首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Obesity, a feature of metabolic syndrome, is a risk factor for cardiovascular disease, and elevated plasma homocysteine is associated with increased cardiovascular risk. However, little published information is available concerning the effect of obesity on homocysteine metabolism.

Methods

Hepatic homocysteine metabolism was determined in male C57BL/6 mice fed a high-fat diet for 12 weeks.

Results

High-fat diet increased plasma homocysteine but decreased hepatic homocysteine levels. Hepatic S-adenosylhomocysteine hydrolase levels were down-regulated in the obese mice, which was in part responsible for the decrease in hepatic S-adenosylmethionine/S-adenosylhomocysteine, which served as an index of transmethylation potential. Despite the decrease in hepatic cysteine, hepatic taurine synthesis was activated via up-regulation of cysteine dioxygenase. Hepatic levels of methionine adenosyltransferase I/III, methionine synthase, methylene tetrahydrofolate reductase, and gamma-glutamylcysteine ligase catalytic subunit were unchanged. Obese mice showed elevated betaine-homocysteine methyltransferase and decreased cystathionine beta-synthase activities, although the quantities of these enzymes were unchanged.

Conclusion

This study suggests that plasma homocysteine level is increased in obesity-associated hepatic steatosis, possibly as a result of increased hepatic homocysteine efflux along with an altered sulfur amino acid metabolism.  相似文献   

2.
Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09’s influence on high-fat (HF) diet–induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200 mg/[kg d]) for 12 weeks. Our results showed that ACH09 reduced HF diet–induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate–activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet–fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet–induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09’s protective effect.  相似文献   

3.

Purpose

To investigate whether a maternal high-fat diet (HF) during pregnancy and/or suckling periods predisposes adult C57BL/6 mice offspring to morphological pancreatic modifications.

Methods

Male pups were divided into 5 groups: SC (standard chow)—from dams fed SC during gestation and lactation, maintaining an SC diet from postweaning to adulthood; G—from dams fed HF diets during gestation; L—from dams fed HF diets during lactation; GL—from dams fed HF diets during gestation and lactation; and GL/HF—from dams fed HF diets during gestation and lactation, maintaining an HF diet from postweaning to adulthood. We analysed body mass (BM), plasma insulin, pancreas and adipose tissue structures.

Results

During the entire experiment, the SC group had the lowest BM. However, GL/HF offspring were heavier than the other groups. This weight gain was also accompanied by adipocyte hypertrophy. At 3 months, G offspring showed an increased insulin levels and impairment in carbohydrates metabolism. Furthermore, pancreatic islets were hypertrophied in G, GL and GL/HF offspring in comparison with SC offspring.

Conclusion

HF diet administration during the gestation period is more harmful than during the lactation period, exerting deleterious effects on pancreatic morphology in addition to larger fat deposits in adult mice offspring.  相似文献   

4.

Purpose

We previously reported that two substrains of C57BL/6 mice respond differently to oats with respect to reduction in plasma cholesterol. Analysis of this difference might offer clues to mechanisms behind the cholesterol-lowering effect of oats. Here, we address the possible roles of hepatic steroid metabolism and the intestinal microbiota in this respect.

Methods

Female C57BL/6 mice were fed an atherogenic diet with oat bran (27 %) or control fibres for 4 weeks.

Results

C57BL/6 NCrl mice responded to oat bran with 19 ± 1 % (P < 0.001) lower plasma cholesterol, 40 ± 5 % (P < 0.01) higher excretion of bile acids and increased expression of the bile acid-producing hepatic enzymes CYP7A1 and CYP8B1, but none of these effects were found in C57BL/6JBomTac mice. However, on control diet, C57BL/6JBomTac had tenfold higher expression of CYP7A1 and levels of hepatic cholesterol esters than C57BL/6NCrl mice. Plasma levels of fructosamine indicated improved glycemic control by oat bran in C57BL/6NCrl but not in C57BL/6JBomTac. C57BL/6JBomTac had higher intestinal microbiota diversity, but lower numbers of Enterobacteriaceae, Akkermansia and Bacteroides Fragilis than C57BL/6NCrl mice. Oat bran increased bacterial numbers in both substrains. Microbiota diversity was reduced by oats in C57BL/6JBomTac, but unaffected in C57BL/6NCrl.

Conclusions

Our data do not support a connection between altered microbiota diversity and reduced plasma cholesterol, but the bacterial composition in the intestine may influence the effects of added fibres. The cholesterol-lowering properties of oats involve increased production of bile acids via the classical pathway with up-regulation of CYP7A1 and CYP8B1. Altered cholesterol or bile acid metabolism may interfere with the potential of oats to reduce plasma cholesterol.  相似文献   

5.
6.

Purpose

Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch.

Methods

Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7–11 per group).

Results

PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring.

Conclusions

These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.  相似文献   

7.
BACKGROUND: While naturally occurring inulin has anti-hyperlipidemic effects in animals and humans, health effects of synthetic inulin with different degrees of fructose polymerization remain poorly understood. AIM OF THE STUDY: Our study aimed at distinguishing health effects of synthetic inulin with different degrees of fructose polymerization (DP) from those of resistant maltodextrin and clofibrate. METHODS: We examined effects of synthetic inulin on serum and liver lipid profiles and blood biochemical parameters in rats fed a high-fat and high-sucrose (HF, cafeteria) diet when compared to resistant maltodextrin and clofibrate. RESULTS: Treatment with inulin (average DP = 6-8, 16-17 and 23) and resistant maltodextrin for 3 weeks reduced the elevation in liver levels of triacylglycerol and total cholesterol of rats fed the cafeteria diet but not the standard diet. In these groups, inulin (average DP = 16-17) significantly reduced the portal plasma glucose level. Moreover, the levels of portal plasma propionate and circulating serum adiponectin, which were decreased in cafeteria rats, recovered to nearly normal levels after administration of inulin (average DP = 16-17). In addition, the dietary inulin suppressed elevation in levels of portal plasma insulin and circulating serum leptin and induction of acetyl-CoA carboxylase and fatty acid synthase mRNAs in the liver of cafeteria rats, consistent with the reduction of liver lipids. The dietary inulin and clofibrate markedly reduced triacylglycerol levels in serum very low density lipoprotein (VLDL) and liver and epididymal adipose tissue weights of cafeteria rats; the extent of suppression by the dietary inulin was higher than that by clofibrate. No additive or synergistic effect of the dietary inulin and clofibrate was found in decrease in circulating serum VLDL and liver lipid levels. CONCLUSION: These observations indicate that the dietary inulin may prevent the development of metabolic disease such as hyperlipidemia and hyperinsulinemia caused by intake of cafeteria diet, in association with suppression of liver lipogenesis.  相似文献   

8.

Background

The conjugated linoleic acid (CLA) content of beef can be increased by supplementing appropriate beef cattle diets with vegetable oil or oil seed. Yet the effect of consumption of such beef on adipose tissue characteristics is unclear, thus the study was conducted to compare adipose tissue responses of rats to diets containing beef from steers either not provided or provided the oil supplements to alter CLA composition of the fat in muscle.

Methods

Effects of feeding synthetic (industrial hydrogenation) CLA or CLA from beef on growth and adipose tissue responses of weanling, male, Wistar rats (n = 56; 14 per treatment diet) were investigated in a completely randomized design experiment. Diets were: control (CON) diet containing casein and soybean oil, synthetic CLA (SCLA) diet; where 1.69% synthetic CLA replaced soybean oil, two beef-diets; CONM and CLAM, containing freeze dried beef from steers either not fed or fed 14% sunflower seeds to increase CLA content of beef. Diets were isonitrogenous (20% protein) and isocaloric. Rat weights and ad libitum intakes were recorded every 2 wk. After 9 wk, rats were fasted for 24 h, blood sampled by heart puncture, sacrificed, tissue and organs were harvested and weights recorded. The adipose tissue responses with regard to cellularity and fatty acid compositions of retroperitoneal and inguinal adipose tissue were determined.

Results

Body weights and gains were comparable, but organ weights as percent of body weight were greater for rats fed SCLA than CONM. Fasting blood glucose concentration was lower (p < 0.01) in rats fed SCLA than those fed CONM or CLAM. Retroperitoneal and inguinal fat weights, as percent of body weight were greater (p < 0.01) in rats fed CONM or CLAM than those fed CON or SCLA diets. Adipocyte numbers were least in retroperitoneal tissue of rats fed SCLA, while inguinal tissue cell density and total number were lower (p = 0.02) in rats fed CLAM (7.26 × 107 cells/g and 8.03 × 108 cells) than those fed CONM (28.88 × 107 cells/g and 32.05 × 108 cells, respectively).

Conclusion

Study suggests that dietary CLA either as synthetic or high CLA-beef may alter adipose tissue characteristics by decreasing the number of adipocytes and by decreasing the size of the tissue.  相似文献   

9.

Background

Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome.

Methods

Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised.

Results

High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1.

Conclusions

Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.  相似文献   

10.

Background

Resident macrophages (Kupffer cells, KCs) in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF) diet rich in monounsaturated fatty acids.

Methods

Male Wistar rats were fed either standard (SD) or high-fat (HF) diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3.

Results

We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance.

Conclusions

We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.
  相似文献   

11.

Background

In addition to lowering LDL-C, emerging data suggests that phytosterols (PS) may reduce blood triglycerides (TG), however, the underlying mechanisms are not known.

Methods

We examined the TG-lowering mechanisms of dietary PS in Syrian golden hamsters randomly assigned to a high fat (HF) diet or the HF diet supplemented with PS (2%) for 6 weeks (n?=?12/group). An additional subset of animals (n?=?12) was provided the HF diet supplemented with ezetimibe (EZ, 0.002%) as a positive control as it is a cholesterol-lowering agent with known TG-lowering properties.

Results

In confirmation of diet formulation and compound delivery, both the PS and EZ treatments lowered (p?<?0.05) intestinal cholesterol absorption (24 and 31%, respectively), blood non-HDL cholesterol (61 and 66%, respectively), and hepatic cholesterol (45 and 55%, respectively) compared with the HF-fed animals. Blood TG concentrations were lower (p?<?0.05) in the PS (49%) and EZ (68%)-treated animals compared with the HF group. The TG-lowering response in the PS-supplemented group was associated with reduced (p?<?0.05) intestinal SREBP1c mRNA (0.45 fold of HF), hepatic PPARα mRNA (0.73 fold of HF), hepatic FAS protein abundance (0.68 fold of HD), and de novo lipogenesis (44%) compared with the HF group. Similarly, lipogenesis was lower in the EZ-treated animals, albeit through a reduction in the hepatic protein abundance of ACC (0.47 fold of HF).

Conclusions

Study results suggest that dietary PS are protective against diet-induced hypertriglyceridemia, likely through multiple mechanisms that involve modulation of intestinal fatty acid metabolism and a reduction in hepatic lipogenesis.  相似文献   

12.
13.
The frequency of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) has increased in parallel with obesity in the United States. NASH is progressive and characterized by hepatic damage, inflammation, fibrosis, and oxidative stress. Because C20-22 (n-3) PUFA are established regulators of lipid metabolism and inflammation, we tested the hypothesis that C20-22 (n-3) PUFA in menhaden oil (MO) prevent high-fat (HF) diet-induced fatty liver disease in mice. Wild-type (WT) and Ldlr(-/-) C57BL/6J mice were fed the following diets for 12 wk: nonpurified (NP), HF with lard (60% of energy from fat), HF-high-cholesterol with olive oil (HFHC-OO; 54.4% of energy from fat, 0.5% cholesterol), or HFHC-OO supplemented with MO (HFHC-MO). When compared with the NP diet, the HF and HFHC-OO diets induced hepatosteatosis and hepatic damage [elevated plasma alanine aminotransferase (ALT) and aspartate aminotransferases] and elevated hepatic expression of markers of inflammation (monocyte chemoattractant protein-1), fibrosis (procollagen 1α1), and oxidative stress (heme oxygenase-1) (P ≤ 0.05). Hepatic damage (i.e., ALT) correlated (r = 0.74, P < 0.05) with quantitatively higher (>140%, P < 0.05) hepatic cholesterol in Ldlr(-/-) mice fed the HFHC-OO diet than WT mice fed the HF or HFHC-OO diets. Plasma and hepatic markers of liver damage, steatosis, inflammation, and fibrosis, but not oxidative stress, were lower in WT and Ldlr(-/-) mice fed the HFHC-MO diet compared with the HFHC-OO diet (P < 0.05). In conclusion, MO [C20-22 (n-3) PUFA at 2% of energy] decreases many, but not all, HF diet-induced markers of fatty liver disease in mice.  相似文献   

14.

Background

Heart produces ATP through long-chain fatty acids beta oxidation.

Purpose

To analyze whether in ventricular myocardium, high-fat diet may modify the expression of proteins associated with energy metabolism before myocardial function was affected.

Methods

Wistar Kyoto rats were divided into two groups: (a) rats fed standard diet (control; n = 6) and (b) rats fed high-fat diet (HFD; n = 6). Proteins from left ventricles were analyzed by two-dimensional electrophoresis, mass spectrometry and Western blotting.

Results

Rats fed with HFD showed higher body weight, insulin, glucose, leptin and total cholesterol plasma levels as compared with those fed with standard diet. However, myocardial functional parameters were not different between them. The protein expression of 3-ketoacyl-CoA thiolase, acyl-CoA hydrolase mitochondrial precursor and enoyl-CoA hydratase, three long-chain fatty acid β-oxidation-related enzymes, and carnitine-O-palmitoyltransferase I was significantly higher in left ventricles from HFD rats. Protein expression of triosephosphate isomerase was higher in left ventricles from HFD rats than in those from control. Two α/β-enolase isotypes and glyceraldehyde-3-phosphate isomerase were significantly increased in HFD rats as compared with control. Pyruvate and lactate contents were similar in HFD and control groups. Expression of proteins associated with Krebs cycle and mitochondrial oxidative phosphorylation was higher in HFD rats.

Conclusions

Expression of proteins involved in left ventricle metabolic energy was enhanced before myocardial functionality was affected in rats fed with HFD. These findings may probably indicate higher cardiac energy requirement due to weight increase by HFD.  相似文献   

15.

BACKGROUND/OBJECTIVES

The purpose of the current study was to investigate the effect of red pericarp glutinous rice rich in polyphenols (Jakwangchalbyeo, red rice) on serum and hepatic levels of cholesterol and hepatic protein expression linked to synthesis and degradation of cholesterol in a hypercholesterolemic mice diet as compared with brown rice.

MATERIALS/METHODS

C57BL/6 male mice were randomly divided into four groups (n = 5 each), which were fed different diets for a period of 12 weeks: American Institute of Nutrition (AIN)-93G diet, AIN-93G diet with 2% cholesterol, brown rice with 2% cholesterol, or red rice with 2% cholesterol.

RESULT

Consumption of red rice resulted in a significant decrease in serum level of low-density lipoprotein cholesterol and hepatic levels of triglyceride and total-cholesterol. Expression of acyl-coenzyme A cholesterol acyltransferase-2 (ACAT-2), sterol regulatory element binding protein-2 (SREBP-2), and 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase was decreased, while expression of phosphorylated adenosine monophosphate activated protein kinase (p-AMPK)/AMPK ratio, cholesterol 7-α-hydroxylase (CYP7a1), and sterol 12-α-hydroxylase (CYP8b1) was increased in mice fed red rice. Brown rice had similar effects on cholesterol metabolism, but the effect of red rice was significantly greater than that of brown rice.

CONCLUSIONS

The current study suggested that red rice had a hypocholesterolemic effect by lowering hepatic cholesterol synthesis through ACAT-2, HMG-CoA reductase, and SREBP-2, and by enhancing hepatic cholesterol degradation through CYP7a1 and CYP8b1 in mice fed a hypercholesterolemic diet.  相似文献   

16.

Purpose

Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis.

Methods

Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70 % w/w) or in fat (20 and 35 % w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel.

Results

Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases.

Conclusions

The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.  相似文献   

17.

BACKGROUND/OBJECTIVES

Doenjang, Korean traditional fermented soybean paste has been reported to have an anti-obesity effect. Because adipose tissue is considered a major source of inflammatory signals, we investigated the protective effects of Doenjang and steamed soybean on oxidative stress and inflammation in adipose tissue of diet-induced obese mice.

MATERIALS/METHODS

Male C57BL/6J mice were fed a low fat diet (LF), a high-fat diet (HF), or a high-fat containing Doenjang diet (DJ) or a high-fat containing steamed soybean diet (SS) for 11 weeks.

RESULTS

Mice fed a DJ diet showed significantly lower body and adipose tissue weights than those in the HF group. Although no significant differences in adipocyte size and number were observed among the HF diet-fed groups, consumption of Doenjang alleviated the incidence of crown-like structures in adipose tissue. Consistently, we observed significantly reduced mRNA levels of oxidative stress markers (heme oxygenase-1 and p40phox), pro-inflammatory adipokines (tumor necrosis factor alpha and macrophage chemoattractant protein-1), macrophage markers (CD68 and CD11c), and a fibrosis marker (transforming growth factor beta 1) by Doenjang consumption. Gene expression of anti-inflammatory adipokine, adiponectin was significantly induced in the DJ group and the SS group compared to the HF group. The anti-oxidative stress and anti-inflammatory effects observed in mice fed an SS diet were not as effective as those in mice fed a DJ diet, suggesting that the bioactive compounds produced during fermentation and aging may be involved in the observed health-beneficial effects of Doenjang.

CONCLUSIONS

Doenjang alleviated oxidative stress and restored the dysregulated expression of adipokine genes caused by excess adiposity. Therefore, Doenjang may ameliorate systemic inflammation and oxidative stress in obesity via inhibition of inflammatory signals of adipose tissue.  相似文献   

18.

Purpose

Hypertension is one of the main factors causing cardiovascular diseases. The aim of the study is to investigate the effects of Chlorella pyrenoidosa on blood pressure and cardiorenal remodeling in rats with N ω-nitro-l-arginine methyl ester hydrochloride (L-NAME)-induced endothelial dysfunction.

Methods

Rats were fed a diet containing L-NAME (40 mg/kg) with or without chlorella (4 or 8 %) for 5 weeks. We found that chlorella retarded the development of hypertension and cardiorenal remodeling during the 5-week experimental period.

Results

Although there was no difference in NO x levels or plasma arginine concentrations, plasma and tissues ACE activities were significantly lower in the chlorella groups than in the L-NAME group. Moreover, tissue tumor necrosis factor-α concentrations and renal CYP4A expression were also lower in the chlorella group.

Conclusion

These results suggest that chlorella might ameliorate the elevation of blood pressure and show cardiorenal-protective effects in nitric oxide-deficient rats, and one possible mechanism might be mediated by its ACE inhibitory activity.  相似文献   

19.

Purpose

To examine the effect of different dietary fat types on osteopontin (OPN) expressions and inflammation of adipose tissues in diet-induced obese rats.

Methods

Male Sprague–Dawley rats were randomly assigned to one control group fed standard diet (LF, n = 10) and two high-fat diet groups fed isoenergy diet rich in lard or soybean oil (HL or HS, n = 45 each). Diet-induced obese rats in HL and HS group were then subdivided into two groups either continuously fed high-fat diet or switched to low-fat diet for 8 more weeks. Fasting serum glucose, insulin, and OPN concentrations were assayed and QUICKI was calculated; the expression of OPN, IL-6, IL-10, TNF-α, NF-κB, and F4/80 in adipose tissue was determined.

Results

Both high-fat diets lead to comparable development of obesity characterized by insulin resistance and adipose tissue inflammation. Obese rats continuously fed high-fat diet rich in lard oil exhibited the highest fasting serum insulin level and adipose tissue OPN, F4/80, TNF-α, and NF-κB expression level. In both high-fat diet groups, switching to low-fat diet resulted in less intra-abdominal fat mass, decreased expression of F4/80, TNF-α, and NF-κB, while decreased OPN expression was only observed in lard oil fed rats after switching to low-fat diet.

Conclusions

Reducing diet fat or replacing lard oil with soybean oil in high-fat diet alleviates obesity-related inflammation and insulin resistance by attenuating the upregulation of OPN and macrophage infiltration into adipose tissue induced by high-fat diet.  相似文献   

20.
Reverse cholesterol transport (RCT) promotes the egress of cholesterol from peripheral tissues to the liver for biliary and fecal excretion. Although not demonstrated in vivo, RCT is thought to be impaired in patients with metabolic syndrome, in which liver steatosis prevalence is relatively high. Golden Syrian hamsters were fed a nonpurified (CON) diet and normal drinking water or a high-fat (HF) diet containing 27% fat, 0.5% cholesterol, and 0.25% deoxycholate as well as 10% fructose in drinking water for 4 wk. Compared to CON, the HF diet induced insulin resistance and dyslipidemia, with significantly higher plasma non-HDL-cholesterol concentrations and cholesteryl ester transfer protein activity. The HF diet induced severe liver steatosis, with significantly higher cholesterol and TG levels compared to CON. In vivo RCT was assessed by i.p. injecting 3H-cholesterol labeled macrophages. Compared to CON, HF hamsters had significantly greater 3H-tracer recoveries in plasma, but not HDL. After 72 h, 3H-tracer recovery in HF hamsters was 318% higher in liver and 75% lower in bile (P < 0.01), indicating that the HF diet impaired hepatic cholesterol fluxes. However, macrophage-derived cholesterol fecal excretion was 45% higher in HF hamsters than in CON hamsters. This effect was not related to intestinal cholesterol absorption, which was 89% higher in HF hamsters (P < 0.05), suggesting a possible upregulation of transintestinal cholesterol excretion. Our data indicate a significant increase in macrophage-derived cholesterol fecal excretion in a hamster model of metabolic syndrome, which may not compensate for the diet-induced dyslipidemia and liver steatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号