状回,纹状体,脑干网状结构等处。此外,在黑质、舌下神经核、迷走神经背核、前庭神经核、三叉神经核、疑核、下橄榄核也出现NGF阳性反应。在大脑和脑干还观察到NGF阳性胶质细胞。本实验结果表明,在成年猴脑的多个脑区有NGF表达,提示NGF可能涉及猴脑某些神经元及胶质细胞的生理过程。  相似文献   

17.
18.
用ABC法免疫组化技术研究了正常家猫脑干中磷酸化的P44/42MAPK的分布。实验发现磷酸化的P44/42MAPK分子主要分布在家猫脑干中的中缝核群,与小脑功能有关的下橄榄核,外侧网状核,与内脏功能相关的迷走神经背核,孤束核和臂旁外侧核及前庭核群等部位的神经元,此外还分布在脑干尾侧端和颈髓吻侧端灰质的胶质细胞中,结果提示磷酸化的P44/42MAPK分子可能和这些细胞的功能相关。  相似文献   

19.
In the lamprey, spinal locomotor activity can be initiated by pharmacological microstimulation in several brain areas: rostrolateral rhombencephalon (RLR); dorsolateral mesencephalon (DLM); ventromedial diencephalon (VMD); and reticular nuclei. During DLM- or VMD-initiated locomotor activity in in vitro brain/spinal cord preparations, application of a solution that focally depressed neuronal activity in reticular nuclei often attenuated or abolished the locomotor rhythm. Electrical microstimulation in the DLM or VMD elicited synaptic responses in reticulospinal (RS) neurons, and close temporal stimulation in both areas evoked responses that summated and could elicit action potentials when neither input alone was sufficient. During RLR-initiated locomotor activity, focal application of a solution that depressed neuronal activity in the DLM or VMD abolished or attenuated the rhythm. These new results suggest that neurons in the RLR project rostrally to locomotor areas in the DLM and VMD. These latter areas then appear to project caudally to RS neurons, which probably integrate the synaptic inputs from both areas and activate the spinal locomotor networks. These pathways are likely to be important components of the brain neural networks for the initiation of locomotion and have parallels to locomotor command systems in higher vertebrates.  相似文献   

20.
《Journal of anatomy》2017,231(5):776-784
Co‐localization of dopamine with other classical neurotransmitters in the same neuron is a common phenomenon in the brain of vertebrates. In mammals, some dopaminergic neurons of the ventral tegmental area and the hypothalamus have a glutamatergic co‐phenotype. However, information on the presence of this type of dopaminergic neurons in other vertebrate groups is very scant. Here, we aimed to provide new insights on the evolution of this neuronal co‐phenotype by studying the presence of a dual dopaminergic/glutamatergic neuron phenotype in the central nervous system of lampreys. Double immunofluorescence experiments for dopamine and glutamate in adult sea lampreys revealed co‐localization of both neurotransmitters in some neurons of the preoptic nucleus, the nucleus of the postoptic commissure, the dorsal hypothalamus and in cerebrospinal fluid‐contacting cells of the caudal rhombencephalon and rostral spinal cord. Moreover, co‐localization of dopamine and glutamate was found in dopaminergic fibres in a few brain regions including the lateral pallium, striatum, and the preoptic and postoptic areas but not in the brainstem. Our results suggest that the presence of neurons with a dopaminergic/glutamatergic co‐phenotype is a primitive character shared by jawless and jawed vertebrates. However, important differences in the distribution of these neurons and fibres were noted among the few vertebrates investigated to date. This study offers an anatomical basis for further work on the role of glutamate in dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号