首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aggregation of human platelets induced by a variety of agonists was inhibited by 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl] amino]hexyl]-1H-pyrrole-2,5-dionel (U-73122) (IC50 values 1-5 microM), but not by the close analog 1-[6-[[17 beta-3-methoxyestra- 1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrrolidine-dione (U-73343) in which pyrrolidinedione was substituted for pyrroledione. Inhibition by U-73122 was not mediated by an increase in intracellular cyclic AMP. In contrast, the production of inositol 1,4,5-trisphosphate (IP3) and the subsequent rapid increase in cytosolic Ca++ induced by either thrombin or the thromboxane-mimetic, (5Z,9 alpha, 11 alpha, 13E, 15S) 15-hydroxy-11,9-(epoxymethano)prosta- 5,13,-dien-1-oic acid (U-46619), was inhibited by U-73122 but not by U-73343. Reduction of IP3 levels appeared to reflect an inhibition of IP3 production because the hydrolysis of phosphatidyl[3H]inositol and phosphatidyl[3H]inositol 4,5-bisphosphate catalyzed by a soluble fraction from platelets was inhibited by U-73122 (Ki = 9 and 40 microM, respectively). In addition, U-73122 inhibited thromboxane B2 production induced by collagen but not that supported by exogenously added arachidonic acid, suggesting that U-73122 also inhibited receptor-coupled mobilization of arachidonic acid. After preincubation of platelets with [3H]arachidonic acid, the loss of [3H]phosphatidylinositol and accumulation of [3H]phosphatidic acid induced by thrombin was attenuated by U-73122. U-73122 did not inhibit the activities of phospholipases A2 purified either from porcine pancreas or from the venoms of Crotalus adamanteus and Naja naja. Although U-73122 inhibited neither the conversion of exogenous arachidonic acid to thromboxane B2 nor the binding of the thromboxane receptor antagonist [1S-[1 alpha, 2 beta (5Z), 3 beta, 4 alpha]]-7-[3-[[2- [2-[(phenylamino)-carbonyl]- hydrazino]methyl]-7-oxabicyclo [2.2.1]-hept-2-yl-5-heptenoic acid to platelet membranes, it was an effective inhibitor of arachidonic acid-induced aggregation of platelets. These data are consistent with the observed inhibition by U-73122 of platelet activation by the thromboxane receptor agonist, U-46619, via a mechanism that involves inhibition of a phospholipase C-dependent component(s) of signal transduction. U-73122, but not U-73343, inhibited also N-formyl-methionyl-leucyl-phenylalanine-induced aggregation of human polymorphonuclear neutrophils (PMN) and the associated production of IP3 and diacyglycerol. Diradylglycerol produced in PMN stimulated with N-formyl- methionyl-leucyl-phenylalanine was 74 +/- 7% saponifiable and inhibited by U-73122 (Ki = 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The diverse physiological functions of histamine are mediated through distinct histamine receptors. Mast cells are major producers of histamine, yet effects of histamine on mast cells are currently unclear. The present study shows that histamine induces chemotaxis of mouse mast cells, without affecting mast cell degranulation. Mast cell chemotaxis toward histamine could be blocked by the dual H3/H4 receptor antagonist thioperamide, but not by H1 or H2 receptor antagonists. This chemotactic response is mediated by the H4 receptor, because chemotaxis toward histamine was absent in mast cells derived from H4 receptor-deficient mice but was detected in H3 receptor-deficient mast cells. In addition, Northern blot analysis showed the expression of H4 but not H3 receptors on mast cells. Activation of H4 receptors by histamine resulted in calcium mobilization from intracellular calcium stores. Both G alpha i/o proteins and phospholipase C (PLC) are involved in histamine-induced calcium mobilization and chemotaxis in mast cells, because these responses were completely inhibited by pertussis toxin and PLC inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5 (10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122). In summary, histamine was shown to mediate signaling and chemotaxis of mast cells via the H4 receptor. This mechanism might be responsible for mast cell accumulation in allergic tissues.  相似文献   

3.
To investigate the role of phospholipase C (PLC) in inflammatory processes, we tested 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), a widely used PLC inhibitor, in several in vitro and in vivo assays. We first examined the effects of U73122 on human phospholipase C-beta (PLC-beta) isozymes and found that U73122 significantly inhibited recombinant human PLC-beta2, with an IC(50) of approximately 6 microM. U73122 had little effect on PLC-beta1, PLC-beta3, or PLC-beta4. Consistent with its ability to inhibit PLC-beta2 enzymatic activity, U73122 reduced interleukin-8 and leukotriene B(4)-induced Ca(2+) flux and chemotaxis in human neutrophils in a concentration-dependent manner. In vivo, U73122 blocked carrageenan-induced hind paw edema in rats, carrageenan-induced macrophage and lymphocyte accumulation into subcutaneous chambers in dogs, lipopolysaccharide-induced macrophage, lymphocyte infiltration and prostaglandin E(2) production in a mouse peritonitis model, and 12-O-tetradecanoylphorbol-13-acetate-induced ear edema in mice. These results implicate PLC-dependent signaling pathways in the development of acute and chronic inflammatory responses in vivo.  相似文献   

4.
Oral administration of the nonselective cyclooxygenase (COX) inhibitor indomethacin (20 mg/kg), the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole (SC-560) (20 mg/kg), or the COX-2 inhibitor rofecoxib (1-20 mg/kg) antagonized the gastroprotective effects of 16,16-dimethyl-prostaglandin (PG) E2 (75 ng/kg p.o.) and 20% ethanol in rats. The effects of the COX inhibitors were reversed by the activator of ATP-sensitive potassium (KATP) channels cromakalim (0.3-0.5 mg/kg p.o.). The protective effects of 16,16-dimethyl-PGE2 and 20% ethanol were counteracted by the phospholipase C inhibitor 1-(6-((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U-73122), but not its inactive analog 1-(6-((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-2,5-pyrrolidine-dione (U-73343) (1 mg/kg each i.v.). Likewise, the protein kinase C inhibitors chelerythrine (0.7 mg/kg i.v.) and staurosporine (3 microg/kg i.v.) inhibited gastroprotection. Effects of these enzyme inhibitors were not reversed by cromakalim. Submaximally effective doses of SC-560 (0.2 mg/kg p.o.) and rofecoxib (0.02 mg/kg p.o.) were additive and abolished the protection induced by 20% ethanol. The findings show that inhibition of COX-1 or COX-2 antagonizes not only adaptive gastroprotection by 20% ethanol but also the protective effect of exogenous PG in a cromakalimsensitive manner. Endogenous PG obviously add to the protective activity of exogenous PG. Gastroprotection by PG involves phospholipase C, protein kinase C, and KATP channels. Activation of KATP channels does not exert protection when the activity of phospholipase C or protein kinase C is suppressed.  相似文献   

5.
Recording simultaneously in vitro the changes of endoluminal pressure (index of circular muscle activity) and isometric tension (index of longitudinal muscle activity), we examined the mechanisms responsible for the apamin-sensitive relaxant and contractile responses induced by protease-activated receptor (PAR)-1 and PAR-2 activating peptides, SFLLRN-NH2 and SLIGRL-NH2, respectively, in rat colon. In the circular muscle, the inhibitory effects of SFLLRN-NH2 and SLIGRL-NH2 were significantly reduced by ryanodine, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, but unaffected by 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), a phospholipase C (PLC) inhibitor, 3-[1-[3-(dimethylaminopropyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (GF109203X), a protein kinase C (PKC) inhibitor, or genistein, a tyrosine kinase inhibitor. In the longitudinal muscle, the contractile responses to SFLLRN-NH2 and SLIGRL-NH2 were significantly reduced by nifedipine, an L-type calcium channel blocker, ryanodine, GF109203X, genistein, and abolished by U73122. The effects of genistein were additive with GF109203X but not with nifedipine. In the longitudinal muscle, the relaxant responses to the highest concentrations of SFLLRN-NH2 and SLIGRL-NH2 were abolished by nifedipine, reduced by genistein, and unaffected by ryanodine or GF109203X. In conclusion, influx of extracellular Ca2+ through L-type voltage-dependent channels or release of Ca2+ from intracellular stores are determining for the opening of the apamin-sensitive K+ channels responsible for longitudinal muscle relaxation or circular muscle inhibitory response, respectively, in rat colon. The longitudinal muscle contraction is mediated by activation of PLC; PKC and tyrosine kinase are involved in the cascade process, playing a parallel role. Indeed, tyrosine kinase and L-type Ca2+ channels would act sequentially. The influx of Ca2+ in turn would cause release of Ca2+ from sarcoplasmic reticulum.  相似文献   

6.
The role of phospholipase C in the molecular mechanism of glutamate neurotoxicity was assessed in primary cultures of cerebellar neurons. It is shown that 1-[6-[[(17b)-3-methoxyestra-1,3, 5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U-73122) and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18-OCH(3)), two agents that inhibit phospholipase C, prevent glutamate and N-methyl-D-aspartic acid (NMDA) neurotoxicity. It is shown that both compounds prevent glutamate neurotoxicity at concentrations lower than those required to inhibit carbachol-induced hydrolysis of inositol phospholipids. In contrast, it was a good correlation between the concentrations of U-73122 and Et-18-OCH(3) required to inhibit NMDA-induced hydrolysis of phospholipids and those required to prevent glutamate and NMDA neurotoxicity. NMDA-induced hydrolysis of phospholipids is inhibited by nitroarginine, an inhibitor of nitric-oxide synthase, and is mimicked by the nitric oxide-generating agent S-nitroso-N-acetylpenicillamine. The results reported indicate that glutamate neurotoxicity would be mediated by activation of NMDA receptors, leading to activation of nitric-oxide synthase and increased formation of nitric oxide, which results in increased activity of phospholipase C. Inhibition of phospholipase C by U-73122 or Et-18-OCH(3) prevents glutamate-induced neuronal death.  相似文献   

7.
Muscarinic acetylcholine receptors, particularly M(3) receptors, are physiologically the most important mechanism to induced urinary bladder smooth muscle contraction. Their prototypical signaling response is a stimulation of phospholipase C (PLC), and this also has been shown in the urinary bladder. Nevertheless, it has remained controversial whether PLC signaling mediates bladder contraction induced by muscarinic receptor agonists. Studies in favor and against a role for PLC differed in their experimental protocol (single versus repeated concentration-response curves within a single preparation) and in the PLC inhibitors that have been used. We have now tested whether previous differential conclusions regarding a role for PLC are related to inhibitors and/or experimental protocols. In a single curve protocol, U-73,122 [1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione] did not attenuate carbachol responses. In a repeated curve protocol, ET-18-OCH(3) (1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine) lacked significant inhibition relative to vehicle time controls. In contrast, D609 (O-tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt) depressed maximal carbachol effects but also nonspecifically inhibited contraction induced by KCl. Neomycin did not affect the carbachol-induced rat urinary bladder contraction. We conclude that previously reported differences relate to the use of inhibitors rather than experimental protocols and that the overall data do not support a role for PLC in M(3) muscarinic receptor-mediated rat bladder contraction.  相似文献   

8.
Previously, we showed that 11-keto-boswellic acid and 3-O-acetyl-11-keto-BA (AKBA) stimulate Ca(2+) mobilization and activate mitogen-activated protein kinases (MAPKs) in human polymorphonuclear leukocytes (PMNLs). Here, we addressed the effects of boswellic acids on the intracellular Ca(2+) concentration ([Ca(2+)](i)) and on the activation of p38(MAPK) and extracellular signal-regulated kinase (ERK) in the human monocytic cell line Mono Mac (MM) 6. In contrast to PMNLs, AKBA concentration dependently (1-30 microM) decreased the basal [Ca(2+)](i) in resting MM6 cells but also in cells where [Ca(2+)](i) had been elevated by stimulation with platelet-activating factor (PAF). AKBA also strongly suppressed the subsequent elevation of [Ca(2+)](i) induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP), PAF, or by the direct phospholipase C activator 2,4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide, but AKBA failed to prevent Ca(2+) signals induced by thapsigargin or ionomycin. Suppression of Ca(2+) homeostasis by AKBA was also observed in primary monocytes, isolated from human blood. Moreover, AKBA inhibited the activation of p38(MAPK) and ERKs in fMLP-stimulated MM6 cells. Although the effects of AKBA could be mimicked by the putative phospholipase C (PLC) inhibitor U-73122 (1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), AKBA appears to operate independent of PLC activity since the release of intracellular inositol-1,4,5-trisphosphate evoked by 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide was hardly diminished by AKBA. Inhibitor studies indicate that AKBA may decrease [Ca(2+)](i) by blocking store-operated Ca(2+) and/or nonselective cation channels. Together, AKBA interferes with pivotal signaling events in monocytic cells that are usually required for monocyte activation by proinflammatory stimuli. Interruption of these events may represent a possible mechanism underlying the reported anti-inflammatory properties of AKBA.  相似文献   

9.
Beta-eudesmol, a sesquiterpenoid isolated from "So-jutsu" (Atractylodis lanceae rhizomas), is known to have various unique effects on the nervous system. We examined in detail the mechanism by which beta-eudesmol modified neuronal function using rat pheochromocytoma cells (PC-12). Beta-eudesmol at concentrations of 100 and 150 microM significantly induced neurite extension in PC-12 cells, which was accompanied, at the highest concentration, by suppression of [(3)H]thymidine incorporation. Beta-eudesmol at concentrations of 100 and 150 microM also evoked a significant increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in these cells, as determined by the fura 2 assay. Much of this increase remained even after the extracellular Ca(2+) was chelated by EGTA. The [Ca(2+)](i) increase induced by beta-eudesmol was partially inhibited by the phosphoinositide-specific phospholipase C (PI-PLC) inhibitor 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) (2 microM) under extracellular Ca(2+)-free conditions. Furthermore, beta-eudesmol, in a concentration-dependent fashion, caused an accumulation of inositol phosphates. beta-Eudesmol (150 microM) promoted phosphorylation of both mitogen-activated protein kinase (MAPK) and cAMP-responsive element binding protein in a time-dependent manner. These phosphorylations were suppressed by the MAPK kinase inhibitor 2-(2'-amino-3'-methoxyphenol)-oxanaphthalen-4-one (PD98059) (50 microM), U-73122 (2 microM), the calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) (1-10 microM), and the protein kinase A inhibitor N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89) (1-10 microM). Beta-eudesmol-induced neurite extension was significantly inhibited by both U-73122 (2 microM) and PD98059 (30 microM), suggesting the involvement of PI-PLC and MAPK in neurite outgrowth. Beta-eudesmol, being a small molecule, may therefore be a promising lead compound for potentiating neuronal function. Furthermore, the drug may be useful in helping to clarify the mechanisms underlying neuronal differentiation.  相似文献   

10.
Despite the recognized physiological role of bradykinin (BK) in the kidney in maintaining glomerular and tubule function and its role in pathological states such as endotoxemia, diabetes, and other diseases, relatively little is known about the mechanisms by which BK can impact kidney function. Furthermore, the signaling of BK receptors in the murine nephron has not been fully characterized. The present studies were undertaken to examine BK-stimulated Ca(2+) signaling using Fura-2 in the murine proximal tubule epithelial cell line TKPTS. BK produced a concentration-dependent rise in intracellular Ca(2+) ([Ca(2+)])(i) (pEC(50) = 8.39 +/- 0.04). Selective antagonists showed the rise in [Ca(2+)](i) was mediated through B2 receptors. The rise in [Ca(2+)](i) was rapid and reversible and was maximally stimulated at 1 microM (697 +/- 70 nM above basal level of 115 +/- 6 nM). Studies with thapsigargin and EGTA showed Ca(2+) mobilization was dependent on two events: release and influx. Both U73122 (1-[6-[[17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) [a phospholipase C (PLC) inhibitor] and genistein (a tyrosine kinase inhibitor) partially inhibited BK-stimulated rise in [Ca(2+)](i). When combined, both agents produced a further decrease, suggesting multiple pathways for PLC activation may be involved. The ability of Ni(2+) to inhibit influx indicated the activation of a Ca(2+) release-activated channel (CRAC). Ca(2+) mobilization did not seem to be affected by cyclic nucleotides or protein kinase C. In summary, the TKPTS murine proximal tubule cell line expresses functional B2 receptors linked to Ca(2+) mobilization that is dependent on phospholipase C and activation of CRAC.  相似文献   

11.
Thromboxane A(2) (TXA(2)) is an important lipid mediator generated during oxidative stress and implicated in ischemic neural injury. This autacoid was recently shown to partake in this injury process by directly inducing endothelial cytotoxicity. We explored the mechanisms for this TXA(2)-evoked neural microvascular endothelial cell death. Stable TXA(2) mimetics 5-heptenoic acid, 7-[6-(3-hydroxy-1-octenyl)-2-oxabicyclo[2.2.1]hept-5-yl]-[1R-[1alpha,4alpha,5beta(Z),6alpha,(1E,3S)]]-9,11-dedioxy-9alpha,11alpha-methanolpoxy (U-46619) [as well as [1S-[1alpha,2alpha(Z),3beta(1E,3S(*)),4alpha]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.1.1]-hept-2-yl]-5-heptenoic acid; I-BOP] induced a retinal microvascular degeneration in rat pups in vivo and in porcine retinal explants ex vivo and death of porcine brain endothelial cells (in culture). TXA(2) dependence of these effects was corroborated by antagonism using the selective TXA(2) receptor blocker (-)-6,8-difluoro-9-p-methyl-sulfonyl-benzyl-1,2,3,4-tetrahydrocarbazol-1-yl-acetic acid (L670596). In all cases, neurovascular endothelial cell death was prevented by pan-calpain and specific m-calpain inhibitors but not by caspase-3 or pan-caspase inhibitors. Correspondingly, TXA(2) (mimetics) augmented generation of known active m-calpain (but not mu-calpain) form and increased the activity of m-calpain (cleavage of fluorogenic substrate N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin; and of alpha-spectrin into specific fragments) but not of pan-caspase or specific caspase-3 (respectively, using sulforhodamine-Val-Arg-Asp-fluoromethyl ketone and detecting its active 17- and 12-kDa fragments). Interestingly, these effects were phospholipase C (PLC)-dependent [associated with increase in inositol triphosphate and inhibited by PLC blocker 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122)] and required calcium but were not associated with increased intracellular calcium. U-46619-induced calpain activation resulted in translocation of Bax to the mitochondria, loss of polarization of the latter (using potentiometric probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide; JC-1) and in turn release of cytochrome c into the cytosol and depletion of cellular ATP; these effects were all blocked by calpain inhibitors. Overall, this work identifies (specifically) m-calpain as a dominant protease in TXA(2)-induced neurovascular endothelial cell death.  相似文献   

12.
The present study evaluated some of the mechanisms underlying prostaglandin E2 (PGE2)-induced paw edema formation in mice. Intraplantar (i.pl.) injection of PGE2 (0.10-10.0 nmol/paw) into the hindpaw elicited a dose-related edema formation, with a mean ED50 value of 0.42 nmol/paw. The coinjection of selective E-prostanoid (EP)3 [(2E)-N-[(5-bromo-2-methoxyphenyl)-sulfonyl]-3-[5-chloro-2-(2-naphthylmethyl)phenyl]acrylamide; L826266), but not EP2 or EP4 (all 10 nmol/paw), receptor antagonists significantly inhibited PGE2-induced paw edema. Like L826266, the PGE2-induced paw edema was markedly reduced by treatment with pertussis toxin and phospholipase C (PLC) inhibitor 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122). Likewise, the selective neurokinin (NK)1 receptor antagonist N-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl)carbonyl-l-prolyl]-N-methyl-N-phenyl-methyl-3-(2-aphthyl)-l-alaninamide (FK888) and the antagonist of vanilloid receptor (TRPV1) receptors 4'-chloro-3-methoxycinnamanilide (SB366791) (both 1 nmol/paw) also significantly inhibited PGE2-mediated paw edema. Conversely, the selective NK2, NK3, and calcitonin gene-related peptide (CGRP) CGRP(8-37) receptor antagonists all failed to interfere with PGE2-induced paw edema. The neonatal treatment of mice with capsaicin was also able to reduce PGE2-induced paw edema. The inhibitors of protein kinase C (PKC) 3-[1-[3-(dimethylaminopropyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (GF109203X) and mitogen protein-activated kinases (MAPKs; 30 nmol/paw) c-Jun NH2-terminal kinase (JNK) (anthra[1,9-cd]pyrazol-6(2H)-one; SP600125), extracellular signal-regulated kinase (PD98059), and p38 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole; SB203580], but not protein kinase A, markedly decreased the PGE2-mediated edema formation. The i.pl. injection of PGE2 (3 nmol/paw) induced a significant activation of MAPKs, namely, JNK and p38, an effect that was largely prevented by the selective EP3 receptor antagonist L826266 (10 nmol/paw). Collectively, these findings indicate that edematogenic responses elicited by PGE2 are mediated by EP3 receptor activation, also involving the stimulation of PLC, PKC, and MAPKs pathways and the participation of TRPV1 and NK1 receptors. These results make a considerable contribution to our comprehension of the mechanisms involved in PGE2-mediated inflammatory responses in mice.  相似文献   

13.
alpha(2)-Adrenoceptors potentiate vascular responses to angiotensin II. The goal of this study was to test the hypothesis that the phospholipase C (PLC)/protein kinase C (PKC)/c-src/phosphatidylinositol 3-kinase (PI3K) pathway contributes to the vascular angiotensin II/alpha(2)-adrenoceptor interaction. In rats in vivo, intrarenal infusions of angiotensin II (10 ng/kg/min) increased renal vascular resistance by 5.8 +/- 0.5 units, and this response was enhanced (p < 0.05) to 9.1 +/- 1.2 units by UK-14,304 [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine; 3 microg/kg/min; alpha(2)-adrenoceptor agonist]. Intrarenal infusions of U-73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]-hexyl]-1H-pyrrole-2,5-dione; 3 microg/min; PLC inhibitor], GF109203X [bisindolylmaleimide I; 10 microg/min; PKC inhibitor], CGP77675 [1-(2-{4-[4-amino-5-(3-methoxyphenyl)pyrrolo[2,3-d]pyrimidin-7-yl]phenyl}ethyl)piperidin-4-ol; 5 microg/min; c-src inhibitor], and wortmannin (1 microg/min; PI3K inhibitor) abolished the angiotensin II/alpha(2)-adrenoceptor interaction. In isolated perfused rat kidneys, angiotensin II (0.3, 1, and 3 nM) increased perfusion pressure (by 15 +/- 8, 39 +/- 4, and 93 +/- 9 mm Hg, respectively), and UK-14,304 (1 microM) potentiated these responses (to 36 +/- 4, 67 +/- 7, and 135 +/- 17 mm Hg, respectively). This angiotensin II/alpha(2)-adrenoceptor interaction was abolished by U-73122 (10 microM), GF109203X (3 microM), CGP77675 (5 microM), and wortmannin (0.2 microM). Preglomerular microvascular smooth muscle cells expressed phospholipase (PLC)-beta(2), PLC-beta(3), c-src, phospho(tyrosine 416)-c-src, and PI3K. In these cells, angiotensin II (0.1 microM) and UK-14,304 (1 microM) per se did not increase phospho-c-src; however, the combination of angiotensin II plus UK-14,304 doubled phospho-c-src, and this interaction was abolished by U-73122 (10 microM) and GF109203X (3 microM). In conclusion, the PLC/PKC/c-src/PI3K pathway may contribute importantly to the interaction between alpha(2)-adrenoceptors and angiotensin II on renal vascular resistance.  相似文献   

14.
Somatostatin receptors and glutamate N-methyl-D-aspartate (NMDA) receptors coexist on hippocampal noradrenergic axon terminals. Activation of somatostatin receptors was previously found to positively influence the function of NMDA receptors regulating norepinephrine release. The somatostatin receptors involved were pharmacologically characterized as sst5 type in experiments in Mg2+-free solutions. Here, we first confirm the pharmacology of these receptors using selective sst5 ligands in Mg2+-containing solutions. Moreover, we show by Western blot that the sst5 protein exists on purified hippocampal synaptosomal membranes. We then investigated the pathways connecting the two receptors using as a functional response the release of norepinephrine from rat hippocampal synaptosomes in superfusion. The release of norepinephrine evoked by somatostatin-14 plus NMDA/glycine was partly prevented by the protein kinase C inhibitor GF109203X [dihydrochloride3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione] and by the nonreceptor tyrosine kinase (Src) inhibitors PP2 [3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-D]pyrimidin-4-amine] and lavendustin A; it was largely and almost totally abolished by the phospholipase C inhibitor U73122 [1-(6-[([17beta]-3-methoxyextra-1,3,5[10]-trien-17-yl)amino]hexyl)-1H-pyrrole-2,5-dione] and by the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 [N-(2-[N-[4-chlorocinnamyl]-N-methyl-amino-methyl]phenyl)-N-(2-hydroxyethyl)-4-methoxy-benzene-sulfonamide-phosphate salt], respectively; and it was unaffected by the protein kinase A inhibitor H89 [N-(2-[p-bromocinnamylamino]ethyl)5-isoquinolinesulfonamide hydrochloride]. The norepinephrine release evoked by somatostatin-14/NMDA/glycine was inhibited when anti-phosphotyrosine antibodies had been entrapped into synaptosomes. Entrapping the recombinant activated tyrosine kinase pp60(c-Src) strongly potentiated the release of norepinephrine elicited by NMDA/glycine in Mg2+-free medium but failed to permit NMDA receptor activation in presence of external Mg2+ ions. The results suggest the involvement of CaMKII in the sst5 receptor-mediated activation of NMDA receptors in presence of Mg2+ and of the PLC/PKC/Src pathway in the up-regulation of the ongoing NMDA receptor activity.  相似文献   

15.
Activation of bovine chromaffin cell neuropeptide Y (NPY) receptors coupled to Gi (Y1) results in the enhancement of ATP-stimulated inositol phosphate formation. NPY alone does not alter inositol phosphate (InsP) formation in these cells, suggesting that some form of receptor cross talk is involved in this process. In some cell types, serial stimulation of Gi-linked and Gs- or Gq-linked receptors results in an increase in intracellular messenger production (cyclic AMP or InsP), a process referred to as heterologous sensitization. NPY preincubation with bovine chromaffin cells followed by the addition of ATP results in a dose-dependent increase in ATP-stimulated InsP formation (EC50 = 2.0 x 10-8 M), which is maximal within 1 min. InsP formation resulting from NPY preincubation persists for more than an hour after NPY removal, declining with time in a linear fashion. [Leu31Pro34]NPY and NPY are equally effective at producing sensitization, whereas NPY13-36 is ineffective, suggesting that NPY acts through the Y1 receptor. Confirmation of the receptor subtype identity was made by including the Y1-selective antagonist HU-404 during the preincubation, which prevented the sensitizing effect of NPY. NPY sensitization was blocked by pertussis toxin pretreatment, demonstrating Gi/Go involvement. ATP-stimulated InsP formation, with and without NPY preincubation, was sensitive to the phospholipase C inhibitor, U73122 [1-(6-([17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]-amino)hexyl)-1H-pyrrole-2,5-dione]. In conclusion, short-term exposure of bovine chromaffin cells to NPY results in a long-lasting increase in the subsequent stimulation of InsP formation by ATP.  相似文献   

16.
We investigated the effects of transforming growth factor alpha (TGF-alpha) on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes and examined the influence of alpha and beta adrenoceptor agonists on the TGF-alpha-induced responses. TGF-alpha (1.0 ng/ml) produced a 4.1-fold elevation of DNA synthesis during 3 h of culture and a 1.2-fold increase in the nucleus number (proliferation) during 4 h of culture at a cell density of 3.3 x 10(4) cells/cm(2). The TGF-alpha-induced hepatocyte DNA synthesis and proliferation were dose-dependent at EC(50) values of 0.36 ng/ml and 0.45 ng/ml, respectively. Hepatocyte DNA synthesis and proliferation induced by 1.0 ng/ml TGF-alpha did not reduce even at higher initial plating densities (5.0 x 10(4) and 1.0 x 10(5) cells/cm(2)). Increasing concentrations of the beta(2) adrenoceptor agonist metaproterenol (10(-7)-10(-6) M) markedly reduced the proliferative effects of TGF-alpha, whereas those of the alpha(2) adrenoceptor agonist 5-bromo-6-[2-imidazolin-2-yl-amino]-quinoxaline (UK-14304; 10(-6)-10(-5) M) and the alpha(1) adrenoceptor agonist phenylephrine (10(-7)-10(-6) M) significantly potentiated the TGF-alpha action. The proliferative effects of TGF-alpha (1.0 ng/ml) were not affected significantly by a monoclonal antiepidermal growth factor receptor antibody (1-100 ng/ml) and were almost completely blocked by specific inhibitors of signal transducers such as genistein (10(-5) M), 1-6[[17beta-3methoxyestra-1,3, 5(10)-trien-17-yl]amino]hexyl]-1H-pyrrol2,5-dione (U-73122; 0(-5) M), wortmannin (5 x 10(-7) M), sphingosine (5 x 10(-6) M), 2'-amino-3'-methoxyflavone (PD98059; 5 x 10(-5) M), and rapamycin (10 ng/ml). These results suggest that among the elements that link signals of cell surface receptor to the nucleus, the proliferative action of TGF-alpha is mediated, at least, by tyrosine kinase, phospholipase C, phosphatidylinositol 3-kinase, protein kinase C, mitogen-activated protein kinase kinase, and ribosomal protein p70 S6 kinase.  相似文献   

17.
This study was designed to evaluate the signaling pathways coupling adenosine A1 receptors and extracellular signal-regulated kinase (ERK) 1 and 2 in human trabecular meshwork (HTM) cells. Studies were conducted using cultures of primary HTM cells and the HTM-3 cell line. Activation of ERK1/2, location of protein kinase C (PKC) isoforms, and matrix metalloproteinase (MMP) secretion were determined by Western blotting. In primary HTM cells and the HTM-3 cell line, administration of the A1 agonist N6-cyclohexyladenosine (CHA) produced a concentration-dependent increase in ERK1/2 activation. This CHA-induced ERK activation was blocked by pretreatment with the A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine or pertussis toxin. Transfection with dominant negative N17 Ras produced only a small (31%) decline in CHA-induced ERK activation, and the response was not altered by pretreatment with the Src tyrosine kinase inhibitor, PP2 [3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-D] pyrimidin-4-amine], the phosphoinositide kinase-3 inhibitor, LY-294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], or the A3 receptor antagonist, MRS-1191 [3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate]. Administration of CHA also induced the translocation of PKCalpha from the cytosol to the membrane, and pretreatment with the phospholipase C (PLC) inhibitor, U73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]-hexyl]-1H-pyrrole-2,5-dione], blocked ERK1/2 activation induced by CHA. Transfection of short interfering RNA targeting PKCalpha blocked the CHA-induced ERK1/2 activation and the secretion of MMP-2. These results confirm the existence of functional adenosine A1 receptors in the trabecular meshwork cells. These receptors are coupled to the activation of ERK1/2 through G(i/o) proteins and dependent upon the upstream activation of PLC and PKCalpha. These studies provide evidence that adenosine A1 receptor agonists increase outflow facility through sequential activation of G(i/o) > PLC > PKCalpha > c-Raf > mitogen-activated protein kinase kinase > ERK1/2, leading to secretion of MMP-2.  相似文献   

18.
Intracellular recording methods with "sharp" microelectrodes were used to study signal transduction mechanisms underlying the excitatory action of bradykinin (BK) in morphologically identified neurons in the small intestinal submucosal plexus. Exposure to BK evoked slowly activating membrane depolarization and enhanced excitability associated with increased input resistance in AH-type and decreased input resistance in S-type neurons. Preincubation with pertussis toxin did not affect the BK-evoked responses. Pretreatment with the cyclooxygenase inhibitors indomethacin or piroxicam suppressed or abolished the BK-evoked responses. Application of prostaglandin (PG) E(2) or PG analogs evoked BK-like depolarizing responses in the submucosal plexus with a potency order of PGE(2) > PGE(1) > 17-phenyl trinor-PGE(2) > PGI(2) > sulprostone > PGF(2alpha). Depolarizing responses to bradykinin or PGE(2) in S-type neurons were suppressed in the presence of the phospholipase C inhibitor U73122 [(1-6-[([17beta]-3-methoxyestra-1,3,5[10]-tren-17-71)amino]hexyl)-1H-pyrrole-2,5-dione)], but not the inactive analog U73343 [(1-6-[([17beta]-3-methoxyestra-1,3,5[10]trien-17yl)amino]hexyl)-2,5-pyrrolidinedione)]. The inositol-1,4,5-trisphosphate receptor antagonist 2-aminoethoxy-diphenylborane and the calmodulin inhibitor W-7, but not ryanodine, suppressed both bradykinin- and PGE(2)-evoked responses. KN-62, an inhibitor of calmodulin kinases, or GF109203X, a specific protein kinase C inhibitor, suppressed both BK- and PGE(2)-evoked depolarizing responses. Selective protein kinase A inhibitors did not alter BK- or PGE(2)-evoked depolarizing responses in S neurons. The results suggest that BK stimulates synthesis and release of PGE(2), which acts at EP(1) receptors to evoke depolarizing responses in submucosal neurons. The postreceptor transduction cascade includes activation of phospholipase C, inositol-1,4,5-trisphosphate production, intraneuronal Ca2+ mobilization, activation of protein kinase C and/or calmodulin kinases, and phosphorylation of cationic channels.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an autocrine growth factor for some lung cancer cells. The activated PACAP receptor (PAC1) causes phosphatidylinositol turnover, elevates cAMP, and increases the proliferation of lung cancer cells. PAC1 and epidermal growth factor receptor (EGFR) are present in non-small-cell lung cancer (NSCLC) cells, and the growth of NSCLC cells is inhibited by the PAC1 antagonist PACAP(6-38) and the EGFR tyrosine kinase inhibitor gefitinib. Here, the ability of PACAP to transactivate the EGFR was investigated. Western blot analysis indicated that the addition of PACAP but not the structurally related vasoactive intestinal peptide increased EGFR tyrosine phosphorylation in NCI-H838 or H345 cells. PACAP-27, in a concentration-dependent manner, increased EGFR transactivation 4-fold 2 min after addition to NCI-H838 cells. The ability of 100 nM PACAP-27 to increase EGFR or extracellular signal-regulated kinase tyrosine phosphorylation in NCI-H838 cells was inhibited by PACAP(6-38), gefitinib, 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2; Src inhibitor), (R)-N4-hydroxy-N1-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide (GM6001; matrix metalloprotease inhibitor), or antibody to transforming growth factor α (TGFα). By enzyme-linked immunosorbent assay, PACAP addition to NCI-H838 cells increased TGFα secretion into conditioned media. EGFR transactivation caused by the addition of PACAP to NCI-H838 cells was inhibited by N-acetyl-cysteine (antioxidant), tiron (superoxide scavenger), diphenylene iodonium (NADPH oxidase inhibitor), or 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122; phospholipase C inhibitor), but not N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide (H89; protein kinase A inhibitor). PACAP addition to NCI-H838 cells significantly increased reactive oxygen species, and the increase was inhibited by tiron. The results indicate that PACAP causes transactivation of the EGFR in NSCLC cells in an oxygen-dependent manner that involves phospholipase C but not protein kinase A.  相似文献   

20.
The present study was designed to reexamine the muscarinic acetylcholine receptor subtype mediating carbachol-induced contraction of human urinary bladder and to investigate the underlying signal transduction. Based upon the nonselective tolterodine, the highly M(2)-selective (R)-4-[2-[3-(4-methoxy-benzoylamino)-benzyl]-piperidin-1-ylmethyl]piperidine-1-carboxylic acid amide (Ro-320-6206), and the highly M(3)-selective darifenacin and 3-(1-carbamoyl-1,1-diphenylmethyl)-1-(4-methoxyphenylethyl)pyrrolidine (APP), contraction occurs via M(3) receptors. The phospholipase C inhibitor 1-(6-[([17beta]-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl)-1H-pyrrole-2,5-dione (U 73,122) (1-10 microM) did not significantly affect carbachol-stimulated bladder contraction. The phospholipase D inhibitor butan-1-ol relative to its negative control butan-2-ol (0.3% each) caused small but detectable inhibition of carbachol-induced bladder contraction. The Ca(2+) entry blocker nifedipine (10-100 nM) strongly inhibited carbachol-induced bladder contraction. In contrast, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole HCl (SK&F 96,365) (1-10 microM), an inhibitor of store-operated Ca(2+) channels, caused little inhibition. The protein kinase C inhibitor bisindolylmaleimide I (1-10 microM) did not significantly affected carbachol-induced bladder contraction. In contrast, trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide (Y 27,632) (1-10 microM), an inhibitor of rho-associated kinases, concentration dependently and effectively attenuated the carbachol responses. We conclude that carbachol-induced contraction of human urinary bladder via M(3) receptors largely depends on Ca(2+) entry through nifedipine-sensitive channels and activation of a rho kinase, whereas phospholipase D and store-operated Ca(2+) channels contribute only in a minor way. Surprisingly, phospholipase C or protein kinase C do not seem to be involved to a relevant extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号