首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Streptococcal collagen-like protein 1 (Scl-1) is one of the most highly expressed proteins in the invasive M1T1 serotype group A Streptococcus (GAS), a globally disseminated clone associated with higher risk of severe invasive infections. Previous studies using recombinant Scl-1 protein suggested a role in cell attachment and binding and inhibition of serum proteins. Here, we studied the contribution of Scl-1 to the virulence of the M1T1 clone in the physiological context of the live bacterium by generating an isogenic strain lacking the scl-1 gene. Upon subcutaneous infection in mice, wild-type bacteria induced larger lesions than the Δscl mutant. However, loss of Scl-1 did not alter bacterial adherence to or invasion of skin keratinocytes. We found instead that Scl-1 plays a critical role in GAS resistance to human and murine phagocytic cells, allowing the bacteria to persist at the site of infection. Phenotypic analyses demonstrated that Scl-1 mediates bacterial survival in neutrophil extracellular traps (NETs) and protects GAS from antimicrobial peptides found within the NETs. Additionally, Scl-1 interferes with myeloperoxidase (MPO) release, a prerequisite for NET production, thereby suppressing NET formation. We conclude that Scl-1 is a virulence determinant in the M1T1 GAS clone, allowing GAS to subvert innate immune functions that are critical in clearing bacterial infections.  相似文献   

7.
Despite the public health challenges associated with the emergence of new pathogenic bacterial strains and/or serotypes, there is a dearth of information regarding the molecular mechanisms that drive this variation. Here, we began to address the mechanisms behind serotype-specific variation between serotype M1 and M3 strains of the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]). Spatially diverse contemporary clinical serotype M3 isolates were discovered to contain identical inactivating mutations within genes encoding two regulatory systems that control the expression of important virulence factors, including the thrombolytic agent streptokinase, the protease inhibitor-binding protein-G-related α2-macroglobulin-binding (GRAB) protein, and the antiphagocytic hyaluronic acid capsule. Subsequent analysis of a larger collection of isolates determined that M3 GAS, since at least the 1920s, has harbored a 4-bp deletion in the fasC gene of the fasBCAX regulatory system and an inactivating polymorphism in the rivR regulator-encoding gene. The fasC and rivR mutations in M3 isolates directly affect the virulence factor profile of M3 GAS, as evident by a reduction in streptokinase expression and an enhancement of GRAB expression. Complementation of the fasC mutation in M3 GAS significantly enhanced levels of the small regulatory RNA FasX, which in turn enhanced streptokinase expression. Complementation of the rivR mutation in M3 GAS restored the regulation of grab mRNA abundance but did not alter capsule mRNA levels. While important, the fasC and rivR mutations do not provide a full explanation for why serotype M3 strains are associated with unusually severe invasive infections; thus, further investigation is warranted.  相似文献   

8.
IntroductionGroup A Streptococcus (GAS) can produce streptococcal secreted esterase (Sse), which inhibits neutrophil recruitment to the site of infection and is crucial for GAS pathogenesis. As an effective esterase, Sse hydrolyzes the sn-2 ester bond of human platelet-activating factor, inactivating it and abolishing its ability to recruit neutrophils.ObjectivesThe purpose of this study was to investigate the effects of sse deletion on the virulence of multiple serotypes of GAS.MethodsIsogenic strains that lack the sse gene (Δsse) were derived from the parent strains MGAS5005 (serotype M1, CovRS mutant), MGAS2221 (serotype M1, wild-type CovRS), MGAS315 (serotype M3, CovRS mutant) and MGAS6180 (serotype M28, wild-type CovRS) and were used to study the differences in virulence and pathogenicity of GAS serotypes.ResultsIn a subcutaneous infection model, mice infected with MGAS5005Δsse exhibited higher survival rates but decreased dissemination to the organs compared with mice infected with MGAS5005. When mice were infected with the four Δsse mutants, the MPO activity and IFN-γ, TNF-α, IL-2 and IL-6 levels increased, but the skin lesion sizes decreased. In an intraperitoneal infection model, the absence of Sse significantly reduced the virulence of GAS, leading to increased mouse survival rates and decreased GAS burdens in the organs in most of the challenge experiments. In addition, the numbers of the four Δsse mutants were greatly reduced 60 min after incubation with isolated rat neutrophils.ConclusionOur results suggest that Sse participates in the pathogenesis of multiple GAS serotypes (MGAS5005, MGAS2221, MGAS315 and MGAS6180), particularly the hypervirulent CovS mutant strains MGAS5005 and MGAS315. These strain differences were positively correlated with the virulence of the serotype.  相似文献   

9.
Circumvention of the host innate immune response is critical for bacterial pathogens to infect and cause disease. Here we demonstrate that the group A Streptococcus (GAS; Streptococcus pyogenes) protease SpyCEP (S. pyogenes cell envelope protease) cleaves granulocyte chemotactic protein 2 (GCP-2) and growth-related oncogene alpha (GROα), two potent chemokines made abundantly in human tonsils. Cleavage of GCP-2 and GROα by SpyCEP abrogated their abilities to prime neutrophils for activation, detrimentally altering the innate immune response. SpyCEP expression is negatively regulated by the signal transduction system CovR/S. Purified recombinant CovR bound the spyCEP gene promoter region in vitro, indicating direct regulation. Immunoreactive SpyCEP protein was present in the culture supernatants of covR/S mutant GAS strains but not in supernatants from wild-type strains. However, wild-type GAS strains do express SpyCEP, where it is localized to the cell wall. Strain MGAS2221, an organism representative of the highly virulent and globally disseminated M1T1 GAS clone, differed significantly from its isogenic spyCEP mutant derivative strain in a mouse soft tissue infection model. Interestingly, and in contrast to previous studies, the isogenic mutant strain generated lesions of larger size than those formed following infection with the parent strain. The data indicate that SpyCEP contributes to GAS virulence in a strain- and disease-dependent manner.  相似文献   

10.
11.
Group A Streptococcus (GAS) expresses cell surface proteins that mediate important biological functions such as resistance to phagocytosis, adherence to plasma and extracellular matrix proteins, and degradation of host proteins. An open reading frame encoding a protein of 348 amino acid residues was identified by analysis of the genome sequence available for a serotype M1 strain. The protein has an LPATGE sequence located near the carboxy terminus that matches the consensus sequence (LPXTGX) present in many gram-positive cell wall-anchored molecules. Importantly, the central region of this protein contains 50 contiguous Gly-X-X triplet amino acid motifs characteristic of the structure of human collagen. The structural gene (designated scl for streptococcal collagen-like) was present in all 50 GAS isolates tested, which together express 21 different M protein types and represent the breadth of genomic diversity in the species. DNA sequence analysis of the gene in these 50 isolates found that the number of contiguous Gly-X-X motifs ranged from 14 in serotype M6 isolates to 62 in a serotype M41 organism. M1 and M18 organisms had the identical allele, which indicates very recent horizontal gene transfer. The gene was transcribed abundantly in the logarithmic but not stationary phase of growth, a result consistent with the occurrence of a DNA sequence with substantial homology with a consensus Mga binding site immediately upstream of the scl open reading frame. Two isogenic mutant M1 strains created by nonpolar mutagenesis of the scl structural gene were not attenuated for mouse virulence as assessed by intraperitoneal inoculation. In contrast, the isogenic mutant derivative made from the M1 strain representative of the subclone most frequently causing human infections was significantly less virulent when inoculated subcutaneously into mice. In addition, both isogenic mutant strains had significantly reduced adherence to human A549 epithelial cells grown in culture. These studies identify a new extracellular GAS virulence factor that is widely distributed in the species and participates in adherence to host cells and soft tissue pathology.  相似文献   

12.
13.
The resurgence of invasive disease caused by Streptococcus pyogenes (group A Streptococcus [GAS]) in the past 30 years has paralleled the emergence and global dissemination of the highly virulent M1T1 clone. The GAS M1T1 clone has diverged from the ancestral M1 serotype by horizontal acquisition of two unique bacteriophages, encoding the potent DNase Sda1/SdaD2 and the superantigen SpeA, respectively. The phage-encoded DNase promotes escape from neutrophil extracellular traps and is linked to enhanced virulence of the M1T1 clone. In this study, we successfully used in vitro lysogenic conversion to transfer the Sda1-encoding phage from the M1T1 clonal strain 5448 to the nonclonal M1 isolate SF370 and determined the impact of this horizontal gene transfer event on virulence. Although Sda1 was expressed in SF370 lysogens, no capacity of the phage-converted strain to survive human neutrophil killing, switch to a hyperinvasive covRS mutant form, or cause invasive lethal infection in a humanized plasminogen mouse model was observed. This work suggests that the hypervirulence of the M1T1 clone is due to the unique synergic effect of the M1T1 clone bacteriophage-specific virulence factor Sda1 acting in concert with the M1T1 clone-specific genetic scaffold.  相似文献   

14.
15.
16.
Group A Streptococcus is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Cell wall anchored pili were recently described in several species of pathogenic streptococci, and in the case of GAS, these surface appendages were demonstrated to facilitate epithelial cell adherence. Here we use targeted mutagenesis to evaluate the contribution of pilus expression to virulence of the globally disseminated M1T1 GAS clone, the leading agent of both GAS pharyngitis and severe invasive infections. We confirm that pilus expression promotes GAS adherence to pharyngeal cells, keratinocytes, and skin. However, in contrast to findings reported for group B streptococcal and pneumococcal pili, we observe that pilus expression reduces GAS virulence in murine models of necrotizing fasciitis, pneumonia and sepsis, while decreasing GAS survival in human blood. Further analysis indicated the systemic virulence attenuation associated with pilus expression was not related to differences in phagocytic uptake, complement deposition or cathelicidin antimicrobial peptide sensitivity. Rather, GAS pili were found to induce neutrophil IL-8 production, promote neutrophil transcytosis of endothelial cells, and increase neutrophil release of DNA-based extracellular traps, ultimately promoting GAS entrapment and killing within these structures.  相似文献   

17.
Glycerophosphodiester phosphodiesterase (GlpQ) metabolizes glycerophosphorylcholine from the lung epithelium to produce free choline, which is transformed into phosphorylcholine and presented on the surfaces of many respiratory pathogens. Two orthologs of glpQ genes are found in Streptococcus pneumoniae: glpQ, with a membrane motif, is widespread in pneumococci, whereas glpQ2, which shares high similarity with glpQ in Haemophilus influenzae and Mycoplasma pneumoniae, is present only in S. pneumoniae serotype 3, 6B, 19A, and 19F strains. Recently, serotype 19A has emerged as an epidemiological etiology associated with invasive pneumococcal diseases. Thus, we investigated the pathophysiological role of glpQ2 in a serotype 19A sequence type 320 (19AST320) strain, which was the prevalent sequence type in 19A associated with severe pneumonia and invasive pneumococcal disease in pediatric patients. Mutations in glpQ2 reduced phosphorylcholine expression and the anchorage of choline-binding proteins to the pneumococcal surface during the exponential phase, where the mutants exhibited reduced autolysis and lower natural transformation abilities than the parent strain. The deletion of glpQ2 also decreased the adherence and cytotoxicity to human lung epithelial cell lines, whereas these functions were indistinguishable from those of the wild type in complementation strains. In a murine respiratory tract infection model, glpQ2 was important for nasopharynx and lung colonization. Furthermore, infection with a glpQ2 mutant decreased the severity of pneumonia compared with the parent strain, and glpQ2 gene complementation restored the inflammation level. Therefore, glpQ2 enhances surface phosphorylcholine expression in S. pneumoniae 19AST320 during the exponential phase, which contributes to the severity of pneumonia by promoting adherence and host cell cytotoxicity.  相似文献   

18.
Fluorescent amplified-fragment length polymorphism (FAFLP) analysis was carried out for an outbreak of group A streptococcal (GAS) invasive disease. Streptococcal genomic DNAs were digested with endonucleases EcoRI and MseI, site-specific adaptors were ligated, and PCR amplification was carried out with an EcoRI adaptor-specific primer labelled with fluorescent dye. Amplified fragments of up to 600 bp in size were separated on a polyacrylamide sequencing gel which contained internal size markers in each lane. These data were automatically scanned and analyzed, fragments were precisely sized (±1 bp), and electropherograms were generated for each genome with GeneScan 2.1 software. All isolates were compared in this way. Among 27 GAS isolates examined, we found 18 FAFLP profiles, compared with 12 macrorestriction profiles by pulsed-field gel electrophoresis. FAFLP readily distinguished genotypes for two clones of GAS serotype M77 which were responsible for outbreaks of invasive disease in a care-of-the-elderly system. It provided an automated analysis of the whole genome of bacterial isolates. It was reproducible, more discriminatory, and capable of higher throughput than other molecular typing methods. Given agreed conditions, FAFLP would be reproducible between laboratories for rapid characterization of outbreak strains.  相似文献   

19.
Group G beta-hemolytic streptococcus (GGS) strains cause severe invasive infections, mostly in patients with comorbidities. GGS is known to possess virulence factors similar to those of its more virulent counterpart group A streptococcus (GAS). A streptococcal invasion locus, sil, was identified in GAS. sil encodes a competence-stimulating peptide named SilCR that activates bacterial quorum sensing and has the ability to attenuate virulence in GAS infections. We found that sil is present in most GGS strains (82%) but in only 25% of GAS strains, with a similar gene arrangement. GGS strains that contained sil expressed the SilCR peptide and secreted it into the growth medium. In a modified murine model of GGS soft tissue infection, GGS grown in the presence of SilCR caused a milder disease than GGS grown in the absence of SilCR. To further study the role of the peptide in bacterial virulence attenuation, we vaccinated mice with SilCR to produce specific anti-SilCR antibodies. Vaccinated mice developed a significantly more severe illness than nonvaccinated mice. Our results indicate that the sil locus is much more prevalent among the less virulent GGS strains than among GAS strains. GGS strains express and secrete SilCR, which has a role in attenuation of virulence in a murine model. We show that the SilCR peptide can protect mice from infection caused by GGS. Furthermore, vaccinated mice that produce specific anti-SilCR antibodies develop a significantly more severe infection. To our knowledge, this is a novel report demonstrating that specific antibodies against a bacterial component cause more severe infection by those bacteria.  相似文献   

20.
Although the toxicity of streptolysin O (SLO) and streptolysin S (SLS) in purified group A streptococci (GAS) has been established, the effect of these molecules in natural infection is not well understood. To identify whether biologically relevant concentrations of SLO and SLS were cytotoxic to epithelial and phagocytic cells that the bacteria would typically encounter during human infection and to characterize the influence of cell injury on bacterial pathogenesis, we derived GAS strains deficient in SLO or SLS in the background of an invasive GAS M3 isolate and determined their virulence in in vitro and in vivo models of human disease. Whereas bacterial production of SLO resulted in lysis of both human keratinocytes and polymorphonuclear leukocytes, GAS expression of SLS was associated only with keratinocyte injury. Expression of SLO but not SLS impaired polymorphonuclear leukocyte killing of GAS in vitro, but this effect could only be demonstrated in the background of acapsular organisms. In mouse invasive soft-tissue infection, neither SLO or SLS expression significantly influenced mouse survival. By contrast, in a mouse model of bacterial sepsis after intraperitoneal inoculation of GAS, SLO expression enhanced the virulence of both encapsulated and acapsular GAS, whereas SLS expression increased the virulence only of acapsular GAS. We conclude that the cytotoxic effects of SLO protect GAS from phagocytic killing and enhance bacterial virulence, particularly of strains that may be relatively deficient in hyaluronic acid capsule. Compared to SLO, SLS in this strain background has a more modest influence on GAS pathogenicity and the effect does not appear to involve bacterial resistance to phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号