首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor, is unclear with respect to its cellular localization, its Ca2+-dependent mobilization, and its action on Ca2+ signaling. Confocal microscopy was used to measure Ca2+ signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca2+ using thapsigargin (2–10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca2+ depletion. Additionally, we found no store-operated Ca2+ entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca2+ content and increased SR Ca2+ leak. These changes in Ca2+ signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca2+ ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca2+ leak and that these actions are independent of store-operated Ca2+ entry, a process that is absent in normal heart cells.Store-operated Ca2+ entry (SOCE) is a cellular mechanism to ensure that sufficient levels of Ca2+ are present in the intracellular Ca2+ stores to enable robust signaling (1). SOCE depends on the presence and interaction of two proteins, STIM1 (stromal interaction molecule 1) and Orai1 (a low conductance plasma/sarcolemmal Ca2+ channel), or their equivalents (25). STIM1 is an endo/sarcoplasmic reticulum (ER/SR) Ca2+-sensitive protein that interacts with Orai1 to activate the channel function of Orai1, a Ca2+ selective channel, and thus permit Ca2+ entry. SOCE is clearly present in nonexcitable cells such as T lymphocytes and some excitable cells including skeletal muscle cells (4, 613). STIM1 is a membrane-spanning ER/SR protein with a single transmembrane domain and a luminal Ca2+ ([Ca2+]ER/SR)-sensing domain. When luminal Ca2+ is low (i.e., [Ca2+]ER/SR drops to less than 300 µM), then STIM1 self-aggregates and associates with Orai1 to activate it, producing a SOCE current (ISOCE) (2, 1416) and Ca2+ entry (with a reversal potential ESOCE ∼ +50 mV or more) (17, 18). Then, as [Ca2+]ER/SR increases in response to the Ca2+ influx, the process reverses.In adult skeletal muscle cells, Ca2+ influx is normally low, and it has been suggested that SOCE is needed for maintaining an appropriate level of [Ca2+]ER/SR and correct Ca2+ signaling (6, 7, 9, 19). In skeletal muscle, it has been hypothesized that STIM1 is prelocalized in the SR terminal cisternae (6, 20) and hence can more rapidly respond to changes in [Ca2+]ER/SR. The putative importance of SOCE in skeletal muscle was further supported by the observation that the skeletal muscle dysfunction is significant in STIM1-null mice where 91% (30/33) of the animals died in the perinatal period from a skeletal myopathy (6). Furthermore, in humans, STIM1 mutations were identified as a genetic cause of tubular aggregate myopathy (21).Despite the clarity of the SOCE paradigm, the canonical SOCE activation process described above does not apply to all conditions in which STIM1 and Orai1 interact. For example, in T lymphocytes, STIM1 clustering is necessary and sufficient to activate SOCE, regardless of whether [Ca2+]ER/SR is low (4). When present, the STIM1 EF hand mutation causes STIM1 oligomerization and constitutive Ca2+ influx across the plasma membrane into cells with full Ca2+ stores (4). Although this is consistent with the use of STIM1 clusters and puncta to measure the activation of Orai1 (15, 16, 22, 23), it does not necessarily reflect the state of [Ca2+]ER/SR. Furthermore, several small-molecule bioactive reagents, such as 2-APB and FCCP, neither of which causes [Ca2+]ER/SR depletion, induce STIM1 clustering (24). Thus, STIM1 may have actions that are more complicated than simple [Ca2+]ER/SR sensing and Orai1 signaling.Cardiomyocytes have been reported to have SOCE (8, 13, 25, 26) but are very different from many of the cells noted above that exhibit significant [Ca2+]ER/SR depletion-sensitive Ca2+ entry through the Ca2+-selective Orai1. Cardiac ventricular myocytes are different from the other cells in that they have large, regular, and dynamic changes in [Ca2+]i and robust influx and extrusion pathways across the sarcolemmal membrane. For example, it is not unusual for investigators to measure a 10–20 nA calcium current (ICa,L) in single cardiac ventricular myocytes that is readily extruded by the sarcolemmal Na+/Ca2+ exchanger. Because of these large fluxes, adult ventricular myocytes have no “need” for SOCE and the same logic applies to neonatal cardiomyocytes. Nevertheless, reports of SOCE in neonatal cardiac myocytes are clear (10, 12, 13). Against this background, we have attempted to determine if STIM1 is present in adult cardiomyocytes and, if so, where the protein is located, how it is mobilized, and how it may interact with other Ca2+ signal proteins. In the work presented here, we show that STIM1 is present but that its function in heart is distinct from the canonical SOCE behavior and does not contribute to Ca2+ influx through ISOCE. Instead we show that STIM1 binds phospholamban (PLN), an endogenous SERCA2a inhibitor in the heart (27), and by doing so reduces the PLN-dependent inhibition of SERCA2a and thereby indirectly activates SERCA2a.  相似文献   

2.
Signaling through the store-operated Ca2+ release-activated Ca2+ (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca2+ homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca2+ sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca2+-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca2+ entry in the treatment of patients with Stormorken syndrome and related pathologic conditions.Ca2+ influx in response to the depletion of intracellular Ca2+ stores, or store-operated Ca2+ entry, constitutes one of the major routes of Ca2+ entry in all animal cells (1). Under physiological conditions, Ca2+ influx is activated in response to numerous G protein-coupled receptors and receptor tyrosine kinases signaling via inositol-1,4,5-trisphosphate as a second messenger (2). Store-operated Ca2+ entry is mediated primarily by the Ca2+ release-activated Ca2+ (CRAC) channel (3), which consists of the pore-forming subunits ORAI1–3 (or CRAC modulators 1–3) and Ca2+ sensors, STIM1 and STIM2 (47). STIM proteins reside in the membrane of endoplasmic reticulum (ER), whereas ORAI proteins reside in the plasma membrane. STIM1 is a single transmembrane-spanning protein (812) that, in resting cells, exists as a dimer that binds Ca2+ through two EF hand-containing domains located in the ER lumen (13). Depletion of Ca2+ in the ER induces a series of molecular events in the conformation and localization of STIM1, initiated by the formation of higher-order oligomers, protein unfolding, and accumulation at discrete sites in the cell where the ER membrane is in close proximity to the plasma membrane (11, 1316). In these sites, STIM1 binds to the cytosolic C and N termini of ORAI1 (17, 18), resulting in channel activation and generation of a highly Ca2+-selective CRAC current, or ICRAC (3, 19, 20). ICRAC is responsible not only for restoring cytosolic and ER Ca2+ concentration, thus maintaining the cell in a Ca2+ signaling-competent stage (1), but also for many cellular functions such as regulation of gene expression, exocytosis, proliferation, and apoptosis (1).Consistent with a fundamental role of the CRAC channel in cell signaling, loss-of-function mutations in STIM1 or ORAI1 lead to immune deficiency and nonprogressive myopathy (2123). However, evidence that gain-of-function mutations in STIM1 and ORAI1 can affect human health is only recently starting to emerge. It was shown that mutations in the domain of STIM1 that binds Ca2+ (EF hand domain) in resting conditions are associated with nonsyndromic myopathy with tubular aggregates (24). Functional studies demonstrated that these mutations cause hyperactivation of the CRAC channel (24). However, it remains unknown whether myopathy with tubular aggregates is caused by the increased activity of the CRAC channel, increased activity of another Ca2+ channel using STIM1 as a sensor (25), or a function of STIM1 that is unrelated to Ca2+ signaling, as STIM1 can function independently of ORAI1 (26-28).Stormorken syndrome [Mendelian Inheritance in Man (MIM) 185070] is a rare autosomal-dominant condition with a constellation of symptoms, including congenital miosis, bleeding diathesis, thrombocytopenia, functional (or anatomical) asplenia, and proximal muscle weakness (29). Other manifestations include ichthyosis, headaches, and dyslexia (30). Patients typically display increased creatine kinase (CK) levels and histologic evidence of myopathy with tubular aggregates (30, 31). Here, we show that Stormorken syndrome is caused by an activating mutation in STIM1. We also identify a mutation in the STIM1-interacting molecule, ORAI1, in a Stormorken-like syndrome that presented with miosis and tubular myopathy. Functional analyses reveal that both mutations enhance the activity of the CRAC channel, but by different molecular mechanisms. These data expand the phenotypic spectrum of activating mutations in the CRAC channels from myopathy with tubular aggregates to miosis, bleeding diathesis, thrombocytopenia, asplenia, ichthyosis, headaches, and dyslexia.  相似文献   

3.
In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca2+ gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca2+ channels in pollen tube tips are core components that regulate Ca2+ gradients by mediating and regulating external Ca2+ influx. Therefore, Ca2+ channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca2+ channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca2+ gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/−) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18’s transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca2+ channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca2+ channel for pollen tube guidance in Arabidopsis.Pollen tubes deliver paired sperm cells into ovules for double fertilization, and signaling communication between pollen tubes and female reproductive tissues is required to ensure the delivery of sperm cells into the ovules (1). Pollen tube guidance is governed by both female sporophytic and gametophytic tissues (2, 3) and can be separated into two categories: preovular guidance and ovular guidance (1). For preovular guidance, diverse signaling molecules from female sporophytic tissues have been identified, including the transmitting tissue-specific (TTS) glycoprotein in tobacco (4), γ-amino butyric acid (GABA) in Arabidopsis (5), and chemocyanin and the lipid transfer protein SCA in Lilium longiflorum (6, 7). For ovular pollen tube guidance, female gametophytes secrete small peptides as attractants, including LUREs in Torenia fournieri (8) and Arabidopsis (9) and ZmEA1 in maize (10, 11). Synergid cells, central cells, egg cells, and egg apparatus are all involved in pollen tube guidance, probably by secreting different attractants (915). Additionally, nitric oxide (NO) and phytosulfokine peptides have also been implicated in both preovular and ovular pollen tube guidance (1618). Thus, pollen tubes could be guided by diverse attractants in a single plant species.Ca2+ gradients at pollen tube tips are essential for both tip growth and pollen tube guidance (1927). Spatial modification of the Ca2+ gradients leads to the reorientation of pollen tube growth in vitro (28, 29). The Ca2+ gradients were significantly increased in pollen tubes attracted to the micropyles by synergid cells in vivo, compared with those not attracted by ovules (30). Therefore, the Ca2+ gradients in pollen tube tips are essential for pollen tube guidance. The Ca2+ gradients result from external Ca2+ influx, which is mainly mediated by plasma membrane Ca2+ channels in pollen tube tips. Thus, the Ca2+ channels are the key components for regulating the Ca2+ gradients and are consequently essential for pollen tube guidance. Using electrophysiological techniques, inward Ca2+ currents were observed in both pollen grain and pollen tube protoplasts (3136), supporting the presence of plasma membrane Ca2+ channels in pollen tube tips. Recently, a number of candidate Ca2+ channels were identified in pollen tubes, including six cyclic nucleotide-gated channels (CNGCs) and two glutamate receptor-like channels (GLRs) in Arabidopsis (3740). Three of these eight channels, namely CNGC18, GLR1.2, and GLR3.7, were characterized as Ca2+-permeable channels (40, 41) whereas the ion selectivity of the other five CNGCs has not been characterized. We hypothesized that the Ca2+ channel essential for pollen tube guidance could be among these eight channels.In this research, we first characterized the remaining five CNGCs as Ca2+ channels. We further found that CNGC18, out of the eight Ca2+ channels, was the only one essential for pollen tube guidance in Arabidopsis and that its transmembrane domains were indispensable for pollen tube guidance.  相似文献   

4.
Antiapoptotic Bcl-2 family members interact with inositol trisphosphate receptor (InsP3R) Ca2+ release channels in the endoplasmic reticulum to modulate Ca2+ signals that affect cell viability. However, the molecular details and consequences of their interactions are unclear. Here, we found that Bcl-xL activates single InsP3R channels with a biphasic concentration dependence. The Bcl-xL Bcl-2 homology 3 (BH3) domain-binding pocket mediates both high-affinity channel activation and low-affinity inhibition. Bcl-xL activates channel gating by binding to two BH3 domain-like helices in the channel carboxyl terminus, whereas inhibition requires binding to one of them and to a previously identified Bcl-2 interaction site in the channel-coupling domain. Disruption of these interactions diminishes cell viability and sensitizes cells to apoptotic stimuli. Our results identify BH3-like domains in an ion channel and they provide a unifying model of the effects of antiapoptotic Bcl-2 proteins on the InsP3R that play critical roles in Ca2+ signaling and cell viability.The inositol trisphosphate receptors (InsP3R) are a family of intracellular cation channels that release Ca2+ from the endoplasmic reticulum (ER) in response to a variety of extracellular stimuli (1). Three InsP3R isoforms are ubiquitously expressed and regulate diverse cell processes, including cell viability (1). Activation of the channels by InsP3 elicits changes in cytoplasmic Ca2+ concentration ([Ca2+]i) that provide versatile signals to regulate molecular processes with high spatial and temporal fidelity (1). Regions of close proximity to mitochondria enable localized Ca2+ release events to be transduced to mitochondria (2, 3). Ca2+ released from the ER during cell stimulation modulates activities of effector molecules and is taken up by mitochondria to stimulate oxidative phosphorylation and enhance ATP production (46) to match energetic supply with enhanced demand. In addition, cells in vivo are constantly exposed to low levels of circulating hormones, transmitters, and growth factors that bind to plasma membrane receptors to provide a background level of cytoplasmic InsP3 (7) that generates low-level stochastic InsP3R-mediated localized or propagating [Ca2+]i signals (810). Such signals also play an important role in maintenance of cellular bioenergetics (8). Nevertheless, under conditions of cell stress the close proximity of mitochondria to Ca2+ release sites may result in mitochondrial Ca2+ overload and initiate Ca2+-dependent forms of cell death, including necrosis and apoptosis (1113). It has been suggested that high levels of ER Ca2+ (1416) and enhanced activity of the InsP3R (1719) promote cell death by providing a higher quantity of released Ca2+ to mitochondria (3, 20, 21).Protein interactions modulate the magnitude and quality of InsP3R-mediated [Ca2+]i signals that regulate apoptosis and cell viability. Notable in this regard is the Bcl-2 protein family. Proapoptotic Bcl-2–related proteins Bax and Bak initiate cytochrome C release from mitochondria in response to diverse apoptotic stimuli, whereas antiapoptotic Bcl-2–related proteins, including Bcl-2 and Bcl-xL, antagonize Bax/Bak by forming heterodimers that prevent their oligomerization and apoptosis initiation (22, 23). Heterodimerization is mediated by interactions of proapoptotic Bcl-2 homology 3 (BH3) domains with a hydrophobic groove on the surface of antiapoptotic Bcl-2 proteins (23) that is a therapeutic target in diseases, including cancer (22). Whereas a central feature of molecular models of apoptosis is the control of outer mitochondrial membrane permeability by Bcl-2–related proteins, a substantial body of evidence has demonstrated that these proteins localize to the ER (24, 25), bind to InsP3Rs (2632) and, by modulating InsP3R-mediated Ca2+ release, regulate ER-mediated cell death and survival (15, 27, 3234). Nevertheless, a unified understanding of the detailed molecular mechanisms by which Bcl-2 family proteins interact with and regulate InsP3R channel activity is lacking. The Bcl-2 family member homolog NrZ interacts with the amino-terminal InsP3-binding region via its helix 1 BH4 domain and inhibits Ca2+ release (28). Bcl-2 also interacts with the InsP3R (26) via its BH4 domain (35), but in contrast it associates with a region in the central coupling domain (35). Whereas this interaction also inhibits Ca2+ release (26), Bok interacts with the channel 500 residues C-terminal to the Bcl-2 binding sequence via its BH4 domain but does not affect Ca2+ release (29). Conversely, the Bcl-xL BH4 domain may lack this interaction (36). Inhibition of the Bcl-2 BH4 domain interaction with the channel enhanced InsP3R-mediated Ca2+ signals and apoptosis sensitivity in white blood cells (18, 35, 37). However, it is unclear if Bcl-2 inhibits Ca2+ signaling directly by binding to the channel or if it acts indirectly, as a hub in a protein complex that influences channel phosphorylation (38). Conversely, we demonstrated that Bcl-xL, Bcl-2, and Mcl-1 bind to the carboxyl (C)-terminus of all three InsP3R isoforms, and showed that these interactions activated single InsP3R channels and promoted InsP3R-mediated Ca2+ release and apoptosis resistance (27, 31, 32). Furthermore, Bcl-xL mediates an interaction of oncogenic K-RAS with the InsP3R C terminus that regulates its biochemical and functional interaction and cell survival (39). However, the molecular details of the interactions of antiapoptotic protein with the InsP3R C terminus are unknown. Furthermore, the relationship between Bcl-2 family protein binding in the coupling domain and C terminus is unclear. Thus, the mechanisms whereby Bcl-2 and Bcl-xL affect InsP3R activity and the effects of this modulation on cell viability remain to be determined.Here, we used single-channel electrophysiology of native ER membranes to explore the detailed mechanisms of the effects of Bcl-xL on the InsP3R, and the role of this interaction on cell viability. Surprisingly, our results reveal that whereas Bcl-xL activates the channel at low concentrations, it inhibits it at higher concentrations, resulting in a biphasic response of channel activation on [Bcl-xL]. Remarkably, the Bcl-xL BH3 domain-binding pocket is required for both effects. Low [Bcl-xL] activates the channel by simultaneous binding to two BH3 domain-like helices in the channel C terminus, whereas channel inhibition at high [Bcl-xL] requires binding to only one of them and to a site previously identified as the Bcl-2 binding site in the channel-coupling domain. Disruption of these interactions diminishes cell viability. Our results provide a unifying model of the effects of antiapoptotic Bcl-2 proteins on the InsP3R that play critical roles in Ca2+ signaling and cell viability.  相似文献   

5.
Modulation of P/Q-type Ca2+ currents through presynaptic voltage-gated calcium channels (CaV2.1) by binding of Ca2+/calmodulin contributes to short-term synaptic plasticity. Ca2+-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca2+ sensor proteins that differentially modulate CaV2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic CaV2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca2+-dependent facilitation of P/Q-type Ca2+ current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca2+-dependent inactivation of P/Q-type Ca2+ current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic CaV2.1 channels by differentially expressed Ca2+ sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity.Neurons fire repetitively in different frequencies and patterns, and activity-dependent alterations in synaptic strength result in diverse forms of short-term synaptic plasticity that are crucial for information processing in the nervous system (13). Short-term synaptic plasticity on the time scale of milliseconds to seconds leads to facilitation or depression of synaptic transmission through changes in neurotransmitter release. This form of plasticity is thought to result from residual Ca2+ that builds up in synapses during repetitive action potentials and binds to a Ca2+ sensor distinct from the one that evokes neurotransmitter release (1, 2, 4, 5). However, it remains unclear how changes in residual Ca2+ cause short-term synaptic plasticity and how neurotransmitter release is regulated to generate distinct patterns of short-term plasticity.In central neurons, voltage-gated calcium (CaV2.1) channels are localized in high density in presynaptic active zones where their P/Q-type Ca2+ current triggers neurotransmitter release (611). Because synaptic transmission is proportional to the third or fourth power of Ca2+ entry through presynaptic CaV2.1 channels, small changes in Ca2+ current have profound effects on synaptic transmission (2, 12). Studies at the calyx of Held synapse have provided important insights into the contribution of presynaptic Ca2+ current to short-term synaptic plasticity (1317). CaV2.1 channels are required for synaptic facilitation, and Ca2+-dependent facilitation and inactivation of the P/Q-type Ca2+ currents are correlated temporally with synaptic facilitation and rapid synaptic depression (1317).Molecular interactions between Ca2+/calmodulin (CaM) and CaV2.1 channels induce sequential Ca2+-dependent facilitation and inactivation of P/Q-type Ca2+ currents in nonneuronal cells (1821). Facilitation and inactivation of P/Q-type currents are dependent on Ca2+/CaM binding to the IQ-like motif (IM) and CaM-binding domain (CBD) of the CaV2.1 channel, respectively (20, 21). This bidirectional regulation serves to enhance channel activity in response to short bursts of depolarizations and then to decrease activity in response to long bursts. In synapses of superior cervical ganglion (SCG) neurons expressing exogenous CaV2.1 channels, synaptic facilitation is induced by repetitive action potentials, and mutation of the IM and CBD motifs prevents synaptic facilitation and inhibits the rapid phase of synaptic depression (22). Thus, in this model synapse, regulation of presynaptic CaV2.1 channels by binding of Ca2+/CaM can contribute substantially to the induction of short-term synaptic plasticity by residual Ca2+.CaM is expressed ubiquitously, but short-term plasticity has great diversity among synapses, and the potential sources of this diversity are unknown. How could activity-dependent regulation of presynaptic CaV2.1 channels contribute to the diversity of short-term synaptic plasticity? CaM is the founding member of a large family of Ca2+ sensor (CaS) proteins that are differentially expressed in central neurons (2325). Two CaS proteins, Ca2+-binding protein-1 (CaBP1) and Visinin-like protein-2(VILIP-2), modulate facilitation and inactivation of CaV2.1 channels in opposite directions through interaction with the bipartite regulatory site in the C-terminal domain (26, 27), and they have varied expression in different types of central neurons (23, 25, 28). CaBP1 strongly enhances inactivation and prevents facilitation of CaV2.1 channel currents, whereas VILIP-2 slows inactivation and enhances facilitation of CaV2.1 currents during trains of stimuli (26, 27). Molecular analyses show that the N-terminal myristoylation site and the properties of individual EF-hand motifs in CaBP1 and VILIP-2 determine their differential regulation of CaV2.1 channels (27, 2931). However, the role of CaBP1 and VILIP-2 in the diversity of short-term synaptic plasticity is unknown, and the high density of Ca2+ channels and unique Ca2+ dynamics at the presynaptic active zone make extrapolation of results from studies in nonneuronal cells uncertain. We addressed this important question directly by expressing CaBP1 and VILIP-2 in presynaptic SCG neurons and analyzing their effects on synaptic plasticity. Our results show that CaM-related CaS proteins can serve as sensitive bidirectional switches that fine-tune the input–output relationships of synapses depending on their profile of activity and thereby maintain the balance of facilitation versus depression by the regulation of presynaptic CaV2.1 channels.  相似文献   

6.
7.
Calcium (Ca2+) released from the sarcoplasmic reticulum (SR) is crucial for excitation–contraction (E–C) coupling. Mitochondria, the major source of energy, in the form of ATP, required for cardiac contractility, are closely interconnected with the SR, and Ca2+ is essential for optimal function of these organelles. However, Ca2+ accumulation can impair mitochondrial function, leading to reduced ATP production and increased release of reactive oxygen species (ROS). Oxidative stress contributes to heart failure (HF), but whether mitochondrial Ca2+ plays a mechanistic role in HF remains unresolved. Here, we show for the first time, to our knowledge, that diastolic SR Ca2+ leak causes mitochondrial Ca2+ overload and dysfunction in a murine model of postmyocardial infarction HF. There are two forms of Ca2+ release channels on cardiac SR: type 2 ryanodine receptors (RyR2s) and type 2 inositol 1,4,5-trisphosphate receptors (IP3R2s). Using murine models harboring RyR2 mutations that either cause or inhibit SR Ca2+ leak, we found that leaky RyR2 channels result in mitochondrial Ca2+ overload, dysmorphology, and malfunction. In contrast, cardiac-specific deletion of IP3R2 had no major effect on mitochondrial fitness in HF. Moreover, genetic enhancement of mitochondrial antioxidant activity improved mitochondrial function and reduced posttranslational modifications of RyR2 macromolecular complex. Our data demonstrate that leaky RyR2, but not IP3R2, channels cause mitochondrial Ca2+ overload and dysfunction in HF.Type 2 ryanodine receptor/Ca2+ release channel (RyR2) and type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) are the major intracellular Ca2+ release channels in the heart (13). RyR2 is essential for cardiac excitation–contraction (E–C) coupling (2), whereas the role of IP3R2 in cardiomyocytes is less well understood (3). E–C coupling requires energy in the form of ATP produced primarily by oxidative phosphorylation in mitochondria (48).Both increased and reduced mitochondrial Ca2+ levels have been implicated in mitochondrial dysfunction and increased reactive oxygen species (ROS) production in heart failure (HF) (6, 7, 917). Albeit Ca2+ is required for activation of key enzymes (i.e., pyruvate dehydrogenase phosphatase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase) in the tricarboxylic acid (also known as Krebs) cycle (18, 19), excessive mitochondrial Ca2+ uptake has been associated with cellular dysfunction (14, 20). Furthermore, the exact source of mitochondrial Ca2+ has not been clearly established. Given the intimate anatomical and functional association between the sarcoplasmic reticulum (SR) and mitochondria (6, 21, 22), we hypothesized that SR Ca2+ release via RyR2 and/or IP3R2 channels in cardiomyocytes could lead to mitochondrial Ca2+ accumulation and dysfunction contributing to oxidative overload and energy depletion.  相似文献   

8.
A simultaneous increase in cytosolic Zn2+ and Ca2+ accompanies the initiation of neuronal cell death signaling cascades. However, the molecular convergence points of cellular processes activated by these cations are poorly understood. Here, we show that Ca2+-dependent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) is required for a cell death-enabling process previously shown to also depend on Zn2+. We have reported that oxidant-induced intraneuronal Zn2+ liberation triggers a syntaxin-dependent incorporation of Kv2.1 voltage-gated potassium channels into the plasma membrane. This channel insertion can be detected as a marked enhancement of delayed rectifier K+ currents in voltage clamp measurements observed at least 3 h following a short exposure to an apoptogenic stimulus. This current increase is the process responsible for the cytoplasmic loss of K+ that enables protease and nuclease activation during apoptosis. In the present study, we demonstrate that an oxidative stimulus also promotes intracellular Ca2+ release and activation of CaMKII, which, in turn, modulates the ability of syntaxin to interact with Kv2.1. Pharmacological or molecular inhibition of CaMKII prevents the K+ current enhancement observed following oxidative injury and, importantly, significantly increases neuronal viability. These findings reveal a previously unrecognized cooperative convergence of Ca2+- and Zn2+-mediated injurious signaling pathways, providing a potentially unique target for therapeutic intervention in neurodegenerative conditions associated with oxidative stress.Calcium has long been recognized as a critical component of neuronal cell death pathways triggered by oxidative, ischemic, and other forms of injury (1). Indeed, Ca2+ deregulation has been associated with a variety of detrimental processes in neurons, including mitochondrial dysfunction (2), generation of reactive oxygen species (3), and activation of apoptotic signaling cascades (4). More recently, zinc, a metal crucial for proper cellular functioning (5), has been found to be closely linked to many of the injurious conditions in which Ca2+ had been thought to play a prominent role (610). In fact, it has been suggested that a number of deleterious properties initially attributed to Ca2+ may have significant Zn2+-mediated components (11, 12). Although it is virtually impossible to chelate, or remove, Ca2+ without disrupting Zn2+ levels (13), the introduction of techniques to monitor Ca2+ and Zn2+ simultaneously in cells (14) has made it increasingly apparent that both cations have important yet possibly distinct roles in neuronal cell death (12, 1518). However, the relationship between the cell death signaling pathways activated by the cations is unclear, and possible molecular points of convergence between these signaling cascades have yet to be identified.Injurious oxidative and nitrosative stimuli lead to the liberation of intracellular Zn2+ from metal binding proteins (19). The released Zn2+, in turn, triggers p38 MAPK- and Src-dependent Kv2.1 channel insertion into the plasma membrane, resulting in a prominent increase in delayed rectifier K+ currents in dying neurons, with no change in activation voltage, ∼3 h following a brief exposure to the stimulus (2026). The increase in Kv2.1 channels present in the membrane mediates a pronounced loss of intracellular K+, likely accompanied by Cl (27, 28), that facilitates apoptosome assembly and caspase activation (20, 2934). Indeed, K+ efflux appears to be a requisite event for the completion of many apoptotic programs, including oxidant-induced, Zn2+-mediated neuronal death (21).Ca2+ has been suggested to regulate the p38 MAPK signaling cascade via Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated activation of the MAP3K apoptosis signaling kinase-1 (ASK-1) (35). Because ASK-1 is also required for p38-dependent manifestation of the Zn2+-triggered, Kv2.1-mediated enhancement of K+ currents (36), we hypothesized that the p38 activation cascade may provide a point of convergence between Ca2+ and Zn2+ signals following oxidative injury. Here, we report that Ca2+ and Zn2+ signals do, in fact, converge on a cellular event critical for the K+ current enhancement, and that CaMKII is required for this process. However, CaMKII does not act upstream of p38 activation as originally hypothesized, but instead interacts with the N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) protein syntaxin, which we showed to be necessary for the insertion of Kv2.1-encoded K+ channels following an apoptotic stimulus (23).  相似文献   

9.
10.
11.
Stromal interacting molecule (STIM) and Orai proteins constitute the core machinery of store-operated calcium entry. We used transmission and freeze–fracture electron microscopy to visualize STIM1 and Orai1 at endoplasmic reticulum (ER)–plasma membrane (PM) junctions in HEK 293 cells. Compared with control cells, thin sections of STIM1-transfected cells possessed far more ER elements, which took the form of complex stackable cisternae and labyrinthine structures adjoining the PM at junctional couplings (JCs). JC formation required STIM1 expression but not store depletion, induced here by thapsigargin (TG). Extended molecules, indicative of STIM1, decorated the cytoplasmic surface of ER, bridged a 12-nm ER-PM gap, and showed clear rearrangement into small clusters following TG treatment. Freeze–fracture replicas of the PM of Orai1-transfected cells showed extensive domains packed with characteristic “particles”; TG treatment led to aggregation of these particles into sharply delimited “puncta” positioned upon raised membrane subdomains. The size and spacing of Orai1 channels were consistent with the Orai crystal structure, and stoichiometry was unchanged by store depletion, coexpression with STIM1, or an Orai1 mutation (L273D) affecting STIM1 association. Although the arrangement of Orai1 channels in puncta was substantially unstructured, a portion of channels were spaced at ∼15 nm. Monte Carlo analysis supported a nonrandom distribution for a portion of channels spaced at ∼15 nm. These images offer dramatic, direct views of STIM1 aggregation and Orai1 clustering in store-depleted cells and provide evidence for the interaction of a single Orai1 channel with small clusters of STIM1 molecules.Specialized junctions linking the endoplasmic reticulum (ER) to the plasma membrane (PM) were first described by Porter and Palade (1) in skeletal and cardiac muscle. In skeletal muscle, excitation–contraction coupling is mediated by direct physical contact between voltage-gated Ca2+ channels (dihydropyridine receptors) in invaginated transverse tubules of the PM and Ca2+-release channels (ryanodine receptors) in ER membrane (2). A second type of ER-PM junction mediates inside-out signaling by linking depletion of Ca2+ in the ER lumen to Ca2+ influx across the PM in a process termed store-operated Ca2+ entry (SOCE). In addition to being a mechanism of ionic homeostasis, SOCE supports long-lasting Ca2+ signals in many cell types. ER stromal interacting molecule (STIM) and PM Orai proteins were identified by RNAi screening as required for SOCE (37). Overexpression of both proteins is required to amplify Ca2+ influx through Orai channels (710). In Drosophila, STIM and Orai are the sole members of a gene family, which in mammals, includes two STIM and three Orai proteins. STIM1 and Orai1 are predominant in the immune system; human mutations in either gene can cause lethal severe combined immune deficiencies (SCID) (11). ER STIM proteins trigger SOCE by sensing ER Ca2+ store depletion, translocating as oligomers to the PM, and binding to PM Orai proteins to promote clustering and channel opening (3, 1216). These events have been extensively documented by microscopy of cells expressing fluorescently tagged proteins. Numerous studies have defined domains and amino acid residues of STIM1 and Orai1 that are vital for channel function (17, 18).ER-PM junctions underlying SOCE have been visualized by electron microscopy (EM), using either HRP-tagged STIM1 (13, 19) or immunogold labeling of STIM1 (20). However, little is known about the nanometer-scale subcellular organization of STIM and Orai proteins, although they define a basic unit of Ca2+ signaling. Here, through a close examination of transmission and freeze–fracture electron micrographs of transfected cells expressing STIM1 and Orai1, we further define the microanatomy of the ER-PM, as well as of ER-ER junctions in store-depleted and untreated cells. These images provide direct candidate signatures for STIM1 molecules bridging the ER-PM and ER-ER gaps and for individual Orai1 channels in puncta. Taken together, our observations provide visual confirmation of STIM1 and Orai1 function, constrain models of STIM1 and Orai1 assembly and interaction, and suggest new aspects of molecular interactions between STIM1 and Orai1.  相似文献   

12.
Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca2+ elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca2+ signals is due to a signal-enhancing analysis of the Ca2+ activity. The rapid stimulation-evoked Ca2+ increases identified in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca2+ responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have brief Ca2+ responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.Brain function emerges from signaling in and between neurons and associated astrocytes, which causes fluctuations in cerebral blood flow (CBF) (15). Astrocytes are ideally situated for controlling activity-dependent increases in CBF because they closely associate with synapses and contact blood vessels with their end-feet (1, 6). Whether or not astrocytic Ca2+ responses develop often or rapidly enough to account for vascular signals in vivo is still controversial (710). Ca2+ responses are of interest because intracellular Ca2+ is a key messenger in astrocytic communication and because enzymes that synthesize the vasoactive substances responsible for neurovascular coupling are Ca2+-dependent (1, 4). Neuronal activity releases glutamate at synapses and activates metabotropic glutamate receptors on astrocytes, and this activation can be monitored by imaging cytosolic Ca2+ changes (11). Astrocytic Ca2+ responses are often reported to evolve on a slow (seconds) time scale, which is too slow to account for activity-dependent increases in CBF (8, 10, 12, 13). Furthermore, uncaging of Ca2+ in astrocytes triggers vascular responses in brain slices through specific Ca2+-dependent pathways with a protracted time course (14, 15). More recently, stimulation of single presynaptic neurons in hippocampal slices was shown to evoke fast, brief, local Ca2+ elevations in astrocytic processes that were essential for local synaptic functioning in the adult brain (16, 17). This work prompted us to reexamine the characteristics of fast, brief astrocytic Ca2+ signals in vivo with special regard to neurovascular coupling, i.e., the association between local increases in neural activity and the concomitant rise in local blood flow, which constitutes the physiological basis for functional neuroimaging.Here, we describe how a previously undescribed method of analysis enabled us to provide evidence for fast Ca2+ responses in a main fraction of astrocytes in mouse whisker barrel cortical layers II/III in response to somatosensory stimulation. The astrocytic Ca2+ responses were brief enough to be a direct consequence of synaptic excitation and correlated with stimulation-induced hemodynamic responses. Fast Ca2+ responses in astrocyte end-feet preceded the onset of dilatation in adjacent vessels by hundreds of milliseconds. This finding might suggest that communication at the gliovascular interface contributes considerably to neurovascular coupling.  相似文献   

13.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

14.
Ca2+ influx triggers the fusion of synaptic vesicles at the presynaptic active zone (AZ). Here we demonstrate a role of Ras-related in brain 3 (Rab3)–interacting molecules 2α and β (RIM2α and RIM2β) in clustering voltage-gated CaV1.3 Ca2+ channels at the AZs of sensory inner hair cells (IHCs). We show that IHCs of hearing mice express mainly RIM2α, but also RIM2β and RIM3γ, which all localize to the AZs, as shown by immunofluorescence microscopy. Immunohistochemistry, patch-clamp, fluctuation analysis, and confocal Ca2+ imaging demonstrate that AZs of RIM2α-deficient IHCs cluster fewer synaptic CaV1.3 Ca2+ channels, resulting in reduced synaptic Ca2+ influx. Using superresolution microscopy, we found that Ca2+ channels remained clustered in stripes underneath anchored ribbons. Electron tomography of high-pressure frozen synapses revealed a reduced fraction of membrane-tethered vesicles, whereas the total number of membrane-proximal vesicles was unaltered. Membrane capacitance measurements revealed a reduction of exocytosis largely in proportion with the Ca2+ current, whereas the apparent Ca2+ dependence of exocytosis was unchanged. Hair cell-specific deletion of all RIM2 isoforms caused a stronger reduction of Ca2+ influx and exocytosis and significantly impaired the encoding of sound onset in the postsynaptic spiral ganglion neurons. Auditory brainstem responses indicated a mild hearing impairment on hair cell-specific deletion of all RIM2 isoforms or global inactivation of RIM2α. We conclude that RIM2α and RIM2β promote a large complement of synaptic Ca2+ channels at IHC AZs and are required for normal hearing.Tens of CaV1.3 Ca2+ channels are thought to cluster within the active zone (AZ) membrane underneath the presynaptic density of inner hair cells (IHCs) (14). They make up the key signaling element, coupling the sound-driven receptor potential to vesicular glutamate release (57). The mechanisms governing the number of Ca2+ channels at the AZ as well as their spatial organization relative to membrane-tethered vesicles are not well understood. Disrupting the presynaptic scaffold protein Bassoon diminishes the numbers of Ca2+ channels and membrane-tethered vesicles at the AZ (2, 8). However, the loss of Bassoon is accompanied by the loss of the entire synaptic ribbon, which makes it challenging to distinguish the direct effects of gene disruption from secondary effects (9).Among the constituents of the cytomatrix of the AZ, RIM1 and RIM2 proteins are prime candidates for the regulation of Ca2+ channel clustering and function (10, 11). The family of RIM proteins has seven identified members (RIM1α, RIM1β, RIM2α, RIM2β, RIM2γ, RIM3γ, and RIM4γ) encoded by four genes (RIM1–RIM4). All isoforms contain a C-terminal C2 domain but differ in the presence of additional domains. RIM1 and RIM2 interact with Ca2+ channels, most other proteins of the cytomatrix of the AZ, and synaptic vesicle proteins. They interact directly with the auxiliary β (CaVβ) subunits (12, 13) and pore-forming CaVα subunits (14, 15). In addition, RIMs are indirectly linked to Ca2+ channels via RIM-binding protein (14, 16, 17). A regulation of biophysical channel properties has been demonstrated in heterologous expression systems for RIM1 (12) and RIM2 (13).A role of RIM1 and RIM2 in clustering Ca2+ channels at the AZ was demonstrated by analysis of RIM1/2-deficient presynaptic terminals of cultured hippocampal neurons (14), auditory neurons in slices (18), and Drosophila neuromuscular junction (19). Because α-RIMs also bind the vesicle-associated protein Ras-related in brain 3 (Rab3) via the N-terminal zinc finger domain (20), they are also good candidates for molecular coupling of Ca2+ channels and vesicles (18, 21, 22). Finally, a role of RIMs in priming of vesicles for fusion is the subject of intense research (18, 2127). RIMs likely contribute to priming via disinhibiting Munc13 (26) and regulating vesicle tethering (27). Here, we studied the expression and function of RIM in IHCs. We combined molecular, morphologic, and physiologic approaches for the analysis of RIM2α knockout mice [RIM2α SKO (28); see Methods] and of hair cell-specific RIM1/2 knockout mice (RIM1/2 cDKO). We demonstrate that RIM2α and RIM2β are present at IHC AZs of hearing mice, positively regulate the number of synaptic CaV1.3 Ca2+ channels, and are required for normal hearing.  相似文献   

15.
16.
The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca2+ homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid–binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt–mediated ER–PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt–dependent contacts were by far the predominant contacts, ER–PM distance (19–22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca2+ shortened the ER–PM distance at E-Syt1–dependent contacts sites. E-Syt–mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca2+ channel Orai1 as well as store operated Ca2+ entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt–dependent ER–PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers.The endoplasmic reticulum (ER) consists of a complex network of tubules and cisternae that extends throughout the cell and forms close appositions (“contact sites”) with other membranous organelles and with the plasma membrane (PM) (1, 2). The best characterized function of ER–PM contacts is in Ca2+ homeostasis, as ER–PM contacts mediate the excitation–contraction coupling in muscle and store-operated Ca2+ entry (SOCE) in all metazoan cells. In SOCE, upon depletion of Ca2+ in the ER, the ER protein stromal interaction molecule 1 (STIM1) oligomerizes, binds, and activates Orai1 Ca2+ channels at the PM to drive influx of extracellular Ca2+, thereby allowing homeostatic regulation of ER Ca2+ levels (3, 4). However, growing evidence suggests that ER–PM contacts also play more general roles, including signaling (5, 6) and the regulation of both lipid metabolism and transport between bilayers (1, 717).We recently have shown that the three mammalian extended synaptotagmins (E-Syts), homologs of the yeast tricalbins (18, 19), act as ER–PM tethers (20). E-Syts are ER-anchored proteins (via an N-terminal hairpin) containing a synaptotagmin-like mitochondrial-lipid–binding protein (SMP) domain followed by five (E-Syt1) or three (E-Syt2/3) C2 domains. SMP domains are present in proteins that localize at various organelle contact sites, where they have been implicated in lipid transfer between bilayers (19, 2123). As shown by a recent structural and mass spectrometry study of E-Syt2, the SMP domain dimerizes to form a ∼90-Å-long cylinder traversed by a longitudinally oriented channel lined with hydrophobic residues that harbor glycerophospholipids (23). C2 domains typically are membrane-binding modules whose interaction with the bilayer often is potentiated by elevations in cytosolic Ca2+ and/or facilitated by the presence of acidic phospholipids. Accordingly, the property of the E-Syts to tether the ER to the PM is mediated by C2 domain-dependent interactions with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in the PM, and in the case of E-Syt1 is additionally regulated by the elevation of cytosolic Ca2+ (11, 20). Because E-Syt1 interacts with both E-Syt2 and E-Syt3, E-Syt1 acts as a Ca2+-dependent regulator of E-Syt–mediated ER–PM tethering.The structural features of E-Syt–dependent ER–PM contacts and how the E-Syts and other contact-resident proteins are organized between the bilayers remain unknown. Here we have investigated ER–PM contact architecture in close-to-native conditions using cryo-electron tomography (cryo-ET), a method that enables 3D visualization at molecular resolution of fully hydrated, unstained biological structures in situ, within optimally preserved vitrified cells (24). ER–PM contacts predominantly formed and populated by E-Syt1, E-Syt3, or STIM1 were induced by the transient overexpression of these proteins in COS-7 cells coupled to pharmacological treatments. We found that E-Syt–mediated ER–PM contacts show an electron-dense layer between the two apposed membranes, whereas contacts in which STIM1-mediated tethering to the PM predominates show filaments linking the two membranes. At E-Syt–mediated contacts the ER–PM distance correlates with the length of the cytosolic portion of the specific overexpressed E-Syt isoform and is regulated further by cytosolic Ca2+ in the case of E-Syt1.  相似文献   

17.
18.
Short-term synaptic plasticity is induced by calcium (Ca2+) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca2+ channels by Ca2+ sensor proteins induces facilitation of Ca2+ currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca2+ sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼50%. In the presence of EGTA-AM to prevent global increases in free Ca2+, the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca2+ is dependent upon regulation of CaV2.1 channels by Ca2+ sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10–20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.Modification of synaptic strength in central synapses is highly dependent upon presynaptic activity. The frequency and pattern of presynaptic action potentials regulates the postsynaptic response through diverse forms of short- and long-term plasticity that are specific to individual synapses and depend upon accumulation of intracellular Ca2+ (14). Presynaptic plasticity regulates neurotransmission by varying the amount of neurotransmitter released by each presynaptic action potential (15). P/Q-type Ca2+ currents conducted by voltage-gated CaV2.1 Ca2+ channels initiate neurotransmitter release at fast excitatory glutamatergic synapses in the brain (69) and regulate short-term presynaptic plasticity (3, 10). These channels exhibit Ca2+-dependent facilitation and inactivation that is mediated by the Ca2+ sensor (CaS) protein calmodulin (CaM) bound to a bipartite site in their C-terminal domain composed of an IQ-like motif (IM) and a CaM binding domain (CBD) (1114). Ca2+-dependent facilitation and inactivation of P/Q-type Ca2+ currents correlate with facilitation and rapid depression of synaptic transmission at the Calyx of Held (1518). Elimination of CaV2.1 channels by gene deletion prevents facilitation of synaptic transmission at the Calyx of Held (19, 20). Cultured sympathetic ganglion neurons with presynaptic expression of exogenous CaV2.1 channels harboring mutations in their CaS regulatory site have reduced facilitation and slowed depression of postsynaptic responses because of reduced Ca2+-dependent facilitation and Ca2+-dependent inactivation of CaV2.1 currents (21). The CaS proteins Ca2+-binding protein 1 (CaBP-1), visinin-like protein-2 (VILIP-2), and neuronal Ca2+ sensor-1 (NCS-1) induce different degrees of Ca2+-dependent facilitation and inactivation of channel activity (2226). Expression of these different CaS proteins with CaV2.1 channels in cultured sympathetic ganglion neurons results in corresponding bidirectional changes in facilitation and depression of the postsynaptic response (25, 26). Therefore, binding of CaS proteins to CaV2.1 channels at specific synapses can change the balance of CaS-dependent facilitation and inactivation of CaV2.1 channels, and determine the outcome of synaptic plasticity (27). Currently, it is not known whether such molecular regulation of CaV2.1 by CaS proteins induces or modulates synaptic plasticity in native hippocampal synapses.To understand the functional role of regulation of CaV2.1 channels by CaS proteins in synaptic plasticity in vivo, we generated knock-in mice with paired alanine substitutions for the isoleucine and methionine residues in the IM motif (IM-AA) in their C-terminal domain. Here we investigated the effects of mutating this CaS regulatory site on hippocampal neurotransmission and synaptic plasticity. This mutation had no effect on basal Ca2+ channel function or on basal synaptic transmission. However, we found reduced short-term facilitation in response to paired stimuli in autaptic synapses in hippocampal cultures and in Schaffer collateral (SC)-CA1 synapses in acutely prepared hippocampal slices. Moreover, synaptic facilitation in mutant SC-CA1 synapses developed and decayed more slowly during trains of stimuli. These results identify a critical role for modulation of CaV2.1 channels by CaS proteins in short-term synaptic plasticity, which is likely to have important consequences for encoding and transmitting information in the hippocampus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号