首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligase IV (LIG4) syndrome belongs to the group of hereditary disorders associated with impaired DNA damage response mechanisms. Subjects affected with this rare autosomal recessive disease exhibit microcephaly, unusual facial features, growth retardation, developmental delay, skin anomalies, and are typically pancytopenic. The disease is characterized by pronounced radiosensitivity, genome instability, malignancy, immunodeficiency, and bone marrow abnormalities. LIG4 syndrome results from mutations in the DNA ligase IV gene encoding an enzyme that plays a pivotal role in repairing double strand DNA breaks and V(D)J recombination. Since LIG4 null-mutant mice are embryonic lethal and biallelic null mutations have not been described to date in LIG4-deficient patients, viability of the DNA ligase IV deficiency syndrome appears to require at least one allele with a hypomorphic mutation. Mutations R278H, Q280R, H282L, M249E located in the vicinity of the active site are typical hypomorphic because they do not affect ligase expression and retain residual albeit reduced activity of the enzyme at levels of 5–10% of that for the wild-type ligase. Carriers heterozygous for those mutations usually develop moderate defects in V(D)J recombination, mild immune abnormalities and malignancy. In contrast, mutations resided in OBD, i.e. in the C-terminal subdomain of the catalytic domain, and in XRCC4-binding domain more dramatically inhibit the ligase function and also greatly decrease its expression. A truncating mutation R580X and a frameshift mutation K424FS resulting in loss of the C-terminal XRCC4-binding domain have deleterious effect on both expression and function of LIG4 and represent a null allele.  相似文献   

2.
The DNA-dependent protein kinase: the director at the end   总被引:12,自引:0,他引:12  
Summary: Efficient repair of DNA double‐strand breaks is essential for the maintenance of chromosomal integrity. In higher eukaryotes, non‐homologous end‐joining (NHEJ) DNA is the primary pathway that repairs these breaks. NHEJ also functions in developing lymphocytes to repair strand breaks that occur during V(D)J recombination, the site‐specific recombination process that provides for the assembly of functional antigen‐receptor genes. If V(D)J recombination is impaired, B‐ and T‐lymphocyte development is blocked resulting in severe combined immunodeficiency disease. In the last decade, an intensive research effort has focused on NHEJ resulting in a reasonable understanding of how double‐strand breaks are resolved. Six distinct gene products have been identified that function in this pathway (Ku70, Ku86, XRCC4, DNA ligase IV, Artemis, and DNA‐PKcs). Three of these comprise one complex, the DNA‐dependent protein kinase (DNA‐PK). This protein complex is central during NHEJ, because DNA‐PK initially recognizes and binds to the damaged DNA and then targets the other repair activities to the site of DNA damage. In this review, we discuss recent developments that have provided insight into how DNA‐PK functions, once bound to DNA ends.  相似文献   

3.
The majority of antigen receptor diversity in mammals is generated by V(D)J recombination. During this process DNA double strand breaks are introduced at recombination signals by lymphoid specific RAG1/2 proteins generating blunt ended signal ends and hairpinned coding ends. Rejoining of all DNA ends requires ubiquitously expressed DNA repair proteins, such as Ku70/86 and DNA ligase IV/XRCC4. In addition, the formation of coding joints depends on the function of the scid gene encoding the catalytic subunit of DNA-dependent protein kinase, DNA-PK(CS), that is somehow required for processing of coding end hairpins. Recently, it was shown that purified RAG1/2 proteins can cleave DNA hairpins in vitro, but the same activity was also described for a protein complex of the DNA repair proteins Nbs1/Mre11/Rad50. This leaves the possibility that either protein complex might be involved in coding end processing in V(D)J recombination. We have therefore analyzed V(D)J recombination in cells from patients with Nijmegen breakage syndrome, carrying a mutation in the nbs1 gene. We find that V(D)J recombination frequencies and the quality of signal and coding joining are comparable to wild-type controls, as analyzed by a cellular V(D)J recombination assay. In addition, we did not detect significant differences in CDR3 sequences of endogenous Ig lambdaL and kappaL chain gene loci cloned from peripheral blood lymphocytes of an NBS patient and of healthy individuals. These findings suggest that the Nbs1/Mre11/Rad50 complex is not involved in coding end processing of V(D)J recombination.  相似文献   

4.
XR-1 is a CHO mutant cell line defective in double strand break repair and V(D)J recombination. These defects are due to a deletion of the XRCC4 gene which encodes a 38-kDa nuclear phosphoprotein. Recent studies have shown that XRCC4 interacts with and enhances the activity of DNA ligase IV in vitro. In this study we investigate the effect of the absence of XRCC4 on the level of DNA ligase IV in XR-1 cells. Western blot analysis indicates that levels of DNA ligase IV protein are almost undetectable in these cells, however, introduction of the XRCC4 cDNA into XR-1 resulted in a return to wild type levels of the protein. Furthermore, analysis of DNA ligase IV mRNA showed equivalent levels in both XR-1 and XRCC4 transfected XR-1 indicating that the altered level of DNA ligase IV is not due to a change in the expression of the gene. These data strongly suggest that an important function of XRCC4 is to stabilize the DNA ligase IV protein.  相似文献   

5.
In this study, we observed the occurrence of TRBV8.1-DB2.1 V(D)J recombination in murine fetal thymus organ culture (FTOC), in which the thymic microenvironment is mimicked. Since ionizing radiation affects T-cell development, we irradiated FTOCs with gamma rays to evaluate the modulation of genes implicated in TRBV8.1-BD2.1 rearrangements. The nylon cDNA microarray method was employed to monitor the expression of 9216 genes, which were organized in coexpression clusters. Clustering analysis showed similar expression profiling of genes implicated in the V(D)J recombination and DNA double strand break (DSB) repair processes such as XRCC4, RAG-2, Artemis and DNA-PK-cs, thus suggesting overlap between the two processes. The RUNX3 gene, whose coded protein binds to the enhancers of TR genes, was also modulated and the DNA cross-linking LR1 gene, which plays a role in the opening of hairpin DNA structures and whose expression pattern is similar to Artemis, may play a role in the control of V(D)J recombination. Furthermore, our data demonstrate that the FTOC model system and cDNA microarray method are useful tools to evidentiate genes that may play a role in both processes V(D)J recombination and DNA repair.  相似文献   

6.
7.
8.
Although the RAG2 core domain is the minimal region required for V(D)J recombination, the noncore region also plays important roles in the regulation of recombination, and mutations in this region are often related to severe combined immunodeficiency. A complete understanding of the functions of the RAG2 noncore region and the potential contributions of its individual residues has not yet been achieved. Here, we show that the zinc finger motif within the noncore region of RAG2 is indispensable for maintaining the stability of the RAG2 protein. The zinc finger motif in the noncore region of RAG2 is highly conserved from zebrafish to humans. Knock‐in mice carrying a zinc finger mutation (C478Y) exhibit decreased V(D)J recombination efficiency and serious impairment in T/B‐cell development due to RAG2 instability. Further studies also reveal the importance of the zinc finger motif for RAG2 stability. Moreover, mice harboring a RAG2 noncore region mutation (N474S), which is located near C478 but is not zinc‐binding, exhibit no impairment in either RAG2 stability or T/B‐cell development. Taken together, our findings contribute to defining critical functions of the RAG2 zinc finger motif and provide insights into the relationships between the mutations within this motif and immunodeficiency diseases.  相似文献   

9.
10.
V(D)J recombination, accountable for the diversity of T cell receptor- and immunoglobulin-encoding genes, is initiated by a lymphoid-specific DNA double-strand break. The general DNA repair machinery is responsible for the resolution of this break. Any defect in one of the known components of the DNA repair/V(D)J recombination machinery (Ku70, Ku80, DNA-PKcs, XRCC4 and DNA ligase IV) leads to abortion of the V(D)J rearrangement process, early block in both T and B cell maturation, and ultimately to severe combined immune deficiency (SCID) in several animal models. A human SCID condition is also characterized by an absence of mature T and B lymphocytes, and is associated with an increase in sensitivity to DNA-damaging agents (RS-SCID). None of the above-mentioned genes are defective in these patients, arguing for the likelihood of the existence of yet another unknown component of the V(D)J recombination/DNA repair apparatus. Athabascan-speaking (SCIDA) Navajo and Apache Native Americans have a very high incidence of T(-)B(-)SCID. The SCIDA locus is highly linked with markers on chromosome 10p, although the exact molecular defect has not been recognized in these patients. We show here that cells with the SCIDA defect are impaired in the DNA repair phase of V(D)J recombination similarly to RS-SCID, precisely an absence of V(D)J coding joint formation. Moreover, genotyping analysis in several RS-SCID families corroborates a linkage of the RS-SCID locus to the SCIDA region on chromosome 10p. These results demonstrate the presence of a new essential DNA repair/V(D)J recombination gene in this region, the mutation of which causes RS-SCID in humans.  相似文献   

11.
V(D)J recombination is a tightly controlled process of somatic recombination whose regulation is mediated in part by chromatin structure. Here, we report that RAG2 binds directly to the core histone proteins. The interaction with histones is observed in developing lymphocytes and within the RAG1/RAG2 recombinase complex in a manner that is dependent on the RAG2 C terminus. Amino acids within the plant homeo domain (PHD)-like domain as well as a conserved acidic stretch of the RAG2 C terminus that is considered to be a linker region are important for this interaction. Point mutations that disrupt the RAG2-histone association inhibit the efficiency of the V(D)J recombination reaction at the endogenous immunoglobulin locus, with the most dramatic effect in the V to DJ(H) rearrangement.  相似文献   

12.
DNA joining events are required for the completion of DNA replication, DNA excision repair and genetic recombination. Five DNA ligase activities, I–V, have been purified from mammalian cell extracts and three mammalian LIG genes, LIG1, LIG3 and LIG4, have been cloned. During DNA replication, the joining of Okazaki fragments by the LIG1 gene product appears to be mediated by an interaction with proliferating cell nuclear antigen (PCNA). This interaction may also occur during the completion of mismatch, nucleotide excision and base excision repair (BER). In addition, DNA ligase I participates in a second BER pathway that is carried out by a multiprotein complex in which DNA ligase I interacts directly with DNA polymerase β. DNA ligase IIIα and DNA ligase IIIβ, which are generated by alternative splicing of the LIG3 gene, can be distinguished by their ability to bind to the DNA repair protein, XRCC1. The interaction between DNA ligase IIIα and XRCC1, which occurs through BRCT motifs in the C-termini of these polypeptides, implicates this isoform of DNA ligase III in the repair of DNA single-strand breaks and BER. DNA ligase II appears to be a proteolytic fragment of DNA ligase IIIα. The restricted expression of DNA ligase IIIβ suggests that this enzyme may function in the completion of meiotic recombination or in a postmeiosis DNA repair pathway. Complex formation between DNA ligase IV and the DNA repair protein XRCC4 involves the C-terminal region of DNA ligase IV, which contains two BRCT motifs. This interaction, which stimulates DNA joining activity, implies that DNA ligase IV functions in V(D)J recombination and non-homologous end-joining of DNA double-strand breaks. At the present time, it is not known whether DNA ligase V is derived from one of the known mammalian LIG genes or is the product of a novel gene.  相似文献   

13.
Chromosome translocations involving T cell receptor (TCR) loci have been found in tumors from Ataxia telangiectasia (AT) patients and in mouse Atm-/- thymoma, suggesting the involvement of V(D)J recombination in these malignancies. By introducing a RAG-1 deficiency into Atm-/- mice in the presence of a TCR transgene, we show that V(D)J recombination is critical for thymoma development in these mice. Therefore, aberrant V(D)J recombination, normally suppressed by Atm, facilitates tumorigenic events leading to cancer. Because V(D)J recombination is dispensable for lymphomagenesis upon p53 deficiency, this study also indicates that Atm and p53 function by distinct mechanisms in suppressing thymoma.  相似文献   

14.
The end-joining pathway of DNA double-strand break (DSB) repair is necessary for proper V(D)J recombination and repair of DSB caused by ionizing radiation. This DNA repair pathway can either use short stretches of (micro)homology near the DNA ends or use no homology at all (direct end-joining). We designed assays to determine the relative efficiencies of these (sub)pathways of DNA end-joining. In one version, a DNA substrate is linearized in such a way that joining on a particular microhomology creates a novel restriction enzyme recognition site. In the other one, the DSB is made by the RAG1 and RAG2 proteins. After PCR amplification of the junctions, the different end-joining modes can be discriminated by restriction enzyme digestion. We show that inactivation of the 'classic' end-joining factors (Ku80, DNA-PK(CS), ligase IV and XRCC4) results in a dramatic increase of microhomology-directed joining of the linear substrate, but very little decrease in overall joining efficiency. V(D)J recombination, on the other hand, is severely impaired, but also shows a dramatic shift towards microhomology use. Interestingly, two interstrand cross-linker-sensitive cell lines showed decreased microhomology-directed end-joining, but without an effect on V(D)J recombination. These results suggest that direct end-joining and microhomology-directed end-joining constitute genetically distinct DSB repair pathways.  相似文献   

15.
The RAG1 and RAG2 proteins are the lymphoid-specific factors essential for V(D)J recombination, the process that leads to the diversification of antigen receptors on B and T lymphocytes. Nucleolar/nuclear localization of RAG1 is mediated by four basic domains, which are the binding sites for the nuclear transport proteins SRP1 and RCH1, and by a nuclear localization signal (NLS) in the fifth basic domain. The C-terminal region of RAG2 from amino acids (aa) 417 to 484 shows a homology with the PHD domain of other proteins involved in chromatin-mediated gene regulation by protein-protein interactions. Mutations in this domain were shown to be responsible for several diseases and in some case lead to altered subcellular localization of proteins. We found that the C-terminal PHD domain of RAG2 is not responsible for the nuclear localization of the protein. We report here the characterization of a region (aa 491-527) in the C-terminal domain of RAG2, downstream of the putative PHD domain, which directs the nuclear localization of the protein.  相似文献   

16.
Non-homologous end joining (NHEJ) is the main DNA repair mechanism for the repair of double-strand breaks (DSBs) throughout the course of the cell cycle. DSBs are generated in developing B and T lymphocytes during V(D)J recombination to increase the repertoire of B and T cell receptors. DSBs are also generated during the class switch recombination (CSR) process in mature B lymphocytes, providing distinct effector functions of antibody heavy chain constant regions. Thus, NHEJ is important for both V(D)J recombination and CSR. NHEJ comprises core Ku70 and Ku80 subunits that form the Ku heterodimer, which binds DSBs and promotes the recruitment of accessory factors (e.g., DNA-PKcs, Artemis, PAXX, MRI) and downstream core factors (XLF, Lig4 and XRCC4). In recent decades, new NHEJ proteins have been reported, increasing complexity of this molecular pathway. Numerous in vivo mouse models have been generated and characterized to identify the interplay of NHEJ factors and their role in development of adaptive immune system. This review summarizes the currently available mouse models lacking one or several NHEJ factors, with a particular focus on early B cell development. We also underline genetic interactions and redundancy in the NHEJ pathway in mice.  相似文献   

17.
The enormous repertoire of the vertebrate specific immune system relies on the rearrangement of discrete gene segments into intact antigen receptor genes during the early stages of B-and T-cell development. This V(D)J recombination is initiated by a lymphoid-specific recombinase comprising the RAG1 and RAG2 proteins, which introduces double-strand breaks in the DNA adjacent to the coding segments. Much of the biochemical research into V(D)J recombination has focused on truncated or “core” fragments of RAG1 and RAG2, which lack approximately one third of the amino acids from each. However, genetic analyses of SCID and Omenn syndrome patients indicate that residues outside the cores are essential to normal immune development. This is in agreement with the striking degree of conservation across all vertebrate classes in certain non-core domains. Work from multiple laboratories has shed light on activities resident within these domains, including ubiquitin ligase activity and KPNA1 binding by the RING finger domain of RAG1 and the recognition of specific chromatin modifications as well as phosphoinositide binding by the PHD module of RAG2. In addition, elements outside of the cores are necessary for regulated protein expression and turnover. Here the current state of knowledge is reviewed regarding the non-core regions of RAG1 and RAG2 and how these findings contribute to our broader understanding of recombination.  相似文献   

18.
To study the localization and function of the U1snRNP associated U1C protein, so far only human sera from systemic lupus erythematosus (SLE) overlap syndrome patients have been used. Here we report for the first time the isolation of human monoclonal anti-UIC autoantibody fragments from IgG derived combinatorial and semi-synthetic human antibody libraries. Two classes of human monoclonal anti-UIC (auto)antibodies were found: specific anti-U1C autoantibodies, recognizing U1C only, and cross-reactive antibodies which also react with U1A and Sm-B/B'proteins. The heavy chains (V(H)genes) of all five antibodies from the semi-synthetic libraries and two of the three U1C-specific patient derived autoantibody fragments are encoded by V(H)3 genes, in which V(H) 3-30 (DP-49) was overrepresented. The heavy chain of the two cross-reactive autoantibodies are derived from the 3-07 (DP-54) gene. Three epitope regions on the U1C protein are targeted by these antibodies. (1) Four U1C specific antibodies recognize an N-terminal region of U1C in which amino acids 30-63 are essential for recognition, (2) two antibodies recognize only the complete U1C protein, and (3) two cross-reactive and one U1C specific antibody recognize the C-terminal domain in which amino acids 98-126 are critical for recognition. The two cross-reactive antibodies (K 11 and K 15) recognize the proline-rich region of the U1C protein (amino acids 98 126) and cross-react with proline-rich regions in Sm-B/B' (amino acids 163-184) and U1A (amino acids 187-204). All 10 antibody fragments are able to immunoprecipitate the native U1snRNP particle. The two cross-reactive antibodies immunoprecipitate the other Sm containing snRNPs as well. Using confocal immunofluorescence microscopy we could show that the major part of the U1C protein is localized within the coiled body structure.  相似文献   

19.
The vesicular stomatitis virus (VSV) L polymerase protein possesses two methyltransferase (MTase) activities, which catalyze the methylation of viral mRNA cap structures at the guanine-N7 and 2'-O-adenosine positions. To identify L sequences required for the MTase activities, we analyzed a host range (hr) and temperature-sensitive (ts) mutant of VSV, hr8, which was defective in mRNA cap methylation. Sequencing hr8 identified five amino acid substitutions, all residing in the L protein. Recombinant VSV were generated with each of the identified L mutations, and the presence of a single G1481R substitution in L, located between conserved domains V and VI, was sufficient to produce a dramatic reduction (about 90%) in overall mRNA methylation. Cap analysis showed residual guanine-N7 methylation and reduced 2'-O-adenosine methylation, identical to that of the original hr8 virus. When recombinant viruses were tested for virus growth under conditions that were permissive and nonpermissive for the hr8 mutant, the same single L mutation, G1481R, was solely responsible for both the hr and ts phenotypes. A spontaneous suppressor mutant of the rG1481R virus that restored both growth on nonpermissive cells and cap methylation was identified and mapped to a single change, L1450I, in L. Site-directed mutagenesis of the region between domains V and VI, amino acids 1419-1672 of L, followed by the rescue of recombinant viruses identified five additional virus mutants, K1468A, R1478A/D1479A, G1481A, G1481N, and G1672A, that were all hr and defective in mRNA cap methylation. Thus, in addition to the previously characterized domain VI [Grdzelishvili, V.Z., Smallwood, S., Tower, D., Hall, R.L., Hunt, D.M., Moyer, S.A., 2005. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. J. Virol. 79, 7327-7337; Li, J., Fontaine-Rodriguez, E.C., Whelan, S.P., 2005. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol. 79, 13373-13384], a new region between L amino acids 1450-1481 was identified which is critical for mRNA cap methylation.  相似文献   

20.
The products of the recombination activating genes RAG1 and RAG2 are essential for activating V(D)J recombination, and thus are indispensable for the production of functional and diverse antigen receptors. To investigate the function of RAG1, we have tested a series of insertion and substitution mutations for their ability to induce V(D)J rearrangement on both deletional and inversional plasmid substrates. With these substrates we were also able to assess the effects of these mutations on both coding and signal joint formation, and to show that any one mutant affected all these reactions similarly. As defined previously, the core active regions of RAG1 and RAG2 permit the deletion of 40% and 25%, respectively, of well-conserved sequence. We show here that this “dispensable” region of RAG1 is not necessary for coding joint formation or for recombination of an integrated substrate, and that this portion is not functionally redundant with the “dispensable” region of RAG2. Recombination with these core regions is also still subject to the 12/23 joining rule. Further, the minimal essential core region of RAG1 can be located within an even smaller portion of the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号