首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
Apolipoprotein E (ApoE) is a constituent of lipoprotein and plays an important role in the maintenance of neural networks. However, spatiotemporal differences in ApoE expression and its long-term role in neural process after brain ischemia have not been studied. We investigated changes of ApoE immunoreactivity and ApoE mRNA expression both in the core and in the periischemic area at 1, 7, 21, or 56 days after 90 min of transient middle cerebral artery occlusion. Double stainings for ApoE plus NeuN or plus ED1 were performed in order to identify cell type of ApoE-positive stainings. The maximal increase of ApoE expression was observed at 7 days in the core and at 7 and 21 days in the periischemic area. In the core, ApoE plus NeuN double-positive cells increased at 1 and 7 days, without ApoE mRNA expression, whereas they increased in the periischemic area, with a peak at 21 days, with ApoE mRNA expression in glial cells but not in neurons. On the other hand, ApoE plus ED1 double-positive cells increased only in the core, with a peak in number at 7 and 21 days and marked ApoE mRNA expression in macrophages. The present study suggests that ApoE plays various important roles in different type of cells, reflecting spatiotemporal dissociation between degenerative and regenerative processes after brain ischemia, and that ApoE is profoundly involved in pathological conditions, such as brain ischemia.  相似文献   

4.
5.
The effects of kainic acid (KA)-induced limbic seizures have been investigated on cytochrome c oxidase (COx) activity, COx subunit IV mRNA abundance, ATP and phosphocreatine (PCr) levels in amygdala, hippocampus and frontal cortex of rat brain. Rats were killed either 1 h, three days or seven days after the onset of status epilepticus (SE) by CO2 and decapitation for the assay of COx activity and by head-focused microwave for the determination of ATP and PCr. Within 1 h COx activity and COx subunit IV mRNA increased in all brain areas tested between 120% and 130% of control activity, followed by a significant reduction from control, in amygdala and hippocampus on day three and seven, respectively. In amygdala, ATP and PCr levels were reduced to 44% and 49% of control 1 h after seizures. No significant recovery was seen on day three or seven. Pretreatment of rats with the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN, 200 mg kg(-1), i.p.) 30 min before KA administration had no effect on SE, but protected COx activity and attenuated changes in energy metabolites. Pretreatment for three days with the endogenous antioxidant vitamin E (Vit-E, 100 mg/kg, i.p.) had an even greater protective effect than PBN. Both pretreatment regimens attenuated KA-induced neurodegenerative changes, as assessed by histology and prevention of the decrease of COx subunit IV mRNA and COx activity in hippocampus and amygdala, otherwise seen following KA-treatment alone. These findings suggest a close relationship between SE-induced neuronal injury and deficits in energy metabolism due to mitochondrial dysfunction.  相似文献   

6.
Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI-anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA-mediated neurotransmission, parallel studies describe normal behavior of PrPc-mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc-deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA-treated mice. PrPc-deficient mice showed increased sensitivity to KA-induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell-specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc-expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real-time RT-PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA-induced neurotoxicity, probably by regulating the expression of KA receptor subunits.  相似文献   

7.
Apolipoprotein E (ApoE) is a major apolipoprotein in the central nervous system (CNS) that plays an important role in Alzheimer's disease. It may also be involved in other CNS disorders including ischemic injury. We investigated the changes of ApoE protein and mRNA expression in the brain with middle cerebral artery occlusion (MCAO) to clarify its origin after focal ischemia in rats. Increased ApoE immunoreactivity was recognized in astrocytes 3-14 days after MCAO in the affected side of cortex, and in neurons 4-14 days after MCAO in the same area. ApoE immunoreactivity was also detected in macrophages in the ischemic core 3-14 days after MCAO. In contrast, ApoE mRNA was expressed in astrocytes and macrophages, but not in neurons. These results suggested that neuronal ApoE was not synthesized in neurons, but derived from astrocytes.  相似文献   

8.
Apolipoprotein (apo) D is a member of the lipocalin family of proteins. Although its physiological function is unknown, apoD is thought to transport one or more small hydrophobic ligands. A second apolipoprotein, apoE is known to play an important role in lipid transport, and apoE genetic polymorphism has been shown to be associated with susceptibility to Alzheimer's disease. Both apoD and apoE are expressed in the central nervous system (CNS) and both proteins accumulate at sites of peripheral nerve injury due to increased local synthesis. The two proteins may have overlapping or complementary functions within nervous tissue. In order to define the role of apoD within the CNS, we have studied the regional distribution of apoD and apoE mRNA and protein within the normal rat brain and the changes in apoD and apoE expression in the hippocampus of rats after entorhinal cortex lesion (EC lesion). Within the brains of normal rats, apoD expression in the hippocampus was as high as 180-fold that of the liver. ApoD mRNA levels in other areas of the rat brain ranged from 40 to 120 times the hepatic levels. The distribution of apoE gene expression within the brain was similar to that of apoD, but was much lower than hepatic apoE expression. When rats were subjected to EC lesion, the apoD message increased by 54% at 4 days post lesion (DPL) in the ipsilateral region of hippocampus while apoE mRNA levels (ipsilateral and contralateral) decreased by 43%. At 6 to 8 DPL apoD mRNA in the ipsilateral hippocampus remained elevated (42% above controls) whereas the apoE mRNA levels increased to about 15% above those of controls. At 14 and 31 DPL, both apoD and apoE expression was similar to controls. The increase in immunoreactive apoD in hippocampal extracts was more dramatic. At 1 DPL, immunoreactive apoD levels were already 16-fold higher than those in extracts of non-lesioned animals and, at 31 DPL, levels were still 8-fold higher than those of control animals. Finally, we have demonstrated that the levels of apoD in the brains of apoE-deficient mice are 50-fold those of wildtype control mice. ApoD clearly has an important function within the CNS in both normal and pathological situations.  相似文献   

9.
It is known that RGS9-2 gene knockout mice show supersensitivity to DA and have a marked elevation in the proportion of DA D2 receptors in the high-affinity state for DA (D2(High) receptors). As this is a similar profile to that observed in the CNS from subjects with schizophrenia, we examined whether postmortem CNS tissue from subjects with the disorder and brain striata from an animal model of psychosis or schizophrenia (the amphetamine-sensitized rat) had altered levels of RGS9-2. The mRNA for RGS9-2 in 29 control hippocampi was 0.185 +/- 0.015 fg per fg of beta-glucuronidase mRNA (average +/- SE), while that in 29 schizophrenia hippocampi was 0.145 +/- 0.015 fg per fg of beta-glucuronidase mRNA (average +/- SE), a reduction of 22%. Of the many receptor-regulating genes related to G proteins, and of 11 RGS genes, RGS9-2 was the most reduced in the amphetamine-sensitized rat striatum. The reduced levels of RGS9-2 expression in both an animal model of schizophrenia and a postmortem schizophrenia brain provide further evidence implicating RGS9-2 as a candidate gene in schizophrenia.  相似文献   

10.
The excitotoxic effects of N-methyl-d-aspartic acid (NMDA) and kainic acid (KA) were studied in organotypic hippocampal slices maintained in vitro for various periods of time. Cultures aged to equivalent Postnatal Day (EPD) 10–12,15–17, and 23–26 were exposed to 50 μM KA or 50 μM NMDA and were analyzed at 0, 3, 6, 9, 12, 24, 48 h, or 5 days after the initiation of the excitotoxin exposure. Neuronal injury was determined by: (1) propidium iodide (PI) uptake; (2) lactate dehydrogenase (LDH) release; (3) morphological damage in hematoxylin and eosin (H/E) stained sections; (4) loss of Nissl stain. Changes in PI uptake and LDH release after KA or NMDA treatment indicated that there was a developmental shift towards increasing sensitivity to KA toxicity during in vitro development, whereas cultures of all ages were equally sensitive to NMDA toxicity. The profile of damage in H/E-stained sections after treatment with KA or NMDA indicated a transient phase of damaged morphology at 12 and 24 h that was not evident after 5 days. To determine whether the disappearance of morphological manifestations of neuronal damage 5 days after treatment was due to recovery of morphology or to neuronal death, neuronal loss in Nissl-stained sections was also quantified. KA treatment did not cause significant neuronal loss in any hippocampal region in EPD 10–12 cultures, indicating that the neurons were able to successfully recover from the damage demonstrated in H/E sections at 12 and 24 h in these cultures. KA treatment in mature cultures (EPD 23–26) and NMDA treatment in all cultures produced a marked loss of identifiable Nissl-stained neurons at 5 days, indicating neuronal death and disintegration. The results provide further support for the similarities between the organotypic hippocampal culture model and in vivo excitotoxic models and also confirm that excitotoxic neuronal injury can be reversible under some conditions.  相似文献   

11.
《Neurological research》2013,35(4):390-394
Abstract

Apolipoprotein E (ApoE) is a major apolipoprotein in the central nervous system (CNS) that plays an important role in Alzheimer's disease. It may also be involved in other CNS disorders including ischemic injury. We investigated the changes of ApoE protein and mRNA expression in the brain with middle cerebral artery occlusion (MCAO) to clarify its origin after focal ischemia in rats. Increased ApoE immunoreactivity was recognized in astrocytes 3-14 days after MCAO in the affected side of cortex, and in neurons 4-14 days after MCAO in the same area. ApoE immunoreactivity was also detected in macrophages in the ischemic core 3-14 days after MCAO. In contrast, ApoE mRNA was expressed in astrocytes and macrophages, but not in neurons. These results suggested that neuronal ApoE was not synthesized in neurons, but derived from astrocytes.  相似文献   

12.
Kainic acid (KA)-induced status epilepticus (SE) produces hippocampal neuronal death, which varies from necrosis to apoptosis or programmed cell death (PCD). We examined whether the type of neuronal death was dependent on KA dose. Adult rats were induced SE by intraperitoneal injection of KA at 9 mg/kg (K9) or 12 mg/kg (K12). Hippocampal neuronal death was assessed by TUNEL staining, electron microscopy, and Western blotting of caspase-3 on days 1, 3 and 7 after SE induction. K12 rats showed higher a mortality rate and shorter latency to the onset of SE when compared with K9 rats. In both groups, acidophilic and pyknotic neurons were evident in CA1 at 24h after SE and neuronal loss developed from day 3. The degenerated neurons became TUNEL-positive on days 3 and 7 in K9 rats but not in K12 rats. Caspase-3 activation was detected on days 3 and 7 in K9 rats but was undetectable in K12 rats. Ultrastructural study revealed shrunken neurons exhibiting pyknotic nuclei containing small and dispersed chromatin clumps 24h after SE in CA1. No cells exhibited apoptosis. On days 3 and 7, the degenerated neurons were necrotic with high electron density and small chromatin clumps. There were no ultrastructural differences between the K9 and K12 groups. These results revealed that differences in KA dose affected the delayed cell death (3 and 7 days after SE); however, no effect was seen on the early cell death (24h after SE). Moderate-dose KA induced necrosis, while low-dose KA induced PCD.  相似文献   

13.
Cannabinoid type 1 (CB1) receptors play a central role in the protection against excitotoxicity induced by treatment of mice with kainic acid (KA). As inactivation of CB1 receptor function in mice blocks KA-induced increase of brain-derived neurotrophic factor (BDNF) mRNA levels in hippocampus, the notion was put forward that BDNF might be a mediator, at least in part, of CB1 receptor-dependent neuroprotection [Marsicano et al. (2003) Science, 302, 84-88]. To assess this signalling cascade in more detail, organotypic hippocampal slice cultures were used, as this in vitro system conserves morphological and functional properties of the hippocampus. Here, we show that both genetic ablation of CB1 receptors and pharmacological blockade with the specific CB1 receptor antagonist SR141716A increased the susceptibility of the in vitro cultures to KA-induced excitotoxicity, leading to extensive neuronal death. Next, we found that the application of SR141716A to hippocampal cultures from wild-type mice abolished the KA-induced increase in BDNF protein levels. Therefore, we tried to rescue these organotypic cultures from neuronal death by exogenously applied BDNF. Indeed, BDNF was sufficient to prevent KA-induced neuronal death after blockade of CB1 receptor signalling. In conclusion, our results strongly suggest that BDNF is a key mediator in CB1 receptor-dependent protection against excitotoxicity, and further underline the physiological importance of the endogenous cannabinoid system in neuroprotection.  相似文献   

14.
The effects of kainic acid (KA)-induced limbic seizures have been investigated on cytochrome c oxidase (COx) activity, COx subunit IV mRNA abundance, ATP and phosphocreatine (PCr) levels in amygdala, hippocampus and frontal cortex of rat brain. Rats were killed either 1 h, three days or seven days after the onset of status epilepticus (SE) by CO2 and decapitation for the assay of COx activity and by head-focused microwave for the determination of ATP and PCr. Within 1 h COx activity and COx subunit IV mRNA increased in all brain areas tested between 120% and 130% of control activity, followed by a significant reduction from control, in amygdala and hippocampus on day three and seven, respectively. In amygdala, ATP and PCr levels were reduced to 44% and 49% of control 1 h after seizures. No significant recovery was seen on day three or seven. Pretreatment of rats with the spin trapping agent N-tert-butyl-α-phenylnitrone (PBN, 200 mg kg−1, i.p.) 30 min before KA administration had no effect on SE, but protected COx activity and attenuated changes in energy metabolites. Pretreatment for three days with the endogenous antioxidant vitamin E (Vit-E, 100 mg/kg, i.p.) had an even greater protective effect than PBN. Both pretreatment regimens attenuated KA-induced neurodegenerative changes, as assessed by histology and prevention of the decrease of COx subunit IV mRNA and COx activity in hippocampus and amygdala, otherwise seen following KA-treatment alone. These findings suggest a close relationship between SE-induced neuronal injury and deficits in energy metabolism due to mitochondrial dysfunction.  相似文献   

15.
It was previously reported by the authors that long-term diphenyl-hydantoin (DPH) administration impaired the learning behavior in the developing mice. The aim of the present study was to find out whether prolonged administration of DPH would affect the levels of monamine metabolites in the cerebral cortices and hippocampi of the developing mice. Each of the experimental animals was treated intraperitoneally with a dose of DPH of 25mg/kg q.d. for 50 days. The monamine metabolites were measured with high performance liquid chromatography. The results showed that chronic administration of DPH caused a significant elevation of the concentrations of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and dihydroxy-phenyl acetic acid (DOPAC) in the cerebral cortices and hippocampi, whereas it did not raise the concentrations of dopamine (DA), homovanillic acid (HVA) and norepinephrine (NE) in these two brain regions. This suggested that DPH mainly enhanced the function of 5-HT in the brains. It was postulated that the elevation of the concentrations of 5-HT and 5-HIAA in the cerebral cortices and hippocampi might be responsible for the adverse effect of DPH on the learning behavior in the developing mice.  相似文献   

16.
The effects of nitric oxide synthase (NOS) inhibitors, N(omega)-nitro-L-arginine and 7-nitroindazole, and the NOS substrate L-arginine on kainic acid (KA)-induced microglial reactivity and stress response were studied in the hippocampus 7 and 1 days after KA, respectively. Density of peripheral-type benzodiazepine receptors was measured as an index of microglial reactivity. Histological damage in hippocampus was evaluated at 7 days by neuronal counting. KA increased the maximal number of binding sites (B(max)) versus controls. Administration of either 7-nitroindazole (25 mg/kg) or N(omega)-nitro-L-arginine (20 and 50 mg/kg) 24 hr before KA, further increased B(max). This later effect was abolished by L-arginine (1 g/kg), which given 24 hr before KA decreased B(max) to control values. Also, KA-induced HSP72 stress response was attenuated by pre-treatment with L-arginine. Histological evaluation showed reduced cell numbers in the pyramidal cell layer of the hippocampus in groups receiving KA, either alone or in combination with 7-nitroindazole. Administration of L-arginine before KA attenuated neuronal loss in CA3 but not CA1. A clear protective effect was observed, however, in CA1 and CA3, in rats receiving both L-arginine plus 7-nitroindazole before KA. The results show that the combination of a NO substrate with a NOS inhibitor reduces the neurotoxic effects of KA in the rat hippocampus. This study suggests that extremely fine regulation of NO levels in the different neural cell types can modulate excitotoxicity.  相似文献   

17.
Taurine is one of the most abundant free amino acids in the mammalian central nervous system, where it is crucial to proper development. Moreover, taurine acts as a neuroprotectant in various diseases; in epilepsy, for example, it has the capacity to reduce or abolish seizures. In the present study, taurine levels has been determine in mice treated with Kainic Acid (KA) and results showed an increase of this amino acid in hippocampus but not in whole brain after 3 and 7 days of KA treatment. This increase occurs when gliosis was observed. Moreover, taurine transporter (TAUT) was found in astrocytes 3 and 7 days after KA treatment, together with an increase in cysteine sulfinic acid decarboxylase (csd) mRNA, that codifies for the rate‐limiting enzyme of taurine synthesis, in the hippocampus at the same times after KA treatment. Glial cultures enriched in astrocytes were developed to demonstrate that these cells are responsible for changes in taurine levels after an injury to the brain. The cultures were treated with proinflammatory cytokines to reproduce gliosis. In this experimental model, an increase in the immunoreactivity of GFAP was observed, together with an increase in CSD and taurine levels. Moreover, an alteration in the taurine uptake‐release kinetics was detected in glial cells treated with cytokine. All data obtained indicate that astrocytes could play a key role in taurine level changes induced by neuronal damage. More studies are, therefore, needed to clarify the role taurine has in relation to neuronal death and repair. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Kim H  Bing G  Jhoo W  Ko KH  Kim WK  Suh JH  Kim SJ  Kato K  Hong JS 《Brain research》2000,853(2):215-226
In order to evaluate the putative role of Cu,Zn-superoxide dismutase (SOD-1) in the antioxidant defense mechanism during the neurodegenerative process, we examined the level of mRNA, the specific activity and immunocytochemical distribution for SOD-1 in the rat hippocampus after systemic injection of kainic acid (KA). Hippocampal SOD-1 mRNA levels were significantly increased by the seizure intensity 3 and 7 days after KA. These enhanced mRNA levels for SOD-1 were consistent with the increased specific activities for SOD-1, suggesting that the superoxide radical generated in neurotoxic lesion, induced SOD-1 mRNA. The CA1 and CA3 neurons lost their SOD-1-like immunoreactivity, whereas SOD-1-positive glia-like cells mainly proliferated throughout the CA1 sector and had an intense immunoreactivity at 3 and 7 days after KA. This immunocytochemical distribution for SOD-1-positive non-neuronal elements was similar to that for glial fibrillary acidic protein (GFAP)-positive cells. Each immunoreactivity for SOD-1-positive non-neuronal cell or GFAP in the layers of CA1 and CA3 disappeared 3 and 7 days after a maximal stage 5 seizure. On the other hand, activated microglial cells as selectively marked with the lectin occurred in the areas affected by KA-induced lesion. Double-labeling immunocytochemical analysis demonstrated the co-localization of SOD-1-positive glia-like cells and reactive astrocytes as labeled by GFAP or S-100 protein immunoreactivity. This finding suggested that the mobilization of astroglial cells for the synthesis of SOD-1 protein is a response to the KA insult designed to decrease the neurotoxicity induced by oxygen-derived free radicals. Therefore, these alterations might reflect the regulatory role of SOD-1 against oxygen-derived free radical-induced neuronal degeneration after systemic KA administration.  相似文献   

19.
目的:探讨卒中后抑郁(PSD)患者载脂蛋白E(ApoE)水平特点,为PSD的诊断提供新的客观依据。方法:采用实时荧光定量PCR技术和酶联免疫吸附法(ELISA)检测PSD患者及卒中后非抑郁患者ApoE水平。结果:PSD组ApoE基因mRNA表达量低于卒中组,差异具有统计学意义(P<0.01);PSD组血清ApoE水平高于卒中组,差异具有统计学意义(P<0.05)。结论:PSD患者外周血ApoE基因mRNA表达和血清ApoE水平与卒中非抑郁患者不同。  相似文献   

20.
Canine smooth muscle cells (SMCs), cultured from amyloid-affected brain blood vessels accumulate Alzheimer amyloid-beta peptide (Abeta) intracellularly, either spontaneously or after treatment with apolipoprotein E (apoE). ApoE is codeposited with Abeta, which suggests that apoE participates in Abeta accumulation. We tested the hypothesis that apoE-induced accumulation of Abeta in SMCs is caused by an increased production of amyloid-beta precursor protein (AbetaPP) and/or its altered metabolism. We found that 24 hours of treatment with apoE3 or apoE4 induced intracellular accumulation of Abeta-immunoreactive deposits in SMCs but did not influence AbetaPP production and processing. The treatment with apoE3 or E4 for 3 days resulted in the following: increased Abeta-accumulation; reduced levels of secreted Abeta; increased production and cellular retention of mature AbetaPP770; and reduced culture growth, cell proliferation, and viability. ApoE4, but not apoE3, increased cellular levels of mRNA AbetaPP 770 (the main form produced in SMCs) about ninefold. ApoE3 stimulated production and cellular retention of endogenous apoE. We hypothesize that Abeta accumulation is triggered by apoE, which may bind and immobilize soluble Abeta produced in SMCs. The newly formed Abeta deposits may further accelerate Abeta accumulation by altering metabolism of AbetaPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号