首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was studied histochemically in the sensory ganglia of the rat. Supraspinally, the trigeminal ganglion possessed only a few cells positively stained for NADPH-diaphorase, while a large number of positive neurons was found in the nodose ganglion. In the dorsal root ganglia, the distribution of positive cells showed a peculiar pattern in relation to spinal levels. Very minor populations (less than 2% of the total ganglionic cells) exhibited positive reaction in ganglia at levels ranging from the first cervical (C1) to fourth thoracic (T4) and from the second lumber (L2) through the entire sacral levels. In the middle to lower thoracic levels (from T5 to L1), however, abundant diaphorase-positive cells were observed. From these positive neurons it was possible to trace intensely stained nerve fibers. In the lower thoracic level, for example, dense positive fibers were seen in the ramus communicans. Retrograde tracing studies revealed that diaphorase-containing neurons in the lower thoracic level project at least partly to the gastric wall and the celiac ganglion. These results indicate that the diaphorase-positive ganglionic neurons in the thoracicolumbar levels may carry autonomic visceral afferent information. Double staining with NADPH-diaphorase histochemistry and peptide immunohistochemistry revealed that NADPH-diaphorase colocalizes with calcitonin gene-related peptide and substance P in many of these visceral afferent neurons.  相似文献   

2.
目的观察激活或抑制α-肾上腺素受体是否影响体外培养的背根神经节(dorsal root ganglion,DRG)神经元P物质(substance P,SP)的释放。方法胎龄15天的Wistar大鼠DRG神经元培养2天后,分别用去甲肾上腺素(nora-drenaline,NA)(1×10-4mol/L)、α1-受体拮抗剂哌唑嗪(1×10-6mol/L)+NA(1×10-4mol/L)、α2-受体拮抗剂育亨宾(1×10-5mol/L)+NA(1×10-4mol/L)孵育4天。用RT-PCR法检测DRG神经元编码SP蛋白的PPTmRNA表达水平,用Western blot法检测DRG神经元SP蛋白的表达水平,用酶联免疫吸附测定法检测SP的基础释放量和辣椒素刺激后的释放量。结果 NA单独孵育显著增加了DRG神经元辣椒素刺激后的SP释放量,α1-受体拮抗剂哌唑嗪预处理可阻断NA的效应,而α2-受体拮抗剂育亨宾不产生此作用。在各种实验条件下,PPT mRNA水平、SP蛋白表达水平和SP的基础释放量没有显著性差异。结论 NA通过激活α1-受体增加了DRG神经元辣椒素刺激后的SP释放量,这一作用可能与去甲肾上腺素能的疼痛调...  相似文献   

3.
A. Harmar  P. Keen 《Brain research》1982,231(2):379-385
A preparation of the rat L5 dorsal root ganglion with 6 mm lengths of dorsal root and peripheral branch attached was incubated in vitro over a 9 h period. The substance P-like immunoreactivity (SPLI) of the preparation increased linearly with time and SPLI was transported down both branches. The turnover-time of ganglion SPLI was 3.6 h. Four times as much SPLI accumulated in the peripheral branch as in the dorsal root. When axonal transport was inhibited by demecolcine, SPLI was formed at the same rate but accumulated in the ganglion. Anisomycin inhibited SPLI synthesis after a delay of 2 h. It was apparent that the SPLI of the preparation was contained in two pools, only one of which underwent rapid axonal transport. The mobile pool of axonal SPLI comprised 30% of the total and moved with a velocity of 4.9 mm . h-1.  相似文献   

4.
It has been widely accepted that doublecortin (DCX) may represent a neuronal fate marker transiently expressed by immature neurons during development of the central and peripheral nervous tissue and in neurogenic areas of the adult brain. Previous work described the presence of DCX in the developing dorsal root ganglia (DRG), structures of the peripheral nervous system originating from the neural crest, but no information is available on its expression in adulthood. To this purpose, we have performed an immunohistochemical and biochemical analysis for DCX expression in DRG from adult male mice and rats. To our surprise, we demonstrated that the majority of DRG neurons do express DCX, both in somata and in fibers. DCX(+) cells have been characterized morphologically and phenotypically with well-established markers of DRG neuronal subpopulations. A large number of DCX(+) cells belong to the small and medium-sized nociceptive neurons. Additionally, DCX immunoreactivity is present in the spinal cord dorsal horns, the projection area of DRG neurons. The novel and unexpected localization for DCX protein opens up new, interesting vistas on the functional role of this protein in mature neurons and in particular in sensory neurons.  相似文献   

5.
Different terminal sugars of the glycoprotein orosomucoid were exposed by sequential glycosidase digestions. The orosomucoid and its different derivatives were conjugated to horseradish peroxidase by a two-step glutaraldehyde coupling procedure, injected into the snout of 12-day-old mice or exposed to dorsal root ganglia neurons from embryonic rats, cultivated in a two chamber system. A marked increase in transport of the conjugates in the trigeminal and dorsal root ganglia neurons was observed histochemically after removal of sialic acid, exposing galactose as the terminal sugar. Quantitative hydrolysis of galactose residues resulted in reduced uptake. The data suggest the presence of a galactose-recognition molecule in the axon-terminal membrane, involved in retrograde axonal transport.  相似文献   

6.
BACKGROUND: Neurokinin receptors facilitate tachykinin mediated intestinal motility and secretion. Distribution of Substance P (SP) neurokinin 1 receptor (NK1r) immunoreactivity (IR) has been previously characterized in guinea pig ileum, but not colon. This study localizes NK1rs in guinea pig distal colon. METHODS: Neurons were double labelled for NK1r and either acetylcholine transferase (ChAT), calbindin (calb), neuropeptide Y (NPY), nitric oxide synthase (NOS) or SP. The NK1r endocytosis was induced by 10(-5) mol L(-1) SP, septide, [SarMet] SP or neurokinin A. RESULTS: In guinea pig distal colon, NK1r-IR was present on 70% of submucosal neurons. Sixty-threepercent of the NK1r-IR submucosal neurons were ChAT-IR, 16% calb/SP-IR, 19% NPY-IR and 14% NOS-IR neurons. The NK1r-IR was present on 5% of myenteric neurons. Of these 63% were ChAT-IR, 16% calb-IR neurons and 25% NOS-IR. The NK1rs were also on myenteric plexus interstitial cells of Cajal and on circular muscle. CONCLUSION: In guinea pig distal colon, NK1rs were on 70% of submucosal neurons including all three secretomotor neuron subtypes and sensory neurons, suggesting NK1rs have a major role in neuronal control of mucosal reflexes. The NK1rs were on few myenteric neurons but were dense on muscle cells, suggesting NK1rs affect motility through neuro-muscular rather than neuro-neuronal transmission.  相似文献   

7.
8.
By different denervation procedures the origin of dynorphin-(1-17) and enkephalin immunoreactive fibers in the guinea pig inferior mesenteric ganglion was investigated. It was found that the dynorphin-(1-17)-positive fibers reached the ganglion predominantly via the colonic nerves and to a lesser extent via the hypogastric and intermesenteric nerves whereas the enkephalin-positive fibers reached the ganglion via the lumbar splanchnic nerves. These findings show that the dynorphin-(1-17) and enkephalin systems are separate in this ganglion.  相似文献   

9.
The origins and overall distribution of calcitonin gene-related peptide-like immunoreactivity (CGRPI) in the wall of the cerebral arteries were investigated in the guinea pig by using whole-mounts. Two types of CGRPI fibers were seen; one forming dense fiber bands, located among the periadventitial nerves, and the other forming a meshwork. CGRPI fibers in the periadventitial nerves often leave these nerves to form a meshwork, of a density that varies according to the diameter or location of the blood vessel. The present study showed that CGRPI fibers in the walls of the carotid arterial system originated from the trigeminal ganglion, and those in the vertebrobasilar arterial system from other origins besides the trigeminal ganglion. We also examined the coexistence of this peptide with substance P-like immunoreactive (SPI) structures in a single neuron system. Double staining immunocytochemistry showed that the patterns of the running of CGRPI and SPI fibers in the wall of the cerebral arteries were similar, and this method also demonstrated the presence of neurons containing both CGRPI and SPI structures in single cells of the trigeminal ganglion, which is the major origin of these fibers in the cerebral arteries.  相似文献   

10.
Aim: This study investigated whether the neuronal P2X3 receptor in rat dorsal root ganglia (DRG) mediated the effects of hesperidin on neuropathic pain.

Materials and methods: The chronic constriction injury (CCI) model was used as a model of neuropathic pain. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The mRNA and protein expression levels were assayed by real-time RT-PCR and Western blotting.

Results: The results showed that mechanical and thermal hyperalgesia in the CCI rats were increased as compared to those in the sham group. The expression levels of P2X3 mRNA and protein in CCI rats were higher than those in the sham group. Dual-labelling immunofluorescence showed that the elevated P2X3 receptor was co-expressed with the neuronal marker NeuN in the DRG of CCI rats. Hesperidin treatment decreased both the mechanical and thermal hyperalgesia, and upregulated P2X3 expression in the CCI rats. Hesperidin treatment also reduced the ERK1/2 phosphorylation in the DRG of CCI rats. Moreover, hesperidin inhibited the P2X3 agonist ATP-induced currents in HEK293 cells transfected with the P2X3 plasmid. Therefore, hesperidin treatment could reverse the elevated expression of neuronal P2X3 receptor and reduce the activation of ERK1/2 in the DRG of CCI rats.

Conclusions: Our findings suggested that hesperidin inhibited the nociceptive transmission mediated by the P2X3 receptor in neurons of DRG, and thus, relieved the mechanical and thermal hyperalgesia in CCI rats.  相似文献   


11.
The presence of acetylcholinesterase has been reported in chick dorsal root ganglia at early developmental stages although acetylcholine is not known to play a role in these ganglia. Recently, we reported that during development the level of acetylcholinesterase increases continuously and the enzyme becomes gradually expressed in all sensory neurons. These observations prompted the study of the developmental pattern of expression of other cholinergic markers, such as choline acetyltransferase (ChAT) and the high affinity transport mechanism for choline. ChAT activity is barely detectable at early developmental stages (E7) and increases markedly thereafter, with an activity profile similar to that described for acetylcholinesterase. A similar increase in enzyme activity is also observed when ChAT is measured in dorsal root ganglia explants and in dissociated cells in culture. The study of ChAT activity in cultured cells shows an increase over a period of 3 days, thus ruling out the hypothesis that motor fibers, still associated to the ganglia, may represent a possible source of the enzyme. Immunostaining of whole ganglia or cultured cells shows that ChAT immunoreactivity is not restricted to a specific neuronal subpopulation but appears as a common marker of sensory neurons. High affinity choline uptake, blocked by hemicholinium, is present in sensory neurons cultured from E7 dorsal root ganglia. Observations on cultured neurons from later stages (E18) indicate that choline transport is not a transient property of sensory neurons. These observations show a similar pattern of expression of several cholinergic markers during development. Such a pattern is maintained at significant levels also in mature ganglia. © 1994 Wiley-Liss, Inc.  相似文献   

12.
目的观察神经生长因子(nerve growth factor, NGF)对原代培养的背根神经节(dorsal root ganglion, DRG)神经元中P物质(substance P, SP)的基础释放量和辣椒素诱发释放量的调节效应。方法将15 天胚龄的Wistar大鼠DRG神经元培养于含有不同浓度NGF的DMEM/F12培养液中,不含NGF的培养液培养的神经元作为对照。72小时后,用RT-PCR检测神经元中SP mRNA和辣椒素受体(vanilloid receptor 1, VR1)mRNA的表达,用放射免疫分析(radioimmunoassay,RIA)法检测SP的基础释放量和辣椒素(100 nmol/L)刺激10 min后的诱发释放量。结果SPmRNA和VR1 mRNA在NGF孵育的标本中表达增加,并与孵育液中NGF的浓度呈剂量依赖关系。SP的基础释放量和辣椒素诱发释放量在NGF孵育的标本中均增加,而且诱发释放量与NGF的浓度呈剂量依赖关系。结论NGF使DRG神经元SP的基础释放量和诱发释放量增加,表明NGF能增加初级传入神经元感受伤害刺激的敏感性,该效应可能与SP和VR1的mRNA表达增加有关。  相似文献   

13.
Substance P-immunoreactive nerve fibers in the celiac ganglion of guinea pigs were revealed with the PAP procedures to contain abundant small clear vesicles mixed with a few large granular vesicles. The immunoreactive materials were localized around cytoplasmic components including vesicles and on the inside of the plasma membrane. The immunoreactive fibers directly apposed to unlabelled dendrites of postganglionic neurons and also to preganglionic axons. Morphological features of synapses could be identified at sites of apposition to unlabelled dendrites: clusters of vesicles in the immunoreactive fibers, intercellular spaces of about 20 nm, and an intermediate density on the postjunctional membrane of unlabelled dendrites. On the other hand, no distinct electron density together with accumulations of vesicles was seen underneath the apposed membrane of unlabelled axons. These findings indicate at the ultrastructural level that substance P-fibers form axo-dendritic synapses on the postganglionic neurons and also suggest the presence of the presynaptic interaction between substance P-fibers and some preganglionic axons in this ganglion.  相似文献   

14.
目的观察神经生长因子(nerve growth factor, NGF)对原代培养的背根神经节(dorsal root ganglion, DRG)神经元中P物质(substance P, SP)的基础释放量和辣椒素诱发释放量的调节效应。方法将15 天胚龄的Wistar大鼠DRG神经元培养于含有不同浓度NGF的DMEM/F12培养液中,不含NGF的培养液培养的神经元作为对照。72小时后,用RT-PCR检测神经元中SP mRNA和辣椒素受体(vanilloid receptor 1, VR1)mRNA的表达,用放射免疫分析(radioimmunoassay,RIA)法检测SP的基础释放量和辣椒素(100 nmol/L)刺激10 min后的诱发释放量。结果SPmRNA和VR1 mRNA在NGF孵育的标本中表达增加,并与孵育液中NGF的浓度呈剂量依赖关系。SP的基础释放量和辣椒素诱发释放量在NGF孵育的标本中均增加,而且诱发释放量与NGF的浓度呈剂量依赖关系。结论NGF使DRG神经元SP的基础释放量和诱发释放量增加,表明NGF能增加初级传入神经元感受伤害刺激的敏感性,该效应可能与SP和VR1的mRNA表达增加有关。  相似文献   

15.
Distal sensory axonal polyneuropathy (DSP) is the most frequent HIV-associated peripheral neuropathy. DSPs tend to occur in full-blown AIDS and worsen as CD4 cell counts decrease in blood. To assess a possible role for apoptosis in the pathogenesis of the neuropathy, we used in situ end-labelling (ISEL) detecting DNA strand breaks in DRG neurons of 19 HIV-infected patients, of whom nine had axonal polyneuropathy, and 11 controls. Sensory neurons with ISEL-assessed DNA breaks were observed in 9/19 patients with AIDS, 0/3 patients with pre-AIDS, and 1/11 controls. The prevalence of DNA breaks in neurons was higher in AIDS patients than in controls ( P <0.05). Among AIDS patients, DNA breaks in neurons were more abundant in patients with peripheral neuropathy ( P <0.04). It is possible that DNA breaks of DRG neurons induce the axonopathy and consequently play a role in the pathogenesis of DSP. It cannot be excluded, however, that DNA breaks could represent the result rather than the cause of axonopathy. We suggest that ISEL may detect neurons that were primed to apoptosis before death in relation with the HIV infection, and undergo DNA fragmentation at time of death, rather than neurons that underwent pre-mortem both priming and triggering steps of the apoptotic process. This hypothesis could explain why most ISEL-positive neurons lack typical apoptotic morphology and why normal controls do not show ISEL positive cells.  相似文献   

16.
Based on immunohistochemical analysis of the trigeminal, superior cervical, ciliary and sphenopalatine ganglia and of the eye after sensory denervation and sympathectomy, cholecystokinin (CCK)-like immunoreactive nerves in the guinea pig eye derive from the trigeminal ganglion. Substance P (SP) also occurs in some ocular sensory neurons, suggesting the possible co-localization in this system of CCK- and SP-immunoreactivities. A double-labeling immunofluorescence technique stained 3 types of trigeminal cells and ocular nerve fibers: some immunoreactive for both peptides, some immunoreactive only for CCK and some immunoreactive only for SP.  相似文献   

17.
Neuropeptide Y exerts profound effects on body weight and glucose homeostasis. We have investigated the effect of centrally administered neuropeptide Y on the activity of descending neurones of the hypothalamic paraventricular nucleus by combining retrograde tract tracing with c-Fos immunocytochemistry. Male rats were injected with True Blue into the dorsal vagal complex and with FluoroGold into the intermediolateral column of the lower thoracic spinal cord. One week after the last surgical procedure, animals were injected centrally with an orexigenic dose of neuropeptide Y (5 microg) and sacrificed 60 to 240 minutes following this injection. Temporal analysis of NPY-induced c-Fos expression showed a peak at 90 minutes, which was nearly returned to basal levels between 120 and 240 minutes. Expression of c-Fos was prominent in several of the subnuclei of the paraventricular nucleus and in the adjacent perifornical nucleus. Neurones projecting to the spinal cord were prominent in the dorsal, lateral, and ventral portion of the medial parvicellular subnuclei of the PVN. About 15% of IML projecting neurones of the medial parvicellular subnucleus were Fos-positive, whereas less than 5% of IML projecting neurones from other subnuclei were Fos-positive. Hardly any PVN neurones projecting to the dorsal vagal complex were concomitantly Fos-positive. A considerably larger (>10%) proportion of perifornical neurones projecting to the nucleus of the solitary tract were c-Fos-immunopositive. In conclusion, NPY induces c-Fos in paraventricular neurones projecting to intermediolateral column of the spinal cord and in neurones of the perifornical nucleus projecting to the dorsal vagal complex.  相似文献   

18.
Using an immunocytochemical technique we have analyzed changes in substance P, somatostatin, calcitonin gene-related peptide, and galanin immunoreactivity pattern in the rat dorsal root ganglia. After 7 days of adrenalectomy, sham operated rats were compared with adrenalectomized animals either receiving a daily intraperitoneal injection of 10 mg/kg b.wt. corticosteronev or vehicle. Three lumbar ganglia from each animal were blocked, serially cut, and immunostained for each neuropeptide by means of the biotin-avidin-peroxidase technique. A systematic sampling of immunoreactive ganglion cells was performed and the sample number of immunoreactive ganglion cells was calculated. After adrenalectomy, the number of substance P and somatostatin immunoreactive ganglion cells markedly increased ((means±S.E.M.): 245 ± 68versus123 ± 12 for sham operated animals, P < 0.01 (substance P) and 42 ± 8 as compared to 22 ± 9 for sham operated animals, P < 0.01 (somatostatin)). No significant changes were found in the number of calcitonin gene-related peptide and galanin immunoreactive cells after adrenalectomu. These results suggest that adrenal steroid hormones may reduce the synthesis of both substance P and somatostatin in the dorsal root ganglion cells. Daily treatment with a high dose of corticosterone, mimicking its serum levels after stress, failed to prevent the increase of peptide contents after adrenalectomy. These observations also indicate that a tonic action of corticosterone on mineralocorticoid receptors may be crucial for peptide regulation in the spinal ganglia. These results may be of relevance to adrenalectomy induced changes in sensory mechanisms, neurogenic inflammation and pain transmission and to a role of substance P and somatostatin in these processes.  相似文献   

19.
20.
Background Peripheral irritation‐induced sensory plasticity may involve catecholaminergic innervation of sensory neurons in the dorsal root ganglia (DRG). Methods Catecholaminergic fiber outgrowth in the thoracolumbar DRG (T13‐L2) was examined by tyrosine hydroxylase (TH) immunostaining, or by sucrose‐potassium phosphate‐glyoxylic acid histofluorescence method. TH level was examined by Western blot. Colonic afferent neurons were labeled by retrograde neuronal tracing. Colitis was induced by intracolonic instillation of tri‐nitrobenzene sulfonic acid (TNBS). Key Results The catecholaminergic fibers formed ‘basket‐like’ structures around the DRG cells. At 7 days following TNBS treatment, the number of DRG neurons surrounded by TH‐immunoreactive fibers and the protein levels of TH were significantly increased in T13, L1, and L2 DRGs (two‐ to threefold, P < 0.05). The DRG neurons that were surrounded by TH immunoreactivity were 200 kDa neurofilament‐positive, but not isolectin IB4‐positve or calcitonin gene‐related peptide‐positive. The TH‐immunoreactive fibers did not surround but adjoin the specifically labeled colonic afferent neurons, and was co‐localized with glial marker S‐100. Comparison of the level of TH and the severity of colonic inflammation showed that following TNBS treatment, the degree of colonic inflammation was most severe at day 3, subsided at day 7, and significantly recovered by day 21. However, the levels of TH in T13‐L2 DRGs were increased at both 3 days and 7 days post TNBS treatment and persisted up to 21 days (two‐ to fivefold increase, P < 0.05) as examined. Conclusions & Inferences Colonic inflammation induced prolonged catecholaminergic innervation of sensory neurons, which may have relevance to colitis‐induced chronic visceral hypersensitivity and/or referred pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号