首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Realistic models to understand the developmental appearance of the pelvic nervous system in mammals are scarce. We visualized the development of the inferior hypogastric plexus and its preganglionic connections in human embryos at 4–8 weeks post-fertilization, using Amira 3D reconstruction and Cinema 4D-remodelling software. We defined the embryonic lesser pelvis as the pelvic area caudal to both umbilical arteries and containing the hindgut. Neural crest cells (NCCs) appeared dorsolateral to the median sacral artery near vertebra S1 at ~5 weeks and had extended to vertebra S5 1 day later. Once para-arterial, NCCs either formed sympathetic ganglia or continued to migrate ventrally to the pre-arterial region, where they formed large bilateral inferior hypogastric ganglionic cell clusters (IHGCs). Unlike more cranial pre-aortic plexuses, both IHGCs did not merge because the 'pelvic pouch', a temporary caudal extension of the peritoneal cavity, interposed. Although NCCs in the sacral area started to migrate later, they reached their pre-arterial position simultaneously with the NCCs in the thoracolumbar regions. Accordingly, the superior hypogastric nerve, a caudal extension of the lumbar splanchnic nerves along the superior rectal artery, contacted the IHGCs only 1 day later than the lumbar splanchnic nerves contacted the inferior mesenteric ganglion. The superior hypogastric nerve subsequently splits to become the superior hypogastric plexus. The IHGCs had two additional sources of preganglionic innervation, of which the pelvic splanchnic nerves arrived at ~6.5 weeks and the sacral splanchnic nerves only at ~8 weeks. After all preganglionic connections had formed, separate parts of the inferior hypogastric plexus formed at the bladder neck and distal hindgut.  相似文献   

2.
3.
BACKGROUND: The superior hypogastric plexus (SHP) that is formed anterior to the aorta and the sacral promontory and is located anterior to the L5-S1 vertebrae, normally continues as the inferior hypogastric plexus. Several variations have been described from a single trunk to a plexiform arrangement. MATERIALS AND METHODS: The SHP was dissected in 35 formalized cadavers. RESULTS: A single thin and rounded nerve was found in 17.14% of subjects. The type of a wide reticular formation was observed in 28.57% of specimens. Interestingly, a band-like nerve trunk consisting of nerve bundles connected with loose connective tissue was evident in 22.85% of cadavers. Eventually, two distinct nerves at a short distance with each other were found in 31.44% of subjects. Furthermore, we found that branches of the major and minor splanchnic nerves contributed to SHP constitution. We provided, additionally, the topographic anatomy of the SHP with regard to the sacral promontory and the abdomen midline. CONCLUSION: A detailed knowledge of the course, the morphology, the various forms and the topography of the SHP is of outmost significance for several clinical specialties.  相似文献   

4.
全直肠系膜切除相关盆自主神经的解剖学观察   总被引:24,自引:2,他引:24  
目的:阐述全直肠系膜切除术相关盆自主神经的局部解剖学特点,探讨盆自主神经保留的部位和对策。方法:对20具男性盆腔固定标本进行解剖观察。结果:腹主动脉丛远离肠系膜下动脉起点;上腹下丛贴近骶岬表面;腹下神经部分毗邻输尿管;盆内脏神经伴行直肠中动脉外侧部;下腹下丛位于直肠系膜后外侧;其直肠侧支走行于直肠侧韧带内,直肠前支向前穿过Denonvilliers筋膜后叶;勃起神经位于Denonvilliers筋膜前叶外侧部。结论:盆自主神经保留的部位是:离断肠系膜下血管时的腹主动脉丛左干,直肠后分离时的上腹下丛和腹下神经,直肠侧面分离时的下腹下丛和盆内脏神经,直肠前分离时的勃起神经。共同原则是:在直肠后间隙中贴近直肠系膜操作;直视下操作;避免过度牵引直肠系膜。  相似文献   

5.
Injury to the nerves of the aortic‐ and superior hypogastric plexuses during retroperitoneal surgery often results in significant post‐operative complications, including retrograde ejaculation and/or loss of seminal emission in males. Although previous characterizations of these plexuses have done well to provide a basis for understanding the typical anatomy, additional research into the common variations of these plexuses could further optimize nerve‐sparing techniques for retroperitoneal surgery. To achieve this, the present study aimed to document the prevalence and positional variability of the infrarenal lumbar splanchnic nerves (LSNs) through gross dissection of 26 human cadavers. In almost all cases, two LSNs were observed joining each side of the aortic plexus, with 48% (left) and 33% (right) of specimens also exhibiting a third joining inferior to the left renal vein. As expected, the position of the LSNs varied greatly between specimens. That said, the vast majority (98%) of LSNs joining the aortic plexus were found to originate from the lumbar sympathetic trunk above the level of the inferior mesenteric artery. It was also found that, within specimens, adjacent LSNs often coursed in parallel. In addition to these nerves, 85% of specimens also demonstrated retroaortic LSN(s) that were angled more inferior compared with the other LSNs (P < 0.05), and exhibited a unique course between the aorta/common iliac arteries and the left common iliac vein before joining the superior hypogastric plexus below the aortic bifurcation. These findings may have significant implications for surgeons attempting nerve‐sparing procedures of the sympathetic nerves in the infrarenal retroperitoneum such as retroperitoneal lymphadenectomies. We anticipate that the collective findings of the current study will help improve such retroperitoneal nerve‐sparing surgical procedures, which may assist in preserving male ejaculatory function post‐operatively.  相似文献   

6.
Bladder, bowel, and sexual dysfunction caused by iatrogenic lesions of the inferior hypogastric plexus (IHP) are well known and commonly tolerated in pelvic surgery. Because the pelvic autonomic nerves are difficult to define and dissect in surgery, and their importance often ignored, we conducted a gross anatomic study of 90 adult and four fetal hemipelves. Using various non-surgical approaches, the anatomic relations and pathways of the IHP were dissected. The IHP extended from the sacrum to the genital organs at the level of the lower sacral vertebrae. It originated from three different sources: the hypogastric nerve, the sacral splanchnic nerves from the sacral sympathetic trunk (mostly the S2 ganglion), and the pelvic splanchnic nerves, which branched primarily from the third and fourth sacral ventral rami. These fibers converge to form a uniform nerve plate medial to the vascular layer and deep to the peritoneum. The posterior portion of the IHP supplied the rectum and the anterior portion of the urogenital organs; nerve fibers traveled directly from the IHP to the anterolateral wall of the rectum and to the inferolateral and posterolateral aspects of the urogenital organs. The autonomic supply from the IHP was supplemented by nerves accompanying the ureter and the arteries. An understanding of the location of the autonomic pelvic network, including important landmarks, should help prevent iatrogenic injury through the adoption of surgical techniques that reduce or prevent postoperative autonomic dysfunction.  相似文献   

7.
We investigated the topographical anatomy of the pelvic fasciae and autonomic nerves using macroscopic slices of five decalcified female pelves. The lateral aspect of the supravaginal cervix uteri and superior-most vagina issued abundant thick fiber bundles. These visceral fibrous tissues extended dorsolaterally, joined another fibrous tissue from the rectum (the actual lateral ligament of the rectum) and attached to the parietal fibrous tissues at and around the sciatic foramina (i.e. the sacrospinous ligament, thick fasciae of the coccygeus and piriformis and dorsal end of the covering fascia of the levator ani). The inferior or ventral vagina also issued thick fiber bundles communicating with the levator ani fascia. This connection between the vagina and levator fascia, when stretched, seemed to provide a macroscopic morphology called the arcus tendineus fasciae pelvis. The overall morphology of the visceroparietal fascial bridge exhibited a bilateral wing-like shape. The fascial bridge complex was adjacent but dorso-inferior to the internal iliac vascular sheath and located slightly ventral to the pelvic splanchnic nerve. However, the pelvic plexus and its peripheral branches were embedded in the fascial complex. The hypogastric nerve ran along and beneath the uterosacral peritoneal fold, which did not contain thick fibrous tissue. During surgery, in combination with the superficially located vascular sheath, the morphology of the visceroparietal fascial bridge and associated nerves seemed to be artificially changed and developed into the so-called cardinal, uterosacral, uterovesical and/or rectal lateral ligaments. The classical and original concepts of these pelvic fascial structures may need to be altered to adjust to these surgical observations.  相似文献   

8.
The pelvic autonomic nerves innervate the pelvic viscera, and carry a high risk of damage during surgery. This high risk has been ascribed to the complex interrelationship of pelvic paravisceral structures and the difficulty in identifying particular structures, despite the fact that the anatomic characteristics of the pelvic autonomic plexus have been well documented. We dissected ten male embalmed adult cadavers with particular attention to the quantitative parameters of the pelvic plexus and its subsidiary plexus. The right inferior hypogastric plexus and its rectal branch were found to be significantly longer and wider than the left one, while the transverse diameter of the vesical and prostatic branches of the left side was significantly larger the right. The inferior mesenteric plexus gave off fibers directly to form the pelvic plexus in four of 20 hemipelves (20%). In the side-by-side comparison, the distance to midpoint of the sacral promontory of the left rectal plexus was significantly longer than that of the right, whereas the maximum length (the length of the longest nerve fiber from origin to corresponding organ) of the left vesical plexus was significantly shorter than that of the right. Additionally, the craniocaudal and dorsoventral diameters of the right pelvic autonomic plexus were significantly shorter those of the left. The quantitative parameters relating to the pelvic autonomic plexuses not only can enhance our understanding of its anatomy and function, but can also be used as references for surgical procedures and robot-assisted surgery.  相似文献   

9.
AIM OF THE STUDY: We wanted to determine the anatomical features of the inferior hypogastric plexus (IHP), and the useful landmarks for a safe surgical approach during pelvic surgery. MATERIALS AND METHODS: We dissected the IHP in 22 formolized female anatomical subjects, none of which bore any stigmata of subumbilical surgery. RESULTS: The inferior hypogastric plexus (IHP) is a triangle with a posterior base and an anterior inferior top. It can be described as having three edges and three angles; its inferior edge stretches constantly from the fourth sacral root to the ureter's point of entry into the posterior layer of the broad ligament; its cranial edge is strictly parallel to the posterior edge of the hypogastric artery, along which it runs at a distance of 10 mm; its posterior (dorsal) edge is at the point of contact with the sacral roots, from which it receives its afferences. They most frequently originate from S3 or S4 (60%) and then, in one or two branches, often from S2 (40%), never from S1 and in exceptional cases from S5 (20%). There are sympathetic afferences in 30% of cases, usually through a single branch of the second, third or fourth sacral ganglion. All IHPs have at least one sacral afference and sometimes there may be up to three afferences from the same sacral root. Its dorsal cranial angle, which is superior, comes after the SHP (hypogastric nerve or presacral nerve filament); its anterior inferior angle is located exactly at the ureter's point of entry into the posterior layer of the broad ligament. This is the top of the IHP; its posterior inferior angle is located at the point of contact with the fourth sacral root. At its entrance at the base of the parametrium the pelvic ureter is the anterior, fundamental positional reference for the IHP. The vaginal efferences come out of the top of the IHP through branches leading to the bladder, the vagina and the rectum, which originate through two trunks exactly underneath the crossing point of the ureter and the uterine artery: (i) one trunk leading to the bladder runs along and underneath the ureter and divides into two groups, which are lateral and medial, trigonal. (ii) the trunk leading to the vagina runs along the inferior edge of the uterine artery. At the point of contact with the lateral edge of the vagina, it splits into two groups: anterior thin and posterior voluminous. Some of its branches perforate the posterior wall of the vagina and are distributed to the rectovaginal septum in a tooth comb pattern. The inferior branches, which emerge from the inferior edge of the IHP, reach the rectum directly. The dissection of the 22 specimens allowed us to describe three efferent plexuses: a vaginal rectal plexus, a vesical plexus and a inferior rectal plexus. So the IHP's anterior, fundamental positional reference is the pelvic ureter at the point where it enters at the base of the parametrium, then at the crossing point of the uterine artery. The ureter is the vector for vesical efferences, the uterine artery is the vector for vaginal efferences, which are thus sent into the vesicovaginal septum and the rectovaginal septum. This surgical point of reference is of vital importance in nerve sparing during the course of a simple or extended hysterectomy. Any dissection carried out underneath and outside of the ureter inevitably carries a risk of lesions to its efferent, lateral vesical or medial, rectovaginal fibres.  相似文献   

10.
目的 从临床解剖学和组织学角度进一步阐明盆自主神经的筋膜层次。 方法 选取7具尸体标本和52例接受腹腔镜直肠癌切除手术的病人,观察其自主神经与肾前筋膜-骶前筋膜的关系。切取尸体降乙结肠系膜与主髂动脉之间、直肠系膜与骶骨骨膜之间的腹膜后组织做组织学检查。 结果 解剖学观察显示,腹主动脉丛、上腹下丛、腹下神经、下腹下丛位于肾前筋膜-骶前筋膜后外侧。组织学检查显示:神经纤维位于筋膜后,部分较细的纤维位于筋膜内。 结论 自主神经位于肾前筋膜-骶前筋膜后外侧。保持这一筋膜的完整性,是直肠癌手术中保护自主神经的解剖学基础和基本方法。  相似文献   

11.
男性盆腔内脏神经与盆筋膜及盆内脏器的毗邻关系复杂,且个体形态学差异大,临床上涉及肛肠外科、泌尿外科、男科等多个学科,应用甚广。近年来,对内脏神经的术中保护越来越受到重视。男性盆腔内脏神经主要包括上腹下丛、腹下神经、下腹下丛(即盆丛)、盆内脏神经、膀胱丛、前列腺丛、直肠丛及其分支等。现已证明盆腔内脏神经的损伤会给患者的排便、排尿及阴茎勃起等造成功能障碍。熟悉男性盆腔内脏神经及其分支的形态特点及其与周围结构的关系,能降低手术并发症,提高患者术后生活质量。  相似文献   

12.
Objective To locate and describe the various efferences of the plexus in order to make it easier to avoid nerve lesions during pelvic surgery on women patients through a better anatomical knowledge of the inferior hypogastric plexus (IHP). Materials and methods We dissected 27 formalin embalmed female anatomical subjects, none of which bore any stigmata of subumbilical surgery. The dissection was always performed using the same technique: identification of the inferior hypogastric plexus, whose posterior superior angle follows on from the hypogastric nerve and whose top, which is anterior and inferior, is located exactly at the ureter’s point of entry into the base of the parametrium, underneath the posterior layer of the broad ligament. Results The IHP is located at the level of the posterior floor of the pelvis, opposite to the sacral concavity. Its top, which is anterior inferior, is at the point of contact with the ureter at its entry into the posterior layer of the broad ligament. The uterovaginal, vesical and rectal efferences originate in the paracervix. Three efferent nerves branch, two of them from its top and the third from its inferior edge: (1) A vaginal nerve, medial to the ureter, follows the uterine artery and divides into two groups: anterior thin, heading for the vagina and the uterus; posterior, voluminous, heading in a superior rectal direction (=superior rectal nerve). (2) A vesical nerve, lateral to the ureter, divides into two groups, lateral and medial. (3) The inferior rectal nerve emerges from the inferior edge of the IHP, between the fourth sacral root and the ureter’s point of entry into the base of the parametrium. Conclusion The ureter is the crucial point of reference for the IHP and its efferences and acts as a real guide for identifying the anterior inferior angle or top of the IHP, the origin of the vaginal nerve, the level of the ureterovesical junction and the division of the vesical nerve into its two medial and lateral branches. Dissecting underneath and inside the ureter and the uterine artery involves a risk of lesion of the vaginal nerve and its uterovaginal branches. Further forward, between the intersection and the ureterovesical junction, dissecting and/or coagulating under the ureter involves a risk of lesions to the vesical nerve, which are likely to explain the phenomena of denervation of the anterior floor encountered after certain hysterectomies and/or surgical treatments of vesicoureteral reflux.  相似文献   

13.
Classic anatomical methods have failed to determine the precise location, origin and nature of nerve fibres in the inferior hypogastric plexus (IHP). The purpose of this study was to identify the location and nature (adrenergic and/or cholinergic) of IHP nerve fibres and to provide a three-dimensional (3D) representation of pelvic nerves and their relationship to other anatomical structures. Serial transverse sections of the pelvic portion of two human male fetuses (16 and 17 weeks' gestation) were studied histologically and immunohistochemically, digitized and reconstructed three-dimensionally. 3D reconstruction allowed a 'computer-assisted dissection', identifying the precise location and distribution of the pelvic nerve elements. Proximal (supra-levator) and distal (infra-levator) communications between the pudendal nerve and IHP were observed. By determining the nature of the nerve fibres using immunostaining, we were able to demonstrate that the hypogastric nerves and pelvic splanchnic nerves, which are classically considered purely sympathetic and parasympathetic, respectively, contain both adrenergic and cholinergic nerve fibres. The pelvic autonomic nervous system is more complex than previously thought, as adrenergic and cholinergic fibres were found to co-exist in both 'sympathetic' and 'parasympathetic' nerves. This study is the first step to a 3D cartography of neurotransmitter distribution which could help in the selection of molecules to be used in the treatment of incontinence, erectile dysfunction and ejaculatory disorders.  相似文献   

14.
Anatomy of the pelvic plexus and innervation of the prostate gland   总被引:2,自引:0,他引:2  
We have examined the anatomy of the pelvic (inferior hypogastric) plexus in six male cadavers, paying particular attention to gross anatomical landmarks that might aid in locating it and have used immunohistochemistry to study the small branches of the plexus that supply the prostate gland. The pelvic plexus was found two finger breadths lateral to the third anterior sacral foramina, lying deep to a line drawn from third sacral vertebra, the conventional level of the recto-sigmoid junction, and the palpable posterior superior surface of the pubic symphysis. Immunohistochemical staining showed small nerve branches from the pelvic plexus entering the prostate gland and the presence of ganglia within the prostate gland that contained both tyrosine hydroxylase positive and negative neuronal cell bodies. This information may be useful in nerve-sparing surgical procedures and in discussions of the functional implications of perturbations of prostate innervation.  相似文献   

15.
Summary The adrenergic innervation of the pelvic viscera was examined by the fluorescence histochemical technique, applied to tissue from untreated guinea-pigs and from guinea-pigs in which nerve pathways had been interrupted at operation. It was found that adrenergic neurons in the inferior mesenteric ganglia give rise to axons which run in the colonic nerves and end in the myenteric and submucous plexuses and around the arteries of the distal colon. In the rectum, part of the innervation of the myenteric plexus and all of the innervation of the submucous plexus comes from the inferior mesenteric ganglia. The rest of the adrenergic innervation of the myenteric plexus comes from the posterior pelvic ganglia or the sacral sympathetic chains. The innervation of the blood vessels of the rectum is from the posterior pelvic ganglia. Adrenergic nerves run from the sacral sympathetic chains and pass via nerves accompanying the rectal arteries to the internal anal sphincter. Other adrenergic fibres to the internal anal sphincter either arise in, or pass through, the posterior pelvic plexuses. The anal accessory muscle is innervated by adrenergic axons arising in the posterior pelvic plexuses. Adrenergic nerves which run in the pudendal nerves, probably from the sacral sympathetic chains, innervate the erectile tissue of the penis.This work was supported by grants from the Australian Research Grants Committee and the National Health and Medical Research Council. We thank Professor G. Burnstock for his generous support.  相似文献   

16.
Nerve fibers contributing to the superior hypogastric plexus (SHP) and the hypogastric nerves (HN) are currently considered to comprise an adrenergic part of the autonomic nervous system located between vertebrae (T1 and L2), with cholinergic aspects originating from the second to fourth sacral spinal segments (S2, S3 and S4). The aim of this study was to identify the origin and the nature of the nerve fibers within the SHP and the HN, especially the cholinergic fibers, using computer-assisted anatomic dissection (CAAD). Serial histological sections were performed at the level of the lumbar spine and pelvis in five human fetuses between 14 and 30 weeks of gestation. Sections were treated with histological staining [hematoxylin-eosin (HE) and Masson''s trichrome (TriM)] and with immunohistochemical methods to detect nerve fibers (anti-S100), adrenergic fibers (anti-TH), cholinergic fibers (anti-VAChT) and nitrergic fibers (anti-nNOS). The sections were then digitalized using a high-resolution scanner and the 3D images were reconstructed using winsurf software. These experiments revealed the coexistence of adrenergic and cholinergic fibers within the SHP and the HNs. One-third of these cholinergic fibers were nitrergic fibers [anti-VACHT (+)/anti-NOS (+)] and potentially pro-erectile, while the others were non-nitrergic [anti-VACHT (+)/anti-NOS (−)]. We found these cholinergic fibers arose from the lumbar nerve roots. This study described the nature of the SHP nerve fibers which gives a better understanding of the urinary and sexual dysfunctions after surgical injuries.  相似文献   

17.
Summary The organs of the lower abdominal and pelvic regions of the guinea-pig receive nerves from the inferior mesenteric ganglia and pelvic plexuses. The inferior mesenteric ganglia connect with the sympathetic chains, the superior mesenteric ganglia, the pelvic plexuses via the hypogastric nerves, and with the gut. Each pelvic plexus consists of anterior and posterior parts which send filaments to the internal generative organs and to the rectum, internal anal sphincter and other pelvic organs. The pelvic nerves enter the posterior plexuses, which also receive rami from the sacral sympathetic chains. The adrenergic neurons of the pelvic plexuses are monopolar, do not have dendrites and are supplied by few varicose adrenergic axons. Nearly all the nerves contain adrenergic fibres. After exposure to formaldehyde vapour the chromaffin cells appear brightly fluorescent with one or two long, often varicose, processes. Most of the chromaffin cells are in Zuckerkandl's organ or in chromaffin bodies associated with the inferior mesenteric ganglia. Groups of chromaffin cells are found along the hypogastric nerves and in the pelvic plexuses; they become smaller and fewer as regions more posterior to Zuckerkandl's organ are approached.This work was supported by grants from the Australian Research Grants Committee and the National Health and Medical Research Council. We thank Professor G. Burnstock for his generous support.  相似文献   

18.
Innervation of external urethral sphincter muscle was examined in 100 human fetuses and 10 adults of both sexes. Examined nerves take place from deep perineal nerve (branch of pudendal nerve) and, probably, from pelvic splanchnic nerves (via inferior hypogastric plexus). However, this supposition needs further microscopic research. It is also concluded that pelvic splanchnic nerves and pudendal nerve arise from the same ventral branches of spinal nerves (S2-S4).  相似文献   

19.
Summary A topographical study concerning the autonomic nerves in the pelvis of human fetuses was performed by investigating 300–600 m thick sections through fetal pelves, impregnated with the epoxy resin E 12 and cut with a diamond wire-saw. In addition the inferior hypogastric plexus of a 26-week old male fetus was dissected by lateral approach. In 21–29-week old fetuses the pelvic autonomic nerves are relatively thick. Thus the nerves stand out well against surrounding structures and their topographical relationships can exactly be determined. The inferior hypogastric plexus of 21–29-week old fetuses is situated on a curved line between the rectum and the ventrally adjacent structure. It constitutes a rectangular plate, which cannot be subdivided into individual plexuses for the different pelvic organs. The fetal plexus is heavily ganglionated. Large ganglia, forming the so-called ganglion of Frankenhaeuser, are found in the female as well as in the male fetus. In the fetal pelvis the connective tissue compartments are still clearly arranged, because adipose tissue is not yet abundant. The greater part of the inferior hypogastric plexus is situated exactly at the border between a dense visceral tissue medially and a loose parietal tissue laterally. The plexus does not share a common connective tissue cover with the pelvic blood vessels. In fetuses the inferior hypogastric plexus lies in close vicinity to serveral organs, but the pelvic floor is the only region where the nerves can hardly be separated from the surrounding structures.  相似文献   

20.
上腹下丛和腹下神经的临床解剖学   总被引:1,自引:1,他引:0  
Mile’s术损伤上腹下丛和腹下神经将导致男性性功能障碍。为此,在23具成人男性尸体上观察测量了上腹下丛和腹下神经的形态、位置以及与输尿管的关系,并根据解剖学特点讨论了手术保护应注意的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号