首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
OBJECTIVE: The mechanism by which elevated extracellular potassium ion concentration ([K+]o) causes dilation of skeletal muscle arterioles was evaluated. METHODS: Arterioles (n = 111) were hand-dissected from hamster cremaster muscles, cannulated with glass micropipettes and pressurized to 80 cm H2O for in vitro study. The vessels were superfused with physiological salt solution containing 5 mM KCl, which could be rapidly switched to test solutions containing elevated [K+]o and/or inhibitors. The authors measured arteriolar diameter with a computer-based diameter tracking system, vascular smooth muscle cell membrane potential with sharp micropipettes filled with 200 mM KCl, and changes in intracellular Ca2+ concentration ([Ca2+]i) with Fura 2. Membrane currents and potentials also were measured in enzymatically isolated arteriolar muscle cells using patch clamp techniques. The role played by inward rectifier K+ (KIR) channels was tested using Ba2+ as an inhibitor. Ouabain and substitution of extracellular Na+ with Li+ were used to examine the function of the Na+/K+ ATPase. RESULTS: Elevation of [K+]o from 5 mM up to 20 mM caused transient dilation of isolated arterioles (27 +/- 1 microm peak dilation when [K+]o was elevated from 5 to 20 mM, n = 105, p <.05). This dilation was preceded by transient membrane hyperpolarization (10 +/-1 mV, n = 23, p <.05) and by a fall in [Ca2+]i as indexed by a decrease in the Fura 2 fluorescence ratio of 22 +/- 5% (n = 4, p <.05). Ba(2+) (50 or 100 microM) attenuated the peak dilation (40 +/- 8% inhibition, n = 22) and hyperpolarization (31 +/- 12% inhibition, n = 7, p <.05) and decreased the duration of responses by 37 +/-11% (n = 20, p < 0.05). Both ouabain (1 mM or 100 microM) and replacement of Na+ with Li+ essentially abolished both the hyperpolarization and vasodilation. CONCLUSIONS: Elevated [K+]o causes transient vasodilation of skeletal muscle arterioles that appears to be an intrinsic property of the arterioles. The results suggest that K+-induced dilation involves activation of both the Na+/K+ ATPase and KIR channels, leading to membrane hyperpolarization, a fall in [Ca2+]i, and culminating in vasodilation. The Na+/K+ ATPase appears to play the major role and is largely responsible for the transient nature of the response to elevated [K+]o, whereas KIR channels primarily affect the duration and kinetics of the response.  相似文献   

2.
Based on findings of experimental models of diabetes mellitus (DM) showing increased expression of vascular cyclooxygenase-2 (COX-2), we hypothesized that in patients with DM changes in COX-2-dependent prostaglandin synthesis affect vasomotor responses of coronary arterioles. Arterioles were dissected from the right atrial appendages obtained at the time of cardiac surgery of patient with DM(+) or without documented diabetes DM(-). Isolated arterioles (89+/-15 microm in diameter) were cannulated and pressurized (at 80 mm Hg), and changes in diameter were measured with video microscopy. After spontaneous tone developed [DM(-): 32+/-7%; DM(+): 37+/-5%; P=NS], arteriolar responses to bradykinin were investigated. Dilations to bradykinin (0.1 nmol/L to 1 micromol/L) were significantly (P<0.05) greater in DM(+) than DM(-) patients (10 nmol/L: 77+/-10% versus 38+/-14%). In both groups, dilations were similar to the NO-donor, sodium nitroprusside. In arterioles of DM(+), but not those of DM(-), patients' bradykinin-induced dilations were reduced by the nonselective COX inhibitor indomethacin or by the selective COX-2 inhibitor NS-398 (DM(+) at 10 nmol/L: to 20+/-4% and 29+/-7%, respectively). Correspondingly, a marked COX-2 immunostaining was detected in coronary arterioles of DM(+), but not in those of DM(-) patients. We conclude that in coronary arterioles of diabetic patients bradykinin induces enhanced COX-2-derived prostaglandin-mediated dilation. These findings are the first to show that in humans diabetes mellitus increases COX-2 expression and dilator prostaglandin synthesis in coronary arterioles, which may serve to increase dilator capacity and maintain adequate perfusion of cardiac tissues.  相似文献   

3.
Connexins have been hypothesized to play an important role in intercellular communication within the vascular wall and may provide a mechanistic explanation for conduction of vasomotor responses. To test this hypothesis, we studied the transmission of vasomotor responses in the intact skeletal muscle microcirculation of connexin40-deficient mice (Cx40(-/-)). Arterioles were locally stimulated with hyperpolarizing dilators (acetylcholine [ACh] as well as bradykinin [Bk]) or depolarizing K(+) solution, and the resulting changes in diameter were measured using a videomicroscopy technique at the site of application and up to 1.32 mm upstream. Arterial pressure was elevated 25% in Cx40(-/-) mice (94+/-5 versus 75+/-4 mm Hg). Vessels selected for study had equivalent basal diameter and vasomotor tone in both genotypes of mice. Vasomotion was present in small arterioles of both genotypes, but its intensity was exaggerated in Cx40(-/-) mice. ACh and Bk induced dilation (33% and 53%, respectively, of maximal response) at the site of application that was of similar magnitude in both genotypes. These dilations were observed to spread upstream within <1 second without significant attenuation in Cx40(+/+) mice. However, spreading was severely attenuated in Cx40(-/-) animals (11+/-4% versus 35+/-7% with ACh and 38+/-5% versus 60+/-7% with Bk in Cx40(-/-) and Cx40(+/+), respectively; P<0.05). In contrast, conducted vasoconstrictions, induced by K(+) solution decreased equally with distance in both genotypes. These results support a significant role for Cx40 in vascular intercellular communication. Our observations indicate that Cx40 is required for normal transmission of endothelium-dependent vasodilator responses and may underlie altered vasomotion patterns.  相似文献   

4.
OBJECTIVE: Oxygen (O(2)) tension is a major regulator of blood flow in the coronary circulation. Hypoxia can produce vasodilation through activation of ATP regulated K(+) (K(ATP)) channels in the myocyte membrane, which leads to hyperpolarization and closure of voltage-gated Ca(2+) channels. However, there are other O(2)-sensitive mechanisms intrinsic to the vascular smooth muscle since hypoxia can relax vessels precontracted with high extracellular K(+), a condition that prevents hyperpolarization following opening of K(+) channels. The objective of the present study was to determine whether inhibition of Ca(2+) influx through voltage-dependent channels participates in the response of coronary myocytes to hypoxia. METHODS: Experiments were performed on porcine anterior descendent coronary arterial rings and on enzymatically dispersed human and porcine myocytes of the same artery. Cytosolic [Ca(2+)] was measured by microfluorimetry and whole-cell currents were recorded with the patch clamp technique. RESULTS: Hypoxia (O(2) tension approximately 20 mmHg) dilated endothelium-denuded porcine coronary arterial rings precontracted with high K(+) in the presence of glibenclamide (5 microM), a blocker of K(ATP) channels. In dispersed human and porcine myocytes, low O(2) tension decreased basal cytosolic [Ca(2+)] and transmembrane Ca(2+) influx independently of K(+) channel activation. In patch clamped cells, hypoxia reversibly inhibited L-type Ca(2+) channels. RT-PCR indicated that rHT is the predominant mRNA variant of the alpha(1C) Ca(2+) channel subunit in human coronary myocytes. CONCLUSION: Our study demonstrates, for the first time in a human preparation, that voltage-gated Ca(2+)channels in coronary myocytes are under control of O(2) tension.  相似文献   

5.
The effect of hypoxia on endothelium-dependent and endothelium-independent vasodilation was studied in phenylephrine-precontracted, isolated rings of rabbit first-branch pulmonary artery. Concentration-dependent relaxation responses to the endothelium-dependent dilators methacholine, ATP, and the calcium ionophore (A23187) as well as to the endothelium-independent dilators sodium nitroprusside and isoproterenol were obtained before, during, and after exposure to hypoxia (PO2 = 42 +/- 1 mm Hg) in the presence of indomethacin (2.8 x 10(-5) M). This moderate degree of hypoxia inhibited (p less than 0.05) endothelium-dependent but not endothelium-independent relaxation responses without producing irreversible vascular damage. In parallel experiments, cyclic GMP accumulation in pulmonary vascular rings in response to maximal doses of the above vasodilators was measured in the presence and absence of hypoxia. Cyclic GMP accumulation in response to endothelium-dependent dilators (methacholine, ATP, and A23187) was inhibited (p less than 0.05) by hypoxia while cyclic GMP accumulation in response to the endothelium-independent dilator sodium nitroprusside was not. When phenylephrine precontracted vessels were exposed to hypoxia in the absence of vasodilators, a small, transient increase in tension occurred, which was greater in endothelium-intact than in endothelium-denuded vessels (0.70 +/- 0.12 vs. 0.09 +/- 0.03 g, respectively; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Opening of potassium channels on vascular smooth muscle cells with resultant hyperpolarization plays a central role in several mechanisms of vasodilation. For example, in the arteriolar circulation where tissue perfusion is regulated, there is an endothelial derived hyperpolarizing factor that opens vascular smooth muscle calcium-activated potassium channels, eliciting dilation. Metabolic vasodilation involves the opening of sarcolemmal ATP-sensitive potassium channels. Adrenergic dilation as well as basal vasomotor tone in several vascular beds depend upon voltage-dependent potassium channels in smooth muscle. Thus hyperpolarization through potassium channel opening is a fundamental mechanism for vasodilation. Disease states such as coronary atherosclerosis and its risk factors are associated with elevated levels of reactive oxygen (ROS) and nitrogen species that have well-defined inhibitory effects on nitric oxide-mediated vasodilation. Effects of ROS on hyperpolarization mechanisms of dilation involving opening of potassium channels are less well understood but are very important because hyperpolarization-mediated dilation often compensates for loss of other dilator mechanisms. We review the effect of ROS on potassium channel function in the vasculature. Depending on the oxidative species, ROS can activate, inhibit, or leave unaltered potassium channel function in blood vessels. Therefore, discerning the activity of enzymes regulating production or degradation of ROS is important when assessing tissue perfusion in health and disease.  相似文献   

7.
K Fujii  U Onaka  K Goto  I Abe  M Fujishima 《Hypertension》1999,34(2):222-228
Stimulation of vascular beta-adrenoceptors leads to membrane hyperpolarization, presumably via the beta-adrenoceptor/G(s) protein/adenylate cyclase signaling cascade; the ionic mechanisms of this phenomenon remain unclear. beta-Adrenoceptor-mediated vascular relaxation is impaired with aging; however, little is known concerning whether beta-adrenoceptor-mediated hyperpolarization is altered with aging. We sought to determine the ionic mechanisms of isoproterenol-induced hyperpolarization in the rat mesenteric resistance artery, as well as the age-related changes in isoproterenol-induced hyperpolarization and their underlying mechanisms. Isoproterenol-induced hyperpolarization was inhibited by high-K(+) solution and glibenclamide (10(-6) mol/L), an inhibitor of ATP-sensitive K(+) channels (K(ATP)), but not by apamin, iberiotoxin, or charybdotoxin, inhibitors of Ca(2+)-activated K(+) channels. Isoproterenol-induced hyperpolarization was markedly less in aged rats (>/=24 months) than in adults rats (12 to 20 weeks) (3x10(-6) mol/L; -3.1 versus -9.9 mV; P<0.001; n=8 to 9). Cholera toxin (10(-9) g/mL), an activator of G(s), evoked hyperpolarization only in adult rats. Hyperpolarization to forskolin, a direct activator of adenylate cyclase, was also reduced to some extent in aged rats (10(-5) mol/L; -8.8 versus -13 mV; P<0.05; n=6), whereas hyperpolarization to levcromakalim, a K(ATP) opener, was comparable in both groups. These findings suggest that isoproterenol elicits hyperpolarization via an opening of K(ATP) in the rat resistance artery and that isoproterenol-induced hyperpolarization is attenuated in aged rats mainly because of a defective coupling of beta-adrenoceptors to adenylate cyclase and partly because of a defect at the level of adenylate cyclase, but not because of an alteration of K(ATP) per se.  相似文献   

8.
Endothelial cells (ECs) govern smooth muscle cell (SMC) tone via the release of paracrine factors (eg, NO and metabolites of arachidonic acid). We tested the hypothesis that ECs can promote SMC relaxation or contraction via direct electrical coupling. Vessels (resting diameter, 57+/-3 microm; length, 4 mm) were isolated, cannulated, and pressurized (75 mm Hg; 37 degrees C). Two microelectrodes were used to simultaneously impale 2 cells (ECs or SMCs) in the vessel wall separated by 500 microm. Impalements of one EC and one SMC (n=26) displayed equivalent membrane potentials at rest, during spontaneous oscillations, and during hyperpolarization and vasodilation to acetylcholine. Injection of -0.8 nA into an EC caused hyperpolarization ( approximately 5 mV) and relaxation of SMCs (dilation, approximately 5 microm) along the vessel segment. In a reciprocal manner, +0.8 nA caused depolarization ( approximately 2 mV) of SMCs with constriction ( approximately 2 microm). Current injection into SMCs while recording from ECs produced similar results. We conclude that ECs and SMCs are electrically coupled to each other in these vessels, such that electrical signals conducted along the endothelium can be directly transmitted to the surrounding smooth muscle to evoke vasomotor responses.  相似文献   

9.
BACKGROUND: Paradoxical peripheral vasodilation is one of the suspected mechanisms of neurally mediated syncope. Parasympathetic stimulation following sympathetic activation during orthostatic stress mainly contributes to this vasodilation. HYPOTHESIS: Since endothelial function modulates peripheral vascular tone, this study aimed to determine whether endothelial function and inappropriate peripheral vasomotion has a significant role in the pathogenesis of neurally mediated syncope. METHODS: To investigate whether endothelial function is augmented or whether abnormal peripheral vasomotion exits, flow-mediated dilation (FMD, endothelium-dependent vasodilation) and sublingual glyceryl trinitrate-induced dilation (0.3 mg, GTN-D, endothelium-independent vasodilation) were measured in the brachial artery in 16 patients with neurally mediated syncope, aged 33 +/- 10 years, by using high-resolution ultrasound. All patients underwent positive head-up tilt testing. These measures were compared with those in 16 control subjects matched with the patients by age, gender, and coronary risk factors. For FMD, percent diameter changes were obtained from baseline to hyperemic conditions (1 min after 5 min occlusion of the forearm artery). There were five smokers in both the patient and the control groups, but there was no structural heart disease in either group. RESULTS: Baseline brachial artery diameters were comparable (3.8 +/- 0.6 vs. 3.8 +/- 0.7 mm, NS). Flow-mediated dilation in patients with neurally mediated syncope had a normal value of 9.8 +/- 5.0% despite the inclusion of five smokers. Flow-mediated dilation and GTN-D in patients with neurally mediated syncope were significantly greater than those in controls (9.0 +/- 5.0 vs. 3.0 +/- 3.5%, p<0.05; 18.4 +/- 5.5 vs. 14.1 +/- 4.4%, p<0.05). CONCLUSIONS: Augmented endothelial function and/or abnormal peripheral vasomotion in peripheral arteries are important in patients with neurally mediated syncope in selected populations.  相似文献   

10.
T Fujita  Y Ito  K Ando  H Noda  E Ogata 《Circulation》1990,82(2):384-393
Limb vascular responses to magnesium (Mg2+) and potassium (K+) ions were studied in 19 young patients with borderline hypertension (BHT) and compared with those of 22 age-matched normotensive subjects (NT) by measuring the forearm blood flow response to intra-arterial infusion of magnesium sulfate and potassium chloride using venous occlusion plethysmography. Percent decrements of forearm vascular resistance with Mg2+ infusions were significantly less in BHT subjects than in NT (-37.2 +/- 4.2% versus -53.0 +/- 2.0%, p less than 0.05, during the infusion of 0.1 meq Mg2+/min, and -52.2 +/- 4.3% versus -65.6 +/- 1.5%, p less than 0.05, during the infusion of 0.2 meq Mg2+/min). Moreover, the relation of the magnitude of Mg2+ response to initial vascular resistance in six of 10 BHT subjects lies above the 95% confidence interval for predicted values calculated for response points in 11 NT subjects, suggesting attenuated vasodilator responses of Mg2+ in a significant proportion of BHT subjects. In contrast, the response points to K+ in eight of nine BHT subjects fall within the 95% confidence interval, suggesting normal vasodilator responses to K+ in the majority of BHT subjects. Furthermore, the effect of small increments in local serum calcium concentrations on Mg2(+)- and K(+)-induced vasodilation was studied in normal volunteers. Isosmolar CaCl2 solution infused into the same brachial artery at a rate of 0.09 meq/min severely blunted the vasodilating actions of Mg2+ (-30.1 +/- 6.5% versus -65.8 +/- 3.2%, p less than 0.01, during the infusion of 0.2 meq Mg2+/min) but did not affect those of K+ (-63.1 +/- 3.1% versus -55.9 +/- 3.8%, NS, during the infusion of 0.154 meq K+/min). It appears that Mg2(+)-induced vasodilation should be due to the antagonistic action of Mg2+ to calcium, but K(+)-induced vasodilation might not be directly related to calcium movement. Thus, these attenuated responses to Mg2+ but normal responses to K+ in BHT subjects may indicate an underlying defect in vascular Mg2+ metabolism, which ultimately may be related to the alterations in calcium handling by plasma membranes rather than to the abnormalities of membrane Na(+)-K+ pump activity.  相似文献   

11.
Population studies suggest that vascular complications accumulate when arterial hypertension supervenes on diabetes mellitus. Although it has been demonstrated that endothelial function is impaired in patients with either diabetes mellitus or arterial hypertension it is unknown whether or not both diseases exert additive effects on endothelial dysfunction. The authors therefore investigated endothelium-dependent and endothelium-independent vasodilation in the forearm vasculature of 44 individuals: in 10 type 2 diabetic patients (DM), in 12 patients with arterial hypertension (HT), in 10 patients with both DM and HT (DM+HT), and in 12 healthy control subjects (C). Forearm blood flow (FBF) was measured by venous occlusion plethysmography at rest and following intraarterial infusion of acetylcholine (ACh) and the NO-donor sodium nitroprusside (SNP) at increasing doses. FBF at rest was significantly lower in diabetic patients: 2.2 +/- 0.1 (DM) and 2.6 +/- 0.2 (DM+HT) versus 3.1 +/- 0.1 (HT) and 3.4 +/- 0.2 (C) mL/min per 100 mL of tissue. ACh and SNP both increased FBF dose-dependently in each group. The maximum response to ACh was progressively decreased in DM and HT: 13.7 (C) > 8.1 (DM) > 7.6 (HT) > and 5.7 (DM+HT) mL/min per 100 mL of tissue. Reduction of the endothelium-dependent flow reserve assessed as percent increase in maximum FBF was also impaired following the same rank order: 349 (C) > 268 (DM) > 160 (HT) > 126 (DM+HT)%. The flow response to the NO-donor SNP amounted to: 327 (C), 306 (DM), 200 (HT), and 194% (DM+HT). In DM+HT the reduction of endothelium-dependent flow response was more pronounced compared with the endothelium-independent flow response. The present data provide evidence that type 2 diabetes and arterial hypertension impair endothelium-dependent dilation of resistance arteries in an additive manner suggesting that this progressive endothelial dysfunction might contribute to the increased incidence of cardiovascular complications when both diseases are coexistent.  相似文献   

12.
Mathew V  Lerman A 《Atherosclerosis》2001,154(2):329-335
OBJECTIVE: To evaluate the role of potassium channels in the regulation of coronary hemodynamics in experimental hypercholesterolemia. BACKGROUND: Potassium (K(+)) channels play an important role in coronary vasoregulation. It has previously been demonstrated that experimental hypercholesterolemia is associated with altered coronary vasomotion; however, the role of K(+) channels in modulating coronary blood flow in this pathophysiologic state has not been evaluated. METHODS AND RESULTS: Pinacidil (group 1, n=5) at 2 microg/kg per min, glibenclamide (group 2, n=5), or N-monomethyl-L-arginine (LNMMA) (group 3, n=4) at 50 microg/kg per min were infused into the left anterior descending artery of pigs prior to and following 10 weeks of 2% cholesterol diet. After 10 weeks of cholesterol feeding, intracoronary pinacidil resulted in a significant increase in coronary blood flow (CBF) and coronary artery diameter (CAD) compared to the normolipidemic state (111+/-10 versus 59+/-12%, and 6+/-1.1 versus 2.7+/-1.0%, respectively, P<0.05 for both comparisons), whereas intracoronary glibenclamide resulted in a significant decrease in CBF and CAD compared to the normolipidemic state (-17+/-5 versus 5+/-6%, and -0.8+/-1.4 versus 3.6+/-1.6%, respectively, P<0.05 for both comparisons). The effect of intracoronary LNMMA on CBF and CAD was significantly attenuated after 10 weeks of cholesterol feeding as compared to the normolipidemic state (-47+/-5.4 versus -0.8+/-6.8%, and -19.4+/-5.7 versus -2.3+/-3.3%, respectively, P<0.05 for both comparisons). Furthermore, pretreatment with intracoronary LNMMA did not alter the CBF response to pinacidil in normal pigs (group 4, n=4) (57.4+/-19 versus 59+/-12%, P=NS). CONCLUSIONS: The current study demonstrates an enhanced effect of coronary K(+) channel modulation and confirms the attenuated basal NO activity previously reported in experimental hypercholesterolemia. Acute withdrawal of basal NO activity alone, however, does not explain the enhanced effect of coronary K(+) channel modulation. These findings underscore the importance of the K(+) channel pathway in the regulation of coronary vasomotor tone in pathophysiologic states.  相似文献   

13.
Membrane hyperpolarization through activation of potassium channels in arterial smooth muscle appears to be an effective mechanism to dilate arteries. Conversely, membrane depolarization through inhibition of potassium channels can lead to vasoconstriction. Here, I briefly review the roles of Ca(2+)-activated K(+) (K(Ca)) channels and ATP-sensitive K(+) (K(ATP)) channels in the control of arterial smooth muscle function. K(Ca) channels regulate arterial tone in response to changes in intravascular pressure and possibly to a variety of vasoconstrictors. K(ATP) channels respond to changes in the cellular metabolic state and are targets of a variety of synthetic and endogenous vasodilators.  相似文献   

14.
The endothelium plays a key role in the control of vascular tone and alteration in endothelial cell function contributes to several cardiovascular disease states. Endothelium-dependent dilation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarizing factor (EDHF). EDHF signaling is thought to be initiated by activation of endothelial Ca(2+)-activated K(+) channels (K(Ca)), leading to hyperpolarization of the endothelium and subsequently to hyperpolarization and relaxation of vascular smooth muscle. In the present study, we tested the functional role of the endothelial intermediate-conductance K(Ca) (IK(Ca)/K(Ca)3.1) in endothelial hyperpolarization, in EDHF-mediated dilation, and in the control of arterial pressure by targeted deletion of K(Ca)3.1. K(Ca)3.1-deficient mice (K(Ca)3.1(-/-)) were generated by conventional gene-targeting strategies. Endothelial K(Ca) currents and EDHF-mediated dilations were characterized by patch-clamp analysis, myography and intravital microscopy. Disruption of the K(Ca)3.1 gene abolished endothelial K(Ca)3.1 currents and significantly diminished overall current through K(Ca) channels. As a consequence, endothelial and smooth muscle hyperpolarization in response to acetylcholine was reduced in K(Ca)3.1(-/-) mice. Acetylcholine-induced dilations were impaired in the carotid artery and in resistance vessels because of a substantial reduction of EDHF-mediated dilation in K(Ca)3.1(-/-) mice. Moreover, the loss of K(Ca)3.1 led to a significant increase in arterial blood pressure and to mild left ventricular hypertrophy. These results indicate that the endothelial K(Ca)3.1 is a fundamental determinant of endothelial hyperpolarization and EDHF signaling and, thereby, a crucial determinant in the control of vascular tone and overall circulatory regulation.  相似文献   

15.
Intercellular communication through gap junctions coordinates vascular tone by the conduction of vasomotor responses along the vessel wall. Gap junctions in arterioles are composed of different connexins (Cxs) (Cx40, Cx37, Cx45, Cx43), but it is unknown whether Cxs are interchangeable. We used mice with a targeted replacement of Cx40 by Cx45 (Cx40KI45) to explore whether Cx45 can functionally replace Cx40 in arterioles. Arterioles were locally stimulated using acetylcholine, bradykinin, adenosine, and K(+) in the cremaster of Cx40KI45, Cx40-deficient (Cx40ko), and wild-type mice, and diameter changes were assessed by intravital microscopy. Additionally, arterial pressure was measured by telemetry and Cx expression verified by immunofluorescence. Acetylcholine initiated a local dilation of a similar amplitude in all genotypes ( approximately 50%), which was rapidly conducted to upstream sites (1200 mum distance) without attenuation in wild type. In marked contrast, the remote dilation was significantly reduced in Cx40ko (25+/-3%) and Cx40KI45 (24+/-2%). Likewise, dilations initiated by bradykinin application were conducted without attenuation up to 1200 mum in wild type but not in Cx40ko and Cx40KI45. Adenosine-induced dilations and K(+)-induced constrictions were conducted similarly with decaying amplitude in all genotypes. Arterial pressure was strongly elevated in Cx40ko (161+/-1 versus 116+/-2 mm Hg) but only moderately in Cx40KI45 (133+/-8 mm Hg). This demonstrates that Cx40 function is critical for the conduction of acetylcholine and bradykinin dilations and cannot be substituted by Cx45. Therefore, unique properties of Cx40 are required for endothelial signal conduction, whereas nonspecific restoration of communication maintains additional functions related to blood pressure control.  相似文献   

16.
Adenosine is known to play an important role in the regulation of coronary blood flow during metabolic stress. However, there is sparse information on the mechanism of adenosine-induced dilation at the microcirculatory levels. In the present study, we examined the role of endothelial nitric oxide (NO), G proteins, cyclic nucleotides, and potassium channels in coronary arteriolar dilation to adenosine. Pig subepicardial coronary arterioles (50 to 100 microm in diameter) were isolated, cannulated, and pressurized to 60 cm H(2)O without flow for in vitro study. The arterioles developed basal tone and dilated dose dependently to adenosine. Disruption of endothelium, blocking of endothelial ATP-sensitive potassium (K(ATP)) channels by glibenclamide, and inhibition of NO synthase by N(G)-nitro-L-arginine methyl ester and of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one produced identical attenuation of vasodilation to adenosine. Combined administration of these inhibitors did not further attenuate the vasodilatory response. Production of NO from coronary arterioles was significantly increased by adenosine. Pertussis toxin, but not cholera toxin, significantly inhibited vasodilation to adenosine, and this inhibitory effect was only evident in vessels with an intact endothelium. Tetraethylammonium, glibenclamide, and a high concentration of extraluminal KCl abolished vasodilation of denuded vessels to adenosine; however, inhibition of calcium-activated potassium channels by iberiotoxin had no effect on this dilation. Rp-8-Br-cAMPS, a cAMP antagonist, inhibited vasodilation to cAMP analog 8-Br-cAMP but failed to block adenosine-induced dilation. Furthermore, vasodilations to 8-Br-cAMP and sodium nitroprusside were not inhibited by glibenclamide, indicating that cAMP- and cGMP-induced dilations are not mediated by the activation of K(ATP) channels. These results suggest that adenosine activates both endothelial and smooth muscle pathways to exert its vasodilatory function. On one hand, adenosine opens endothelial K(ATP) channels through activation of pertussis toxin-sensitive G proteins. This signaling leads to the production and release of NO, which subsequently activates smooth muscle soluble guanylyl cyclase for vasodilation. On the other hand, adenosine activates smooth muscle K(ATP) channels and leads to vasodilation through hyperpolarization. It appears that the latter vasodilatory process is independent of G proteins and of cAMP/cGMP pathways.  相似文献   

17.
OBJECT: This study was performed to compare the coronary microvascular response to adenosine 5'-triphosphate (ATP) with the response to adenosine in humans. METHODS: Coronary blood flow velocity was determined using a Doppler flow wire. After intracoronary nitroglycerin infusion, intracoronary bolus injections of adenosine (20 microg) and ATP (20 microg) were performed to induce reactive hyperemia. PATIENTS: Twenty-nine patients (23 men and 6 women, mean age: 63+/-9 years) with coronary artery disease and risk factors for coronary atherosclerosis were studied. RESULTS: Coronary flow reserve in response to ATP was similar to that for adenosine (2.7+/-0.7 vs. 2.7+/-0.7). However, the duration of ATP-induced vasodilation was longer than that of adenosine-induced dilation (39+/-25 seconds vs. 26+/-12 seconds, p<0.0001). The coronary flow reserve obtained with either ATP or adenosine was significantly reduced in the interventioned arteries compared with non-stenosed arteries. The coronary flow reserve obtained with ATP was similar to that obtained with adenosine in both artery groups. The duration of the vasodilator effect of ATP was significantly greater than that of adenosine in both artery groups. CONCLUSION: These results suggest that ATP induces maximal dilation of coronary microvessels, most likely through an endothelium-independent mechanism. The degradation of ATP to adenosine 5'-monophosphate (AMP) and adenosine, as well as the direct action of ATP on A2-adenosine receptors may be responsible for the dilation. We conclude that coronary flow reserve can be determined safely with intracoronary ATP administration.  相似文献   

18.
BACKGROUND: Flow-induced vasodilation (FID) is a physiological mechanism for regulating coronary flow and is mediated largely by nitric oxide (NO) in animals. Because hyperpolarizing mechanisms may play a greater role than NO in the microcirculation, we hypothesized that hyperpolarization contributes importantly to FID of human coronary arterioles. METHODS AND RESULTS: Arterioles from atria or ventricles were cannulated for videomicroscopy. Membrane potential of vascular smooth muscle cells (VSMCs) was measured simultaneously. After constriction with endothelin-1, increases in flow induced an endothelium-dependent vasodilation. Nomega-Nitro-L-arginine methyl ester 10(-4) mol/L modestly impaired FID of arterioles from patients without coronary artery disease (CAD), whereas no inhibition was seen in arterioles from patients with CAD. Indomethacin 10(-5) mol/L was without effect, but 40 mmol/L KCl attenuated maximal FID. Tetraethylammonium 10(-3) mol/L but not glibenclamide 10(-6) mol/L reduced FID. Charybdotoxin 10(-8) mol/L impaired both FID (15+/-3% versus 75+/-12%, P<0.05) and hyperpolarization (-32+/-2 mV [from -28+/-2 mV after endothelin-1] versus -42+/-2 mV [-27+/-2 mV], P<0.05). Miconazole 10(-6) mol/L or 17-octadecynoic acid 10(-5) mol/L reduced FID. By multivariate analysis, age was an independent predictor for the reduced FID. Conclusions-We conclude that shear stress induces endothelium-dependent vasodilation, hyperpolarizing VSMCs through opening Ca(2+)-activated K(+) channels in human coronary arterioles. In subjects without CAD, NO contributes to FID. NO and prostaglandins play no role in patients with CAD; rather, cytochrome P450 metabolites are involved. This is consistent with a role for endothelium-derived hyperpolarizing factor in FID of the human coronary microcirculation.  相似文献   

19.
OBJECTIVE: In mammalian cardiomyocytes, alpha isoforms of Na(+)/K(+) ATPase have specific localisation and function, but their role in endocardial endothelium is unknown. METHODS: Different alpha isoforms in endocardial endothelium and cardiomyocytes of rabbit were investigated by measuring contractile parameters of papillary muscles, by RT-PCR, by Western blots and by immunocytochemistry. RESULTS: Inhibition of Na(+)/K(+) ATPase by decreasing external K(+) from 5.0 to 0.5 mmol/l caused biphasic inotropic effects. The maximal negative inotropic effect at external K(+) of 2.5 mmol/l was significantly larger in +EE muscles (with intact endocardial endothelium) than in -EE muscles (with endocardial endothelium removed) (-22.5+/-2.4% versus -5.9+/-4.0%, n=7, P<0.05). Further decrease of K(+) to 0.5 mmol/l caused endothelium-independent positive inotropy (27.8+/-11.8% for +EE versus 18.6+/-11.3% for -EE, n=7, P>0.05). Inhibition of Na(+)/K(+) ATPase either by dihydro-ouabain (10(-9) to 10(-4) mol/l, n=4) or by K(+) decrease following inhibition of Na(+)-H(+) exchanger by dimethyl-amiloride (50 micromol/l, n=6) caused endothelium-independent positive inotropic effects only. RT-PCR and Western Blot demonstrated alpha(1) and alpha(2) Na-K-ATPase isoforms in cardiomyocytes, but only alpha(1) in cultured endocardial endothelial cells. Immunohistochemistry showed that alpha(1) in endocardial endothelium was predominantly present at the luminal side of the cell (n=7) and that alpha(1) and alpha(2) displayed different localisation in cardiomyocytes. CONCLUSIONS: These results suggested that negative and positive inotropic effects of Na(+)/K(+) ATPase inhibition in +EE muscles could be attributed to inhibition of endocardial endothelial alpha(1) and muscle alpha(2) isoform, respectively. Accordingly, the endocardial endothelial alpha(1) isoform of Na(+)/K(+) ATPase may contribute to blood-heart barrier properties of this endothelium and may control cardiac performance via endothelial Na(+)/H(+) exchange.  相似文献   

20.
The gender difference in cardiovascular disease has been partly attributed to higher androgenic hormone levels. Although testosterone in women may not affect lipids, it remains unknown whether it negates favorable estrogenic effects on endothelial function. We have investigated the effects of testosterone implant therapy on arterial reactivity encompassing endothelial-dependent and -independent vasodilation in women using hormone replacement therapy (HRT). B-mode ultrasound measurements of resting brachial artery diameter, following reactive hyperemia [endothelium-dependent flow- mediated dilation (FMD)] and following glyceryl trinitrate (GTN) (endothelium-independent dilation), were recorded in 33 postmenopausal women stabilized on HRT (>6 months), at baseline, and 6 weeks after a testosterone implant (50 mg), with 15 postmenopausal nonusers of HRT serving as controls. In the brachial artery, baseline resting diameter was similar (0.40 +/- 0.01 vs. 0.41 +/- 0.01 cm, P = 0.5). In the treated group, testosterone levels increased (0.99 +/- 0.08 to 4.99 +/- 0.3 nmol/L, P < 0.001), associated with a mean 42% increase in FMD (6.4% +/- 0.7 to 9.1% +/- 1.1, P = 0.03). The control group did not change (8.1% +/- 1.4 to 5.6% +/- 1.0, P = 0.4). ANOVA of repeated measures (P = 0.04) and mean change (P = 0.02) in FMD both demonstrated significantly greater improvement with testosterone compared with controls. GTN induced vasodilation increased with testosterone treatment (14.9% +/- 0.9 to 17.8% +/- 1.2, P = 0.03). Our preliminary data indicate that parenteral testosterone therapy improves both endothelial-dependent (flow-mediated) and endothelium-independent (GTN-mediated) brachial artery vasodilation in postmenopausal women using long-term estrogen therapy. The mechanisms underlying these potentially beneficial cardiovascular effects require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号