首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
目的 探讨应用多重PCR-单链构象多态性分析(multiplexpulymerase chain reaction-single strand conformation polymorphism,multi-PCR-SSCP)方法快速、特异地同时快速检测结核分枝杆菌对异烟肼和利福平耐药性的效能.方法 根据结核分枝杆菌的inhA序列、katG序列、rpoB序列,分别设计出3对特异性寡聚核苷酸引物.采用multi-PCR-SSCP技术,一次性检出耐异烟肼和利福平的结核分枝杆菌.新方法的有效性通过116株临床分离株(70株耐异烟肼,66株耐利福平)的验证.结果 名 Multi-PCR-SSCP方法检测临床分离株基因突变的有效性,以细菌培养和药敏试验结果为金标准.116株临床分离株和H37Rv标准株中除了4株katG缺失突变,其余菌株3个基因katG、inhA和rpoB在单基因PCR中都扩增成功.与H37Rv标准株相比,46株katG基因突变,14株inhA基因突变,58株rpoB基因突变.38株katG和rpoB,4株inhA和rpoB,4株inhA和katG同时突变,还有2株3个基因都有突变.multi-PCR-SSCP对于耐异烟肼和利福平的结核分枝杆菌检出的敏感度分别为80%、82%,特异度分别为100%和92%.结论 multi-PCR-SSCP方法敏感、特异,能同时快速有效地检测耐多药结核分枝杆菌,有望成为临床指导用药的好方法,为深入研究耐药基凶检测奠定了良好的基础.  相似文献   

2.
The katG, inhA and ahpC genes, in 71 isoniazid (INH)-resistant and 26 INH-susceptible Mycobacterium tuberculosis isolates, from South Korea were examined by sequencing and MspI restriction enzyme analysis. Mutations in the katG 315 alone, katG 315 plus inhA, katG 315 plus ahpC, katG 309 alone, katG 309 plus inhA, inhA alone, and ahpC alone, were detected in 54.9, 2.8, 1.4, 1.4, 1.4, 19.7, and 5.6% of the 71 INH-resistant isolates, respectively. There was no statistically significant difference (p > 0.05) in the frequencies of these mutations for the INH-monoresistant compared with the multidrug-resistant isolates. Mutations in the katG codon 315 were associated with the high-level of INH resistance (MIC, >1 microg/ml), whereas the mutation in the inhA promoter region was associated with the low-level of INH resistance (MIC, >0.2 to 1 microg/ml). The previously undescribed GGT-->GAT (Gly-->Asp) mutation in the katG codon 309 was found in two rifampin, including-multidrug-resistant isolates, but we cannot assess if this is predictive of INH resistance. The sensitivity and specificity of molecular analysis of the katG codon 315 and/or the inhA promoter region were 80.3 and 100%, respectively. Therefore, mutations in these regions are highly predictive of INH resistance in South Korea.  相似文献   

3.
The CombiChip Mycobacteriatrade mark Drug-Resistance Detection DNA chip, recently developed by GeneIn (Pusan, South Korea), is an oligonucleotide microchip coupled with polymerase chain reaction for the detection of mutations associated with resistance to isoniazid (INH) and rifampin (RIF). This oligonucleotide chip was compared with DNA sequencing and phenotypic drug susceptibility testing with 69 INH- and/or RIF-resistant and 27 all tested drug-susceptible Mycobacterium tuberculosis isolates. Two selected codons (the katG codon 315 and inhA15) allowed identification of 84.1% of INH-resistant isolates and 100% of RIF resistance were detected by screening for 7 codons: rpoB511, rpoB513, rpoB516, rpoB522, rpoB526, rpoB531, and rpoB533. The overall specificity of this oligonucleotide chip for detecting INH and RIF resistance were 100 and 95.3%, respectively. This level of sensitivity and specificity is concordant with that from the determination of M. tuberculosis drug resistance by DNA sequencing. This oligonucleotide chip is a rapid and reliable genotypic method capable of detecting multiple mutations associated with INH and RIF resistance simultaneously in a single microchip slide.  相似文献   

4.
We developed a QIAplex system for the simultaneous detection of 24 Mycobacterium tuberculosis gene mutations responsible for resistance to isoniazid (INH), rifampin (RIF), streptomycin (STM), and ethambutol (EMB) in 196 M. tuberculosis isolates recovered in the Republic of Georgia. In comparison to phenotypic susceptibility tests, the QIAplex showed sensitivity and specificity of 85.4% and 96.1% for INH, 94.4% and 99.4% for RIF, 69.6% and 99.2% for STM, 50.0% and 98.8% for EBM, and 86.7% and 100.0% for multidrug resistance, respectively. The dominant resistance mutations revealed were a mutation in katG resulting in S315T (katG S315T), rpsL K43R, and rpoB S531L. Mutations katG S315G and S315T and rpoB S531L were detected with higher frequencies in pretreated patients than in naive patients (P < 0.05). Simultaneous detection of 24 common drug resistance-related mutations provides a molecular tool for studying and monitoring M. tuberculosis resistance mechanism and epidemiology.  相似文献   

5.
基因芯片诊断耐多药结核病的临床多中心研究   总被引:1,自引:0,他引:1  
目的 评估基因芯片法检测耐多药结核临床分离株的临床意义。方法采取分层抽样的方法分别从北京胸科医院、同济大学附属上海市肺科医院和广州市胸科医院保存的临床菌株库的耐药组和敏感组中,随机抽取利福平耐药株800株,异烟肼耐药株797株,耐多药株791株,利福平/异烟肼双敏感380株。用基因芯片法检测包括rpoB基因的511(T→C)、513(A→C,C→A)、516( G→T,A→T,A→G)、526( C→T,C→G,A→T,A→G)、531( C→T,C→G)、533( T→C)位点、katG的315(G→C,G→A)位点和inhA的-15(C→T)位点的耐药突变。以绝对浓度法药敏结果为金标准,计算基因芯片法的符合率、敏感度和特异度。同时对基因芯片法的核酸扩增产物进行测序,以验证基因芯片对核酸序列检测的准确性。结果以绝对浓度法药敏结果作为标准,基因芯片法检测利福平、异烟肼耐药和耐多药的符合率分别是93.7%(1 108/1 183)、83.8% (994/1 186)、82.4% (975/1 183)。检测利福平耐药的敏感度为92.0% (733/797),特异度为97.2%( 375/386);检测异烟肼的敏感度为77.4% (617/797),特异度为96.9% (377/389);检测耐多药的敏感度为74.6%( 588/788),特异度为98.0%(387/395)。在利福平基因芯片检测为突变的菌株中,突变频率最高的位点是531( TCG),突变率为64.5%(480/744);在katG/ inhA突变菌株中,基因芯片检测为katG 315( AGC)单突变的为77.4%(487/629);且与测序结果基本一致,仅有5例菌株中不完全相符。其中1株异烟肼耐药菌基因芯片法检测为katG 315(G→C)突变,而测序结果为野生型,其余4株为基因芯片法未包含的突变类型。结论基因芯片法可快速可靠地检测结核临床分离株利福平和异烟肼的耐药性,有望在临床诊断中广泛应用。  相似文献   

6.
目的:了解结核分枝杆菌katG、inhA、ahpC、fabG1、sodA及sodC基因突变的特征及其与耐异烟肼的关系。方法对127例活动性肺结核患者痰标本进行菌型鉴定及结核分枝杆菌药敏试验,提取结核分枝杆菌菌株DNA,应用PCR扩增katG、inhA及ahpC、fabG1、sodA及sodC基因片段,并进行DNA序列分析。结果结核分枝杆菌药物敏感试验显示127株结核分枝杆菌中,其中47株耐异烟肼,80株对异烟肼敏感,耐异烟肼率为37.01%。47株耐异烟肼中,29株存在katG和(或)inhA基因突变,其中22株(46.81%,22/47)存在katG基因单位点突变,3株(6.38%,3/47)存在inhA基因单位点突变,4株(8.51%,4/47)存在katG及inhA基因联合位点突变。22株katG基因单位点突变中,20株为AGC315ACC、AGC315AAC (42.55%,20/47)突变,2株(2.13%,1/47)分别为CTG378CCG(Leu378Pro)、ACG394ATG(Thr394Met)突变,该突变位点及突变形式尚未见文献报道。18株katG及inhA未突变结核分枝杆菌均未检测到ahpC、fabG1、sodA及sodC基因突变。结论结核分枝杆菌对异烟肼耐药主要与katG和inhA基因突变有关。耐异烟肼结核分枝杆菌临床分离株378和394新突变位点的发现为进一步研究耐药机制以及耐药结核病的快速检测提供了依据。  相似文献   

7.
Ethionamide (ETH) is a structural analog of the antituberculosis drug isoniazid (INH). Both of these drugs target InhA, an enzyme involved in mycolic acid biosynthesis. INH requires catalase-peroxidase (KatG) activation, and mutations in katG are a major INH resistance mechanism. Recently an enzyme (EthA) capable of activating ETH has been identified. We sequenced the entire ethA structural gene of 41 ETH-resistant Mycobacterium tuberculosis isolates. We also sequenced two regions of inhA and all or part of katG. The MICs of ETH and INH were determined in order to associate the mutations identified with a resistance phenotype. Fifteen isolates were found to possess ethA mutations, for all of which the ETH MICs were > or =50 microg/ml. The ethA mutations were all different, previously unreported, and distributed throughout the gene. In eight of the isolates, a missense mutation in the inhA structural gene occurred. The ETH MICs for seven of the InhA mutants were > or =100 microg/ml, and these isolates were also resistant to > or =8 microg of INH per ml. Only a single point mutation in the inhA promoter was identified in 14 isolates. A katG mutation occurred in 15 isolates, for which the INH MICs for all but 1 were > or =32 microg/ml. As expected, we found no association between katG mutation and the level of ETH resistance. Mutations within the ethA and inhA structural genes were associated with relatively high levels of ETH resistance. Approximately 76% of isolates resistant to > or =50 microg of ETH per ml had such mutations.  相似文献   

8.
Novel mutations in NADH dehydrogenase (ndh) were detected in 8 of 84 (9.5%) isoniazid (INH)-resistant isolates (T110A [n = 1], R268H [n = 7]), but not in 22 INH-susceptible isolates of Mycobacterium tuberculosis. Significantly, all eight isolates with mutations at ndh did not have mutations at katG, kasA, or the promoter regions of inhA or ahpC, except for one isolate. Mutations in ndh appear to be an additional molecular mechanism for isoniazid resistance in M. tuberculosis.  相似文献   

9.
The emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced: rpoB (for resistance to RIF), katG and inhA (INH), pncA (PZA), embB (EMB), gyrA (CIP and OFX), and rrs, eis, and tlyA (KAN, AMK, and CAP). A total of 314 clinical Mycobacterium tuberculosis complex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% for rpoB, 85.4% and 100% for katG, 16.5% and 100% for inhA, 90.6% and 100% for katG and inhA together, 84.6% and 85.8% for pncA, and 78.6% and 93.1% for embB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in the M. tuberculosis complex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.  相似文献   

10.
OBJECTIVES: Three Mycobacterium tuberculosis genetic loci--rpoB and katG genes and the fabG1(mabA)-inhA operon promoter region--were studied to reveal the mutations associated with rifampicin and isoniazid resistance. METHODS: Four hundred and twelve isolates of M. tuberculosis from different regions of the Russian Federation were collected during 1997-2005. A matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based minisequencing method was used for the detection of mutations. RESULTS: Thirteen different variants of single mutations in codons 533, 531, 526, 516, 513 and 511 of the rifampicin resistance-determining region of the rpoB gene as well as the TTG insertion in the 514a position were found among the rifampicin-resistant isolates. Single nucleotide substitutions in codons 531, 526 and 516 (64.8%, 10.3% and 7.7%, respectively) were the most prevalent mutations. Codon 526 was shown to be the most variable of all. No mutations were detected in rpoB genes for 29 (10.7%) of the rifampicin-resistant isolates. 76.9% of the isoniazid-resistant isolates carried single mutations in codon 315 of the katG gene. For another 12.9% of them, double mutations in the katG gene and the fabG1(mabA)-inhA promoter region were revealed. No mutations were detected in 8.2% of the isoniazid-resistant isolates. CONCLUSIONS: Molecular analysis of the loci of rpoB and katG genes and the inhA promoter region of 412 M. tuberculosis clinical isolates from various parts of the Russian Federation was carried out. The new MALDI-TOF MS-based method may be used for rapid and accurate monitoring of the spread of drug resistance.  相似文献   

11.
目的了解中国耐多药结核分枝杆菌耐药相关基因的分子特征。方法对138株耐多药结核分枝杆菌和45株敏感菌的耐药相关基因inhA、katG和oxyR-ahpC间隔区(异烟肼)、rpob(利福平)、gyrA(氧氟沙星)和rrs(卡那霉素)进行序列测定,分析其基因突变特点。结果 138株耐多药结核分枝杆菌中,14.4%的菌株inhA基因发生突变,72.5%菌株的katG基因发生突变,15.9%菌株的oxyR-ahpC基因发生突变,同时考虑这3种基因,异烟肼耐药相关基因突变检出率可达90.6%;94.2%菌株的rpoB基因发生突变,74.5%菌株的gyrA基因发生突变,61.1%菌株的rrs基因发生突变,主要的突变位点为katG315(66.7%),inhA-15(9.4%),oxyR-ahpC-10(5.1%),rpoB516(13.8%),526(26.1%)和531(49.3%),gyrA90(21.6%)和94(51%),rrs1401(61.1%)。结论我国耐多药结核菌异烟肼、利福平、氧氟沙星和卡那霉素耐药相关基因最常见突变为katG315、inhA-15,rpoB531、526和516,gyrA94和90,rrs1401。  相似文献   

12.
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.  相似文献   

13.
Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide polymorphisms in multiple genes are found exclusively in INH-resistant clinical isolates. These genes either are involved in mycolic acid biosynthesis or are overexpressed as a response to the buildup or cellular toxicity of INH.  相似文献   

14.
To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China.  相似文献   

15.
The present study investigated the prevalence and diagnostic potential of the most commonly reported mutations associated with isoniazid resistance, katG 315Thr, katG 315Asn, inhA -15T, inhA -8A, and the oxyR-ahpC intergenic region, in a population sample of 202 isoniazid-resistant Mycobacterium tuberculosis isolates and 176 randomly selected fully sensitive isolates from England and Wales identified by using a directed oligonucleotide array and limited DNA sequencing. The strains were recovered from patients originating from 29 countries; 41 isolates were multidrug resistant. Mutations affecting katG 315, the inhA promoter, and the oxyR-ahpC intergenic region were found in 62.7, 21.9, and 30% of 169 genotypically distinct isoniazid-resistant isolates, respectively, whereas they were found in 0, 0, and 8% of susceptible strains, respectively. The frequency of mutation at each locus was unrelated to the resistance profile or previous antituberculous drug therapy. The commonest mutation in the oxyR-ahpC intergenic region, ahpC -46A, was present in 23.7% of isoniazid-resistant isolates and 7.5% of susceptible isolates. This proved to be a phylogenetic marker for a subgroup of M. tuberculosis strains originating on the Indian subcontinent, which shared IS6110-based restriction fragment length polymorphism and spoligotype features with the Delhi strain and Central Asian strain CAS1; and this marker is strongly associated with isoniazid resistance and the katG 315Thr mutation. In total, 82.8% of unrelated isoniazid-resistant isolates could be identified by analysis of just two loci: katG 315 and the inhA promoter. Analysis of the oxyR-ahpC intergenic region, although phylogenetically interesting, does not contribute significantly to further identification of isoniazid-resistant isolates.  相似文献   

16.
The World Health Organization has identified India as a major hot-spot region for Mycobacterium tuberculosis infection. We have characterized the sequences of the loci associated with multidrug resistance in 126 clinical isolates of M. tuberculosis from India to identify the respective mutations. The loci selected were rpoB (rifampin), katG and the ribosomal binding site of inhA (isoniazid), gyrA and gyrB (ofloxacin), and rpsL and rrs (streptomycin). We found known as well as novel mutations at these loci. Few of the mutations at the rpoB locus could be correlated with the drug resistance levels exhibited by the M. tuberculosis isolates and occurred with frequencies different from those reported earlier. Missense mutations at codons 526 to 531 seemed to be crucial in conferring a high degree of resistance to rifampin. We identified a common Arg463Leu substitution in the katG locus and certain novel insertions and deletions. Mutations were also mapped in the ribosomal binding site of the inhA gene. A Ser95Thr substitution in the gyrA locus was the most common mutation observed in ofloxacin-resistant isolates. A few isolates showed other mutations in this locus. Seven streptomycin-resistant isolates had a silent mutation at the lysine residue at position 121. While certain mutations are widely present, pointing to the magnitude of the polymorphisms at these loci, others are not common, suggesting diversity in the multidrug-resistant M. tuberculosis strains prevalent in this region. Our results additionally have implications for the development of methods for multidrug resistance detection and are also relevant in the shaping of future clinical treatment regimens and drug design strategies.  相似文献   

17.
The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes.  相似文献   

18.
Resistance to isoniazid in Mycobacterium tuberculosis has been associated with mutations in genes encoding the mycobacterial catalase-peroxidase (katG) and the InhA protein (inhA). Among the 26 isoniazid-resistant clinical isolates evaluated in this study, mutations in putative inhA regulatory sequences were identified in 2 catalase-positive isolates, katG gene alterations were detected in 20 strains, and 4 isolates had wild-type katG and inhA genes. Mutations in the katG gene were detected in all 11 catalase-negative isolates: one frameshift insertion, two partial gene deletions, and nine different missense mutations were identified. An arginine-to-leucine substitution at position 463 was detected in nine catalase-positive isolates. However, site-directed mutagenesis experiments demonstrated that the presence of a leucine at codon 463 did not alter the activity of the M. tuberculosis catalase-peroxidase and did not affect the capacity of this enzyme to restore isoniazid susceptibility to isoniazid-resistant, KatG-defective Mycobacterium smegmatis BH1 cells. These studies further support the association between katG and inhA gene mutations and isoniazid resistance in M. tuberculosis, while also suggesting that other undefined mechanisms of isoniazid resistance exist.  相似文献   

19.
In this study, we describe a multiplex PCR to detect a AGC-->ACC (serine to threonine) mutation in the katG gene and a -15 C-to-T substitution (inhA(C-15T)) at the 5' end of a presumed ribosome binding site in the promoter of the mabA-inhA operon. These mutations have been reported in the majority of previous studies as the most frequent mutations involved in the resistance to isoniazid (INH) of Mycobacterium tuberculosis clinical strains with high levels of resistance. The method was optimized and validated after an analysis of 30 M. tuberculosis clinical isolates with known sequences of the relevant part of the katG gene and the regulatory region of the mabA-inhA operon. We analyzed 297 INH-resistant M. tuberculosis isolates collected in Spain from 1996 to 2003 by PCR-restriction fragment length polymorphism (using the katG gene), DNA sequencing, and the newly developed multiplex PCR. The results were concordant for all 297 isolates tested. The analysis revealed that 204 (68.7%) of the isolates carried one or both of the mutations. This finding suggests that with further development this multiplex PCR will be able to detect the majority of the INH-resistant M. tuberculosis clinical isolates from Spain and other countries where a high frequency of similar mutations occur.  相似文献   

20.
耐药结核分枝杆菌基因突变分析   总被引:2,自引:0,他引:2  
目的 探讨结核分枝杆菌耐药表型与基因突变位点之间的相互关系.方法 采用序列特异性引物分别扩增92株结核分枝杆菌利福平耐药基因rpoB,异烟肼耐药基因katG、inhA、ahpC,链霉素耐药基因rrs、rpsL,乙胺丁醇耐药基因embB及喹诺酮耐药基因gyrA,SSCP筛选出突变序列,DNA测序分析突变性质.结果 59株利福平耐药株rpoB基因突变检出率94.9%(56/59),以Ser450Trp突变最多;90株异烟肼耐药株中,katG基因突变检出率38.9%(35/90),以Ser315Thr最多,3株检出inhA基因突变,ahpC基因无突变检出;34株喹诺酮耐药株中gyrA基因突变检出率82.4%(28/34),主要为Asp94Gly,其次为Ala90Val;31株链霉素耐药株中,15株检出rrs突变,最常见为A514C和A1041G,10株发生rpsL Lys88Arg突变,总的链霉素基因突变检出率为77.4%(24/31);31株乙胺丁醇耐药株中embB 基因突变检出率19.4%(6/31),主要为Met306Val.结论 耐药结核分枝杆菌耐药情况较为严重,以DNA测序为基础的基因突变分析能快速有效地检测结核分枝杆菌的rpoB、katG、gyrA、rrs、rpsL、embB 等耐药分子标识,显示了西安地区耐药性结核分枝杆菌的突变特点,为结核病的临床诊断和合理用药提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号