首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 0.5 and of 1.0 mg/kg of intravenously administered Δ9-tetrahydrocannabinol (Δ9-THC) on the sleep-wakefulness cylce were studied in six freely moving rabbits with chronically implanted electrodes. On three consecutive days 5-hr polygraphic recordings were made in each animal; the first record was begun immediately following administration of the drug, the second and third were made 24 and 48 hr later. At both dose levels, Δ9-THC evoked biphasic effects on the first day; an initial phase of extremely low amplitude fast activity of the alert state was followed by a period of predominantly slow wave sleep. During the initial alert phase spike discharges appeared in the motor cortex and hippocampus and behavioral alterations characterized chiefly by loss of motor coordination were observed. A decrease in the number of REM sleep episodes was mainly responsible for a significant reduction in the total time spent in REM sleep on the first day. On the second day the percent time of REM sleep was still below the control value although the difference was statistically insignificant, but by the third day it had returned to the control level.  相似文献   

2.

Background  

Activated microglia elicits a robust amount of pro-inflammatory cytokines, which are implicated in the pathogenesis of tuberculosis in the central nervous system (CNS). However, little is known about the intracellular signaling mechanisms governing these inflammatory responses in microglia in response to Mycobacterium tuberculosis (Mtb).  相似文献   

3.
The cannabinoid CB1 receptor which is densely located in the basal ganglia is known to participate in the regulation of movement. The present study sought to determine the mechanisms underlying the effect of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) on neurons in the substantia nigra pars compacta (SNpc) using single-unit extracellular recordings in anesthetized rats. Administration of Delta(9)-THC (0.25-2 mg/kg, i.v.) increased the firing rate of SNpc neurons (maximal effect: 33.54+/-6.90%, n=8) without modifying other firing parameters (coefficient of variation and burst firing). This effect was completely blocked by the cannabinoid receptor antagonist rimonabant (0.5 mg/kg, i.v.). In addition, the blockade of excitatory amino acids receptors by kynurenic acid (0.5 microM, i.c.v.) or a chemical lesion of the subthalamic nucleus (STN) with ibotenic acid abolished Delta(9)-THC effect. These results indicate that CB1 receptor activation modulates SNpc neuronal activity by an indirect mechanism involving excitatory amino acids, probably released from STN axon terminals in the SNpc.  相似文献   

4.
Activation of p38 MAPK has been associated with a stress response and with apoptotic processes. However, the function of p38 MAPK in chondrocytes is not clearly understood. In this study, we analyzed the expression of p38 MAPK in chondrocytes and investigated the function of p38 MAPK in response to heat stress and mechanical stress. Chondrocytes were isolated from human cartilage and cultured. Expression of p38 and phosphorylated p38 in cartilage of patients with osteoarthritis (OA) was compared to those in normal cartilage by immunohistochemistry and Western blotting. Human knee chondrocytes were exposed to heat stress or mechanical stress. Normal knee chondrocytes were pre-treated with SB203580 or p38 small interfering RNA (siRNA) before induction of heat stress or mechanical stress. Chondrocyte apoptosis was detected by TUNEL staining and Western blotting of cleaved caspases. OA and normal chondrocytes expressed p38; however, OA chondrocytes showed much higher phosphorylated p38 compared to normal chondrocytes. Heat stress or mechanical stress induced apoptosis and increased phosphorylated p38 in normal chondrocytes. The TUNEL positive cells and expression levels of phosphorylated p38 in response to stress decreased when chondrocytes were incubated with SB203580 or transfected with siRNA against p38. In conclusion, we have demonstrated that heat stress or mechanical stress increased chondrocyte apoptosis via phosphorylation of p38. Stress-induced chondrocyte apoptosis decreased due to inhibition of p38 MAPK activation. In contrast, the phosphorylation of p38 MAPK increased in OA chondrocytes. Our results show that down-regulation of p38 MAPK activation inhibits chondrocyte death induced by heat stress or mechanical stress.  相似文献   

5.
In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Delta9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-D-aspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL,a superoxide dismutase-mimetic), N-omega-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron loss was determined by TDT-mediated dUTP nick-end labeling assay, inner retinal thickness, and quantification of the mRNAs of ganglion cell markers. NMDA induced a dose- and time-dependent accumulation of nitrite/nitrate, lipid peroxidation, and nitrotyrosine (foot print of peroxynitrite), and a dose-dependent apoptosis and loss of inner retinal neurons. Treatment with L-NAME or TEMPOL protected retinal neurons and confirmed the involvement of peroxynitrite in retinal neurotoxicity. The neuroprotection by THC and CBD was because of attenuation of peroxynitrite. The effect of THC was in part mediated by the cannabinoid receptor CB1. These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma.  相似文献   

6.
Reactive oxygen species and synaptic plasticity in the aging hippocampus   总被引:10,自引:0,他引:10  
Aging is associated with a general decline in physiological functions including cognitive functions. Given that the hippocampus is known to be critical for certain forms of learning and memory, it is not surprising that a number of neuronal processes in this brain area appear to be particularly vulnerable to the aging process. Long-term potentiation (LTP), a form of synaptic plasticity that has been proposed as a biological substrate for learning and memory, has been used to examine age-related changes in hippocampal synaptic plasticity. A current hypothesis states that oxidative stress contributes to age-related impairment in learning and memory. This is supported by a correlation between age, memory impairment, and the accumulation of oxidative damage to cellular macromolecules. However, it also has been demonstrated that ROS are necessary components of signal transduction cascades during normal physiological processes. This review discusses the evidence supporting the dual role of reactive oxygen species (ROS) as cellular messenger molecules in normal LTP, as well their role as damaging toxic molecules in the age-related impairment of LTP. In addition, we will discuss parallel analyses of LTP and behavioral tests in mice that overexpress antioxidant enzymes and how the role of antioxidant enzymes and ROS in modulating these processes may vary over the lifespan of an animal.  相似文献   

7.
Alternatives to the canonical insulin-stimulated pathway for glucose uptake are exercise- and exogenous reactive oxygen species (ROS)-stimulated glucose uptake. We proposed a model wherein mechanical loading, i.e. stretch, stimulates production of ROS to activate AMP-activated kinase (AMPK) to increase glucose uptake. Immunoblotting was used to measure protein phosphorylation; the fluorochrome probe 2'7'-dichlorofluorescin diacetate was used to measure cytosolic oxidant activity and 2-deoxy- d [1,2-3H]glucose was used to measure glucose uptake. The current studies demonstrate that stretch increases ROS, AMPKα phosphorylation and glucose transport in murine extensor digitorum longus (EDL) muscle (+121%, +164% and +184%, respectively; P < 0.05). We also demonstrate that stretch-induced glucose uptake persists in transgenic mice expressing an inactive form of the AMPKα2 catalytic subunit in skeletal muscle (+173%; P < 0.05). MnTBAP, a superoxide dismutase (SOD) mimetic, N -acteyl cysteine (NAC), a non-specific antioxidant, ebselen, a glutathione mimetic, or combined SOD plus catalase (ROS-selective scavengers) all decrease stretch-stimulated glucose uptake ( P < 0.05) without changing basal uptake ( P > 0.16). We also demonstrate that stretch-stimulated glucose uptake persists in the presence of the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294001 ( P < 0.05) but is diminished by the p38-MAPK inhibitors SB203580 and A304000 ( P > 0.99). These data indicate that stretch-stimulated glucose uptake in skeletal muscle is mediated by a ROS- and p38 MAPK-dependent mechanism that appears to be AMPKα2- and PI3-K-independent.  相似文献   

8.
Toll-like receptor 4 (TLR4) has been identified as a transmembrane protein involved in the host innate immune response to gram-negative bacterial lipopolysaccharide (LPS). Upon activation by LPS recognition, the TIR domain of TLR4 signals through MyD88 to activate the nuclear factor kappa B (NF-kappa B) pathway, a critical regulator of many proinflammatory genes, including interleukin-8 (IL-8). Emerging evidence suggests that reactive oxygen species (ROS) can contribute to diverse signaling pathways, including the LPS-induced cascade. In the present study we investigated the role of ROS in TLR-mediated signaling. Purified Escherichia coli LPS, a highly specific TLR4 agonist, elicited an oxidative burst in the monocyte-like cell line THP-1 in a time- and dose-dependent manner. This oxidative burst was shown to be dependent on the presence of TLR4 through transfection studies in HEK cells, which do not normally express this protein, and with bone marrow-derived macrophages from C3H/HeJ mice, which express a mutated TLR4 protein. LPS-stimulated IL-8 expression could be blocked by the antioxidants N-acetyl-L-cysteine and dimethyl sulfoxide at both the protein and mRNA levels. These antioxidants also blocked LPS-induced IL-8 promoter transactivation as well as the nuclear translocation of NF-kappa B. These data provide evidence that ROS regulate immune signaling through TLR4 via their effects on NF-kappa B activation.  相似文献   

9.
目的 研究丝裂原活化蛋白激酶(MAPK)亚类ERK、P38 MAPK和JNK在低氧血管平滑肌收缩反应性调节中的作用,并从肌球蛋白轻链(MLC20)磷酸化的钙敏感性调节途径上初步探讨其机制.方法 用低氧培养血管平滑肌细胞(VSMC)模型和大鼠失血性休克模型,用荧光法检测VSMC收缩反应,用Western blot检测血管...  相似文献   

10.
11.
This study was carried out to investigate the role of reactive oxygen species (ROS) in the elevation of cardiorespiratory responses during the development of intermittent hypoxia (IH)-induced hypertension. Rats were exposed to either 30 days of IH [(30 s N2) + (45 s room air (RA)] or RA for 6 h/day. After 5 days of exposure, stable mean arterial pressure, normalized low-frequency power of pulses interval spectrogram (a marker of cardiac sympathetic outflow), and minute ventilation (an index for arterial chemoreflex activation) were significantly increased throughout the observation period in IH-exposed rats, but not in RA-exposed rats. FosB expression in rostral ventrolateral medulla was elevated after IH exposure for 5 days. Intraperitoneal injection of MnTMPyP (a superoxide scavenger) or N-acetylcysteine (an antioxidant) prevented IH-induced elevation of the cardiorespiratory responses and lipid peroxidation of lung tissues. These results suggest that ROS are essential for IH-induced elevation of arterial chemoreflex activation and sympathetic outflow, which may, in turn, contribute to IH-induced hypertension.  相似文献   

12.
13.
Reactive oxygen species (ROS) are formed in mammalian cells as a consequence of aerobic respiration. Despite multiple conserved redox modulating systems, a given proportion of ROS continuously escape from the mitochondrial respiratory chain, being sufficiently potent to damage cells in various ways, including numerous carcinogenic DNA mutations. Oxidative stress resulting from an imbalanced ratio between ROS production and detoxification may also disturb physiological signal transduction, lead to chain reactions in lipid layers, and damage DNA repair enzymes. The significance of ROS and antioxidant systems in carcinogenesis is still complicated and in many ways contradictory. Enhanced antioxidant mechanisms in tumor cells in vivo have been implicated in chemoresistance and lead to poor prognosis, whereas most in vitro studies have reported tumor-suppressing properties of antioxidant enzymes. The present review aims to clarify the significance of oxidative stress and the role of cell redox state modulating systems in human malignancies in light of the current literature.  相似文献   

14.
15.
We previously reported that treatment of icariin could significantly induce cardiomyocyte differentiation of murine embryonic stem (ES) cells in vitro. In the present study, the exact activity initiated by icariin was further confirmed and the underlying molecular mechanism was investigated. We found that cardiomyocyte differentiation was efficiently stimulated only if icariin was administrated between days 5 and 8 in differentiation course, which indicated with elevated percentage of embryoid bodies (EB) and with beating areas and up- regulated expression of alpha-actinin and troponin T. Exposure of icariin triggered intracellular reactive oxygen species (ROS) generation of EBs in 3 h, which was abolished in the presence of either NADPH oxidase inhibitor DPI or antioxidant Trolox. Meanwhile, expression of NOX4, a membrane combined enzyme responsible for ROS generation, was promoted by icariin in a dose-dependent manner. Although p38MAPK (mitogen-activated protein kinase), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal protein kinase (JNK) were spontaneously activated in early differentiation, only the phosphorylation of p38MAPK was enhanced and prolonged when icariin was present, whereas both ERK and JNK showed no response to icariin treatment. Moreover, the inducible effect of icariin was blunted by SB203580, a specific inhibitor of p38MAPK. On the contrary, neither UO126 nor SP600125, the specific inhibitor of ERK and JNK, could abolish icariin-stimulated differentiation. Nuclear location of MEF2C, which played a critical role in cardiomyocyte differentiation and could be activated by p38MAPK, was stimulated after icariin exposure. Taken together, these results suggest that ROS generation and the subsequent activation of p38MAPK are essential for the inducible function of icariin on cardiomyocyte differentiation of murine embryonic stem cells in vitro.  相似文献   

16.
Curcumin is a naturally occurring compound which is known to induce heme oxygenase 1 (HO-1), although the underlying mechanism has not been fully elucidated. This study investigates in detail the mechanism of HO-1 induction by curcumin in human hepatoma cells. There was increasing toxicity of curcumin at concentrations higher than 10 microM. Curcumin was found to induce HO-1 at doses of 10 to 25 microM. At both non-toxic and toxic doses, HO-1 induction was found to correlate with production of reactive oxygen species (ROS), suggesting a causative relationship. This was reinforced by the finding that pretreatment with the antioxidants N-acetylcysteine, vitamin E and catalase prevented HO-1 induction by curcumin. ROS production appeared to be mitochondrial in origin, and curcumin treatment resulted in depolarisation of the mitochondrial membrane potential. Nrf2 was induced by curcumin treatment, which was also partly ROS dependent. Using siRNA, Nrf2 was demonstrated to contribute to HO-1 induction. A panel of kinase inhibitors was used to examine the contribution of MAP kinases to the induction of HO-1 by curcumin. PKC and p38 MAPK activity are required for full induction of HO-1. Furthermore, curcumin also inhibited protein phosphatase activity. In conclusion, curcumin treatment results in ROS generation, activation of Nrf2 and MAP kinases and the inhibition of phosphatase activity in hepatocytes, and when curcumin is not administered in toxic doses, these multiple pathways converge to induce HO-1.  相似文献   

17.
To understand the molecular mechanism of ischemia-induced cardiac myocyte cell death, H9c2 cells were studied by chemical hypoxia (CH), using metabolic inhibition buffer. CH suppressed the activities of caspase-3, -8, and -9. c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were activated, whereas extracellular regulated kinase (ERK) was inactivated. Only protein kinase Cepsilon (PKCepsilon) among PKC isotypes was translocated to the membrane fraction implying its activation. Moreover, the administration of PKCepsilon inhibitor suppressed the phosphorylations of JNK/p38 MAPK and reduced CH-induced cell death. An administration of JNK/p38 MAPK inhibitors also decreased CH-induced cell deaths, implying JNK/p38 MAPK's causative roles in the deaths. Collectively, this study identified a novel caspase-independent PKCepsilon-JNK/p38 MAPK signaling module induced by CH in cardiac myocytes. Our data show that the PKCepsilon-JNK/p38 MAPK signaling module contributes to CH-induced H9c2 cell death. This contrasts with previous notions, i.e., PKCepsilon's protective effect against ischemic death. Thus our data suggest that PKCepsilon can mediate alternative signals, i.e., beneficiary or deleterious signals, depending on the cell type, intensity, and/or type of injury.  相似文献   

18.
p38 has been shown to be involved in TGF-beta-induced gene expression, but the upstream of the signaling pathway leading to the activation of p38 is left undefined. We investigated the pathway in cultured human keratinocytes (HaCat cells). Western blot analysis revealed that TGF-beta induced the activation of p38 within 1 h post TGF-beta treatment. H2O2 also strongly induced p38 activation in a time dependent manner. We also observed that TGF-beta-induced p38 activation was inhibited by PDTC, pyrrolidinedithiocarbamate, a known antioxidant, and DPI, diphenylene iodonium chloride, one of the known NADPH oxidase inhibitors. In contrast, TGF-beta-induced Smad2 phosphorylation was not affected. To test whether reactive oxygen species (ROS) is involved in TGF-beta-induced p38 activation, we examined the generation of ROS and activation of NADPH oxidase. FACS analysis showed that TGF-beta induced generation of ROS in time-dependent manner. DPI, an inhibitor of NADPH oxidase, inhibited TGF-beta-induced ROS production. Lucigenin-based NADPH oxidase assay indicated that TGF-beta-induced NADPH oxidase activity started as early as 5 min following treatment and peaked at about 15 min with induction of about 2-folds. The activity remained elevated up to 1 h. Immunofluorescence microscopy study showed that Rac1, one of the subunits of NADPH oxidase, translocated from cytoplasm to the membrane within 5 min. Pretreatment with DPI dramatically reduced TGF-beta-induced NADPH oxidase activity. Collectively, our data suggest that TGF-beta-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes.  相似文献   

19.
Atsumi T  Iwakura I  Fujisawa S  Ueha T 《Biomaterials》2001,22(12):1459-1466
In order to clarify the mechanism of photo-damage caused by eugenol (4-allyl-2-methoxyphenol), we measured cell survival in the presence of eugenol at concentrations of 10(-3) - 10(-7) M, with and without VL (visible light) irradiation by a VL dental lamp and at various pHs (7.2, 7.8 and 8.2) using two different cells (HSG, a human submandibular gland tumor cell line; HGF, a human gingival fibroblast in primary culture). Also, ROS (reactive oxygen species) generation in the above adherent single cells was measured by ACAS laser cytometry combined with CDFH-DA, a peroxide probe. The survival of both HSG and HGF cells treated with eugenol was significantly decreased as the VL irradiation time and/or the pH of the medium was increased. The amount of ROS generated from eugenol was also enhanced by increasing the VL irradiation time and elevating the pH of the medium. Cytotoxicity and ROS generation of HGF cells were significantly lower than that of HSG cells. Glutathione (1 mM) or cysteine (1 mM) protected the photo damages. We conclude that the cytotoxicity of VL-irradiated eugenol possibly was caused by the generation of eugenol radicals and additionally by ROS, both of which were produced dependent on the dose of eugenol, length of irradiation time, and pH of the medium.  相似文献   

20.
Increasing evidence suggests that oxidative and nitrosative stress play an important role in regulation of cardiac myocyte growth and survival. The cardiovascular system is continuously exposed to both reactive oxygen species (ROS) and nitrogen species (RNS), collectively termed reactive inflammatory species (RIS), and imbalances between the enzymes that regulate their bioavailability are associated with cardiac hypertrophy and the pathogenesis of cardiomyopathies, myocardial infarction and heart failure. It is now clear that RIS act as critical regulators of cardiac myocyte hypertrophy and apoptosis through control of redox-sensitive signaling cascades, such as tyrosine kinases and phosphatases, protein kinase C, and mitogen-activated protein kinases. This review will focus on the mechanisms by which ROS/RNS modulate cardiac myocyte growth and apoptosis induced by neurohormones and cytokines, and will discuss evidence for a role in the pathophysiology of heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号