首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin (MLT) levels fluctuate according to the external light/dark cycle in both diurnal and nocturnal mammals. We previously demonstrated that melatonin MT2 receptor knockout (MT2−/−) mice show a decreased nonrapid eye movement sleep over 24 hours and increased wakefulness during the inactive (light) phase. Here, we investigated the role of MT2 receptors in physiological light/dark cycle fluctuations in the activity of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons and anxiety- and depression-like behavior. We found that the 5-HT burst-firing activity was tonically reduced across the whole 24 hours in MT2−/− mice compared with MT2+/+ mice.  Importantly, the physiological changes in the spontaneous firing activity of DRN 5-HT neurons during the light/dark cycle were nullified in MT2−/− mice, with a higher DRN 5-HT neural firing activity during the light phase in MT2−/− than in MT2+/+ mice. The role of MT2 receptors over DRN 5-HT neurons was confirmed by acute pharmacological studies in which the selective MT2 receptors agonist UCM1014 dose dependently inhibited DRN 5-HT activity, mostly during the dark phase. Compared with MT2+/+, MT2−/− mice displayed an anxiety-like phenotype in the novelty-suppressed feeding and in the light/dark box tests; while anxiety levels in the light/dark box test were lower during the dark than during the light phase in MT2+/+ mice, the opposite was seen in MT2−/− mice. No differences between MT2+/+ and MT2−/− mice were observed for depression-like behavior in the forced swim and in the sucrose preference tests. These results suggest that MT2 receptor genetic inactivation impacts 5-HT neurotransmission and interferes with anxiety levels by perturbing the physiologic light/dark pattern.  相似文献   

2.
Abstract: This study explored the role of the melatonin receptors in methamphetamine (METH)‐induced locomotor sensitization during the light and dark phases in C3H/HeN mice with genetic deletion of the MT1 and/or MT2 melatonin receptors. Six daily treatments with METH (1.2 mg/kg, i.p.) in a novel environment during the light phase led to the development of locomotor sensitization in wild‐type (WT), MT1KO and MT2KO mice. Following four full days of abstinence, METH challenge (1.2 mg/kg, i.p.) triggered the expression of locomotor sensitization in METH‐pretreated but not in vehicle (VEH)‐pretreated mice. In MT1/MT2KO mice, the development of sensitization during the light phase was significantly reduced and the expression of sensitization was completely abrogated upon METH challenge. During the dark phase the development of locomotor sensitization in METH‐pretreated WT, MT1KO and MT2KO mice was statistically different from VEH‐treated controls. However, WT and MT2KO, but not MT1KO mice receiving repeated VEH pretreatments during the dark phase expressed a sensitized response to METH challenge that is of an identical magnitude to that observed upon 6 days of METH pretreatment. We conclude that exposure to a novel environment during the dark phase, but not during the light phase, facilitated the expression of sensitization to a METH challenge in a manner dependent on MT1 melatonin receptor activation by endogenous melatonin. We suggest that MT1 and MT2 melatonin receptors are potential targets for pharmacotherapeutic intervention in METH abusers.  相似文献   

3.
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2-induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1- and MT2-mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o/Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2, whereas in the mouse retina, where MT2 is engaged into MT1/MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o-dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o/Gq/11 cooperativity exclusively for MT2. The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1/MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.  相似文献   

4.
Functional MT1 and MT2 melatonin receptors in mammals   总被引:10,自引:0,他引:10  
Melatonin, dubbed the hormone of darkness, is known to regulate a wide variety of physiological processes in mammals. This review describes well-defined functional responses mediated through activation of high-affinity MT1 and MT2 proteinteoupled receptors viewed as potential targets for drug discovery. MT1 melatonin receptors modulate neuronal firing, arterial vasoconstriction, cell proliferation in cancer cells, and reproductive and metabolic functions. Ativation of MT2 melatonin receptors phase shift circadian rhythms of neuronal firing in the suprachiasmatic nucleus, inhibit dopamine release in retina, induce vasodilation and inhibition of leukocyte rolling in arterial beds, and enhance immune responses. The melatonin-mediated responses elicited by activation of MT1 and MT2 native melatonin receptors are dependent on circadian time, duration and mode of exposure to endogenous or exogenous melatonin, and functional receptor sensitivity. Together, these studies underscore the importance of carefully linking each melatonin receptor type to specific functional responses in target tissues to facilitate the design and development of novel therapeutic agent.  相似文献   

5.
In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein‐coupled receptor (GPCR) super‐family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1, but not with MT2, we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage‐gated calcium channel Cav2.2 and inhibits Cav2.2‐promoted Ca2+ entry in an agonist‐independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav2.2 activity, providing a first hint for potential synaptic functions of MT1.  相似文献   

6.
The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G‐protein‐coupled receptors, MT1 and MT2, remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.  相似文献   

7.
The pharmacological potential of targeting selectively melatonin MT1 or MT2 receptors has not yet been exploited in medicine. Research using selective MT1/MT2 receptor ligands and MT1/MT2 receptor knockout mice has indicated that the activation of MT2 receptors selectively increases non‐rapid eye movement (NREM) sleep whereas MT1 receptors seem mostly implicated in the regulation of REM sleep. Moreover, MT1 knockout mice show an increase in NREM sleep, while MT2 knockout a decrease, suggesting an opposite role of these two receptors. A recent paper in mice by Sharma et al (J Pineal Res, 2018, e12498) found that MT1 but not MT2 receptors are expressed on orexin neurons in the perifornical lateral hypothalamus (PFH). Moreover, after injecting melatonin or luzindole into the mouse PFH, the authors suggest that melatonin promotes NREM sleep because activates PFH MT1 receptors, which in turn inhibit orexin neurons that are important in promoting arousal and maintaining wakefulness. In this commentary, we have critically commented on some of these findings on the bases of previous literature. In addition, we highlighted the fact that no conclusions could be drawn on the melatonin receptor subtype mediating the effects of melatonin on sleep because the authors used the non‐selective MT1/MT2 receptors antagonist luzindole. More solid research should further characterize the pharmacological function of these two melatonin receptors in sleep.  相似文献   

8.
Melatonin (MLT) is widely used to treat sleep disorders although the underlying mechanism is still elusive. In mice, using wheel-running detection, we found that exogenous MLT could completely recover the period length prolonged by N-methyl-D-aspartate receptor (NMDAR) impairment due to the injection of the NMDAR antagonist MK-801, a preclinical model of psychosis. The analysis of the possible underlying mechanisms indicated that MLT could regulate the homeostatic state in the ventrolateral preoptic nucleus (VLPO) instead of the circadian process in the suprachiasmatic nucleus (SCN). In addition, our data showed that MK-801 decreased Ca2+-related CaMKII expression and CREB phosphorylation levels in the VLPO, and MLT could rescue these intracellular impairments but not NMDAR expression levels. Accordingly, Gcamp6 AAV virus was injected in-vivo to further monitor intracellular Ca2+ levels in the VLPO, and MLT demonstrated a unique ability to increase Ca2+ fluorescence compared with MK-801-injected mice. Additionally, using the selective melatonin MT2 receptor antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT), we discovered that the pharmacological effects of MLT upon NMDAR impairments were mediated by melatonin MT2 receptors. Using electroencephalography/electromyography (EEG/EMG) recordings, we observed that the latency to the first nonrapid eye movement (NREM) sleep episode was delayed by MK-801, and MLT was able to recover this delay. In conclusion, exogenous MLT by acting upon melatonin MT2 receptors rescues sleep phase delayed by NMDAR impairment via increasing intracellular Ca2+ signaling in the VLPO, suggesting a regulatory role of the neurohormone on the homeostatic system.  相似文献   

9.
Abstract: 5‐Methoxycarbonylamino‐N‐acetyltryptamine (MCA‐NAT) has been initially described as a ligand at non MT1, non MT2 melatonin binding site (MT3) selective versus MT1 and MT2, two membrane melatonin receptors. MCA‐NAT activity has been reported by others in different models, in vivo, particularly in the intra‐ocular pressure (IOP) models in rabbits and monkeys. Its activity was systematically linked to either MT3 or to a new, yet unknown, melatonin receptor. In this article, the melatonin receptor pharmacology of MCA‐NAT is described. MCA‐NAT has micromolar range affinities at the melatonin receptors MT1 and MT2, while in functional studies, MCA‐NAT proved to be a powerful MT1/MT2 partial agonist in the sub‐micromolar range. These data strongly suggest that MCA‐NAT actions might be mediated by these receptors in vivo. Finally, as described by others, we show that MCA‐NAT is unable to elicit any type of receptor‐like functional responses from Chinese hamster ovary cells over‐expressing quinone reductase 2, the MT3.  相似文献   

10.
11.
Melatonin receptors play important roles in the regulation of circadian and seasonal rhythms, sleep, retinal functions, the immune system, depression, and type 2 diabetes development. Melatonin receptors are approved drug targets for insomnia, non‐24‐hour sleep‐wake disorders, and major depressive disorders. In mammals, two melatonin receptors (MTRs) exist, MT1 and MT2, belonging to the G protein‐coupled receptor (GPCR) superfamily. Similar to most other GPCRs, reliable antibodies recognizing melatonin receptors proved to be difficult to obtain. Here, we describe the development of the first monoclonal antibodies (mABs) for mouse MT1 and MT2. Purified antibodies were extensively characterized for specific reactivity with mouse, rat, and human MT1 and MT2 by Western blot, immunoprecipitation, immunofluorescence, and proximity ligation assay. Several mABs were specific for either mouse MT1 or MT2. None of the mABs cross‐reacted with rat MTRs, and some were able to react with human MTRs. The specificity of the selected mABs was validated by immunofluorescence microscopy in three established locations (retina, suprachiasmatic nuclei, pituitary gland) for MTR expression in mice using MTR‐KO mice as control. MT2 expression was not detected in mouse insulinoma MIN6 cells or pancreatic beta‐cells. Collectively, we report the first monoclonal antibodies recognizing recombinant and native mouse melatonin receptors that will be valuable tools for future studies.  相似文献   

12.
13.
14.
We previously reported an antidepressant-like effect in C3H/HeN mice during the forced swimming test (FST) following treatment with the MT1/MT2 melatonin receptor ligand, luzindole. This study investigated the role melatonin receptors (MT1 and/or MT2) may play in the effect of luzindole in the FST using C3H/HeN mice with a genetic deletion of either MT1 (MT1KO) or MT2 (MT2KO) melatonin receptors. In the light phase (ZT 9-11), luzindole (30 mg/kg, i.p.) significantly decreased immobility during swimming in both wild type (WT) (135.6 +/- 25.3 s, n = 7) and MT(1)KO (132.6 +/- 13.3 s, n = 8) as compared with vehicle-treated mice (WT: 207.1 +/- 6.0 s, n = 7; MT1KO: 209.5 +/- 6.2 s, n = 8) (P < 0.001). In the dark phase (ZT 20-22), luzindole also decreased time of immobility in both WT (89.5 +/- 13.9 s, n = 8) and MT1KO (66.5 +/- 6.4 s, n = 8) mice as compared with the vehicle treated (WT: 193.8 +/- 3.5, n = 6; MT1KO: 176.6 +/- 6.2 s, n = 8) (P < 0.001). Genetic disruption of the MT1 gene did not alter the diurnal rhythm of serum melatonin in MT1KO mice (ZT 9-11: 1.3 +/- 0.6 pg/mL, n = 7; ZT 20-22: 10.3 +/- 1.1 pg/mL, n = 8) as compared with WT (ZT 9-11: 1.4 +/- 0.7 pg/mL; ZT 20-22: 10.6 pg/mL). Swimming did not alter the serum melatonin diurnal rhythm in WT and MT1KO mice. Decreases in immobility of WT and MT1KO mice by luzindole treatment were not affected by gender or age (3 months versus 8 months). In contrast, luzindole did not decrease immobility during the FST in MT2KO mice. We conclude that the antidepressant-like effect of luzindole may be mediated through blockade of MT2 rather than MT1 melatonin receptors.  相似文献   

15.
16.
Copper is essential for the generation of reactive oxygen species (ROS), which are induced by amyloid‐β (Aβ) aggregation; thus, the homeostasis of copper is believed to be a therapeutic target for Alzheimer’s disease (AD). Although clinical trials of copper chelators show promise when applied in AD, the underlying mechanism is not fully understood. Here, we reported that copper chelators promoted nonamyloidogenic processing of AβPP through MT1/2/CREB‐dependent signaling pathways. First, we found that the formation of Aβ plaques in the cortex was significantly reduced, and learning deficits were significantly improved in AβPP/PS1 transgenic mice by copper chelator tetrathiomolybdate (TM) administration. Second, TM and another copper chelator, bathocuproine sulfonate (BCS), promoted nonamyloidogenic processing of AβPP via inducing the expression of ADAM10 and the secretion of sAβPPα. Third, the inducible ADAM10 production caused by copper chelators can be blocked by a melatonin receptor (MT1/2) antagonist (luzindole) and a MT2 inhibitor (4‐P‐PDOT), suggesting that the expression of ADAM10 depends on the activation of MT1/2 signaling pathways. Fourth, three of the MT1/2‐downstream signaling pathways, Gq/PLC/MEK/ERK/CREB, Gs/cAMP/PKA/ERK/CREB and Gs/cAMP/PKA/CREB, were responsible for copper chelator‐induced ADAM10 production. Based on these results, we conclude that copper chelators regulate the balance between amyloidogenic and nonamyloidogenic processing of AβPP via promoting ADAM10 expression through MT1/2/CREB‐dependent signaling pathways.  相似文献   

17.
Recent studies implicate melatonin in the antinociceptive activity of sensory neurons. However, the underlying mechanisms are still largely unknown. Here, we identify a critical role of melatonin in functionally regulating Cav3.2 T‐type Ca2+ channels (T‐type channel) in trigeminal ganglion (TG) neurons. Melatonin inhibited T‐type channels in small TG neurons via the melatonin receptor 2 (MT2 receptor) and a pertussis toxin‐sensitive G‐protein pathway. Immunoprecipitation analyses revealed that the intracellular subunit of the MT2 receptor coprecipitated with Gαo. Both shRNA‐mediated knockdown of Gαo and intracellular application of QEHA peptide abolished the inhibitory effects of melatonin. Protein kinase C (PKC) antagonists abolished the melatonin‐induced T‐type channel response, whereas inhibition of conventional PKC isoforms elicited no effect. Furthermore, application of melatonin increased membrane abundance of PKC‐eta (PKCη) while antagonism of PKCη or shRNA targeting PKCη prevented the melatonin‐mediated effects. In a heterologous expression system, activation of MT2 receptor strongly inhibited Cav3.2 T‐type channel currents but had no effect on Cav3.1 and Cav3.3 current amplitudes. The selective Cav3.2 response was PKCη dependent and was accompanied by a negative shift in the steady‐state inactivation curve. Furthermore, melatonin decreased the action potential firing rate of small TG neurons and attenuated the mechanical hypersensitivity in a mouse model of complete Freund's adjuvant‐induced inflammatory pain. These actions were inhibited by T‐type channel blockade. Together, our results demonstrated that melatonin inhibits Cav3.2 T‐type channel activity through the MT2 receptor coupled to novel Gβγ‐mediated PKCη signaling, subsequently decreasing the membrane excitability of TG neurons and pain hypersensitivity in mice.  相似文献   

18.
The tryptophan derivative melatonin is an evolutionary old molecule that is involved in a pleiotropy of physiological functions. In humans, age‐related decline of circulating melatonin levels and/or dysregulation of its circadian synthesis pattern have been associated with several disorders and disease states. Several molecular targets have been proposed for melatonin since its discovery, in 1959. Among them, melatonin MT1 and MT2 receptors are the best characterized melatonin targets, mediating melatonin effects in a variety of tissues. They belong to the superfamily of G protein‐coupled receptors. Two back‐to‐back articles published in the “Nature” Journal earlier this year present the first crystal structures of the human MT1 and MT2 in its inactive states. Here, we will briefly outline the discovery path of melatonin receptors until their structural elucidation and discuss how these new findings will guide future research toward a better understanding of their function and rational drug design.  相似文献   

19.
Melatonin, a circadian rhythm–promoting molecule, has a variety of biological functions, but the functional role of melatonin in the motility of mesenchymal stem cells (MSCs) has yet to be studied. In a mouse skin excisional wound model, we found that transplantation of umbilical cord blood (UCB)‐MSCs pretreated with melatonin enhanced wound closure, granulation, and re‐epithelialization at mouse skin wound sites, where relatively more UCB‐MSCs which were engrafted onto the wound site were detected. Thus, we identified the signaling pathway of melatonin, which affects the motility of UCB‐MSCs. Melatonin (1 μm ) significantly increased the motility of UCB‐MSCs, which had been inhibited by the knockdown of melatonin receptor 2 (MT2). We found that Gαq coupled with MT2 and that the binding of Gαq to MT2 uniquely stimulated an atypical PKC isoform, PKCζ. Melatonin induced the phosphorylation of FAK and paxillin, which were concurrently downregulated by blocking of the PKC activity. Melatonin increased the levels of active Cdc42 and Arp2/3, and it has the ability to stimulate cytoskeletal reorganization‐related proteins such as profilin‐1, cofilin‐1, and F‐actin in UCB‐MSCs. Finally, a lack of MT2 expression in UCB‐MSCs during a mouse skin transplantation experiment resulted in impaired wound healing and less engraftment of stem cells at the wound site. These results demonstrate that melatonin signaling via MT2 triggers FAK/paxillin phosphorylation to stimulate reorganization of the actin cytoskeleton, which is responsible for Cdc42/Arp2/3 activation to promote UCB‐MSCs motility.  相似文献   

20.
This study focused on the effect of melatonin on reprogramming with specific regard to the generation of induced pluripotent stem cells (iPSCs). Here, a secondary inducible system, which is more accurate and suitable for studying the involvement of chemicals in reprogramming efficiency, was used to evaluate the effect of melatonin on mouse iPSC generation. Secondary fibroblasts collected from all‐iPSC mice through tetraploid complementation were cultured in induction medium supplemented with melatonin at different concentrations (0, 10?6, 10?7, 10?8, 10?9, or 10?10 m ) or with vitamin C (50 μg/mL) as a positive control. Compared with untreated group (0.22 ± 0.04% efficiency), 10?8 (0.81 ± 0.04%), and 10?9 m (0.83 ± 0.08%) melatonin supplementation significantly improved reprogramming efficiency (< 0.05). Moreover, we verified that the iPSCs induced by melatonin treatment (MiPSCs) had the same characteristics as typical embryonic stem cells (ESCs), including expression of the pluripotency markers Oct4, Sox2, and Nanog, the ability to form teratomas and all three germ layers of the embryo, as well as produce chimeric mice with contribution to the germ line. Interestingly, only the melatonin receptor MT2 was detected in secondary fibroblasts, while MiPSCs and ESCs expressed MT1 and MT2 receptors. Furthermore, during the early stage of reprogramming, expression of the apoptosis‐related genes p53 and p21 was lower in the group treated with 10?9 m melatonin compared with the untreated controls. In conclusion, melatonin supplementation enhances the efficiency of murine iPSC generation. These beneficial effects may be associated with inhibition of the p53‐mediated apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号