首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impaired α7 nicotinic acetylcholine receptor (nAChR) function and GABAergic transmission in the hippocampus and elevated brain levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the kynurenine pathway, are key features of schizophrenia. KYNA acts as a noncompetitive antagonist with respect to agonists at both α7 nAChRs and N-methyl-D-aspartate receptors. Here, we tested the hypothesis that in hippocampal slices tonically active α7 nAChRs control GABAergic transmission to CA1 pyramidal neurons and are sensitive to inhibition by rising levels of KYNA. The α7 nAChR-selective antagonist α-bungarotoxin (α-BGT; 100 nM) and methyllycaconitine (MLA; 10 nM), an antagonist at α7 and other nAChRs, reduced by 51.3 ± 1.3 and 65.2 ± 1.5%, respectively, the frequency of GABAergic postsynaptic currents (PSCs) recorded from CA1 pyramidal neurons. MLA had no effect on miniature GABAergic PSCs. Thus, GABAergic synaptic activity in CA1 pyramidal neurons is maintained, in part, by tonically active α7 nAChRs located on the preterminal region of axons and/or the somatodendritic region of interneurons that synapse onto the neurons under study. L-Kynurenine (20 or 200 μM) or KYNA (20-200 μM) suppressed concentration-dependently the frequency of GABAergic PSCs; the inhibitory effect of 20 μM L-kynurenine had an onset time of approximately 35 min and could not be detected in the presence of 100 nM α-BGT. These results suggest that KYNA levels generated from 20 μM kynurenine inhibit tonically active α7 nAChR-dependent GABAergic transmission to the pyramidal neurons. Disruption of nAChR-dependent GABAergic transmission by mildly elevated levels of KYNA can be an important determinant of the cognitive deficits presented by patients with schizophrenia.  相似文献   

2.
The α(7) nicotinic acetylcholine receptor (nAChR) is a potential therapeutic target for the treatment of cognitive deficits associated with schizophrenia, Alzheimer's disease, Parkinson's disease, and attention-deficit/hyperactivity disorder. Activation of α(7) nAChRs improved sensory gating and cognitive function in animal models and in early clinical trials. Here we describe the novel highly selective α(7) nAChR positive allosteric modulator, 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942). This compound enhances the choline-evoked rise in intracellular Ca(2+) levels in the GH4C1 cell line expressing the cloned human α(7) nAChR. JNJ-1930942 does not act on α4β2, α3β4 nAChRs or on the related 5-HT3A channel. Electrophysiological assessment in the GH4C1 cell line shows that JNJ-1930942 increases the peak and net charge response to choline, acetylcholine, and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (PNU-282987). The potentiation is obtained mainly by affecting the receptor desensitization characteristics, leaving activation and deactivation kinetics as well as recovery from desensitization relatively unchanged. Choline efficacy is increased over its full concentration response range, and choline potency is increased more than 10-fold. The potentiating effect is α(7) channel-dependent, because it is blocked by the α(7) antagonist methyllycaconitine. Moreover, in hippocampal slices, JNJ-1930942 enhances neurotransmission at hippocampal dentate gyrus synapses and facilitates the induction of long-term potentiation of electrically evoked synaptic responses in the dentate gyrus. In vivo, JNJ-1930942 reverses a genetically based auditory gating deficit in DBA/2 mice. JNJ-1930942 will be a useful tool to study the therapeutic potential of α(7) nAChR potentiation in central nervous system disorders in which a deficit in α(7) nAChR neurotransmission is hypothesized to be involved.  相似文献   

3.
In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of L-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2-7 h) of rat hippocampal slices with kynurenine (200 μM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(-)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 μM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-D-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 μM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA.  相似文献   

4.
Ionotropic GABA(A) receptors (GABA(A)Rs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABA(A)Rs. We used Xenopus laevis oocytes to investigate the 6' position in the second transmembrane region of GABA(A)Rs as a site influencing alcohol inhibition. We asked whether modification of the 6' position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6' position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6' position. We verified a role for the 6' position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABA(A)Rs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABA(A)R homolog, revealing that the 6' position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6' positions in both α2 and β2 GABA(A)R subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels.  相似文献   

5.
6.
The present study was designed to investigate the effects of Pb(2+) on modulation of synaptic transmission by nicotinic receptors (nAChRs) in the rat hippocampus. To this end, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded by means of the whole-cell mode of the patch-clamp technique from rat hippocampal neurons in culture. Acetylcholine (ACh, 1 mM; 1-s pulses) triggered GABA release via activation of alpha4beta2* and alpha7* nAChRs. It also triggered glutamate release via activation of alpha7* nAChRs. Pb(2+) (0.1 and 1 microM) blocked ACh-triggered transmitter release. Blockade by Pb(2+) of ACh-triggered IPSCs was partially reversible upon washing of the neurons. In contrast, even after 30- to 60-min washing, there was no reversibility of Pb(2+)-induced blockade of ACh-triggered EPSCs. The effects of Pb(2+) on GABA release triggered by activation of alpha7* and alpha4beta2* nACRs were mimicked by the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (1 microM) and blocked by the indolocarbazole Go 7874 (50 nM) and the bisindolylmaleimide Ro-31-8425 (150 nM), which are selective PKC inhibitors. After washing of fully functional neuronal networks that had been exposed for 5 min to Pb(2+), the irreversible inhibition by Pb(2+) of ACh-triggered glutamate release was partially overridden by a disinhibitory mechanism that is likely to involve alpha4beta2* nAChR activation in interneurons that synapse onto other interneurons synapsing onto pyramidal neurons. Long-lasting inhibition of alpha7* nAChR modulation of synaptic transmission may contribute to the persistent cognitive impairment that results from childhood Pb(2+) intoxication.  相似文献   

7.
目的:研究康复训练对急性大脑中动脉闭塞大鼠海马CA3区长时程增强(LTP)效应的影响。方法:48只Wistar大鼠采用Longa颈外动脉线栓法制备成大鼠大脑中动脉闭塞模型,并随机分为训练组和对照组,训练组每天进行1 h滚筒、平衡木、转棒及网屏训练。于造摸后3、、7、14及21d时2组分别各取6只大鼠进行行为学评分,利用电生理学方法研究大鼠海马CA3区LTP现象的变化。结果:训练14及21d时,训练组大鼠高频电刺激群体峰电位(PS)增幅比同时点对照组明显增强(P<0.05、0.01);训练组自身21d时与3、7、14d时比较PS增幅明显增强。结论:康复训练能促进大鼠急性脑梗死后海马CA3区突触重塑,从而改善其学习与记忆功能。  相似文献   

8.
We assessed the effects of antagonists selective for mu (mu), delta (delta) or kappa (kappa) opioid receptors on the induction of long-term potentiation (LTP) and short-term potentiation (STP) at the rat hippocampal mossy fiber-CA3 synapse in vivo. The mu opioid receptor-selective antagonist Cys2,Tyr3,Orn5,Pen7 amide (CTOP, 1 or 3 nmol) did not alter either mossy fiber-CA3 responses evoked at low frequencies or previously potentiated mossy fiber-CA3 responses, but it attenuated the induction of mossy fiber LTP in a dose-dependent manner. By contrast, LTP of CA3 responses evoked by stimulation of commissural afferents to the CA3 region was unaffected by CTOP. Neither the delta opioid receptor-selective antagonist naltrindole hydrochloride (0.3-10 nmol) or the kappa opioid receptor-selective antagonist nor-binaltorphimine hydrochloride (3-10 nmol) altered the induction of mossy fiber LTP. Thus, a role for delta or kappa opioid receptors in the induction of mossy fiber LTP could not be demonstrated. CTOP, in quantities that attenuated mossy fiber LTP induction, also attenuated the magnitude of mossy fiber STP measured 5 sec after delivery of conditioning trains. Further examination of the component of STP corresponding to post-tetanic potentiation (PTP) revealed that CTOP selectively attenuated the estimated magnitude and time constant of decay of mossy fiber PTP. These results suggest that the frequency-dependent activation of mu opioid receptors by endogenous opioid peptides is required for the induction of LTP at hippocampal mossy fiber synapses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Phenytoin (10-100 microM) was studied on excitatory synaptic transmission and post-tetanic potentiation (PTP) in the in vitro rat hippocampus. Synaptic potentials were studied using extracellular, intracellular and single-electrode voltage clamp techniques. Field excitatory postsynaptic potentials were recorded from the apical dendrites of CA1 pyramidal cells after Schaffer collateral stimulation. Intracellularly recorded excitatory postsynaptic potentials and excitatory postsynaptic currents were recorded in CA3 pyramidal cells after mossy fiber stimulation and in the presence of 10 microM picrotoxinin. In the CA1 region, phenytoin elicited a reversible depression of field excitatory postsynaptic potentials as well as reduced the time constant of decay of PTP from 79 sec to 47 sec with no change in the magnitude of potentiation. Higher concentrations of phenytoin (100 microM) had a general depressant effect on both the amplitude and time course of PTP. In CA3 cells, phenytoin (10 microM) reduced the mossy fiber synaptic conductance but did not change its reversal potential. Phenytoin (10 microM) also reduced the time constant of decay of PTP of the mossy fiber to CA3 synapse, while having no effect on the magnitude of potentiation. These results show that therapeutically relevant concentrations of phenytoin depress both low-frequency synaptic transmission and the time course of short-term potentiation. Both actions may be involved in the anticonvulsant properties of phenytoin.  相似文献   

10.
Many studies have demonstrated that ethanol reduces glutamatergic synaptic transmission primarily by inhibiting the N-methyl-D-aspartate subtype of glutamate receptor. In contrast, the other two subtypes of ionotropic glutamate receptor (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate) have generally been shown to be insensitive to intoxicating concentrations of ethanol. However, we have previously identified a population of kainate receptors that mediate slow excitatory postsynaptic currents in the rat hippocampal CA3 pyramidal cell region that is potently inhibited by low concentrations of ethanol. In this study, we examined the effect of ethanol on kainate receptor-mediated inhibition of evoked GABA(A) inhibitory postsynaptic currents (IPSCs) in the rat hippocampal CA1 pyramidal cell region. Under our recording conditions, bath application of 1 microM kainate significantly inhibited GABA(A) IPSCs. This inhibition seemed to be mediated by the activation of somatodendritic kainate receptors on GABAergic interneurons and the subsequent activation of metabotropic GABA(B) receptors, because the kainate inhibition was largely blocked by pretreating slices with a GABA(B) receptor antagonist. Ethanol pretreatment significantly antagonized the inhibitory effect of kainate on GABA(A) IPSCs, at concentrations as low as 20 mM. In contrast, ethanol did not block the direct inhibitory effect of a GABA(B) receptor agonist on GABA(A) IPSCs. The results of this study suggest that modest concentrations of ethanol may antagonize presynaptic, as well as postsynaptic, kainate receptor function in the rat hippocampus.  相似文献   

11.
运动康复对脑梗死大鼠学习记忆能力和LTP的影响   总被引:6,自引:2,他引:6  
目的 探讨运动康复对脑梗死大鼠学习记忆能力和习得性LTP的影响。方法 采用脑梗死动物模型 ,应用慢性埋植电极技术以电生理结合行为的方法 ,记录康复训练组和模型组大鼠Y 迷宫分辨学习前、60次训练及学会后在海马CA3 区的突触效应及其行为习得。结果 给予行为训练的康复组大鼠海马CA3区突触效应的习得性LTP的形成速度明显快于不给予任何训练的模型组 (P <0 .0 5 ) ,相应的Y 迷宫分辨学习的习得也明显强于模型组 (P <0 .0 5 )。结论 康复训练可加快海马CA3 区习得性LTP的形成 ,提高学习效率  相似文献   

12.
背景大鼠海马CA1区长时程增强(long-term potentiation,LTP)作为学习记忆的细胞模型逐渐被认可,但其可能机制及其与病理改变关系明确报道尚较少.目的观察四血管阻断大鼠海马CA1区LTP的变化,并探讨其可能机制.设计随机对照的实验研究.地点、材料和干预本实验在解放军第三军医大学大坪医院野战外科研究所动物实验中心完成.实验选用老龄健康Wistar大鼠60只.按随机数字表法分为对照组和模型组.每组分3个时相点2周、4周、2个月,每时相点大鼠10只.用改良Pulsinelli's四血管阻断法建立血管性痴呆大鼠模型;采用电脑控制的穿梭箱系统检测大鼠学习记忆;离体海马脑片诱导的CA1区LTP检测大鼠学习记忆电生理改变;透射电镜观察大鼠海马CA1区的超微结构改变.主要观察指标主动回避反应(AAR)、LTP检测,海马CA1区超微观察.结果脑缺血组大鼠AAR在2周时较对照组显著下降(P<0.05),4周和2月时更加明显(P<0.01).对照组海马脑片可明显诱出LTP波形,脑缺血组各时相点均几乎诱不出LTP,条件刺激前后fEPSP斜率变化的百分数与对照组比较差别明显(P<0.05);但各时相点间无明显差别.脑缺血组海马CA1区神经元细胞核固缩,线粒体肿胀、颗粒减少、电子密度增高,轴突脱髓鞘,次级溶酶体形成,高尔基复合体扩张空泡、神经毡空泡等慢性缺血缺氧改变.结论海马脑片CA1区LTP检测能够客观地反映大鼠短时记忆损害,是可靠的学习记忆细胞模型.  相似文献   

13.
目的观察四血管阻断(four-vesselocculusion,4VO)大鼠海马N-甲基-D-天冬氨酸受体(N-methyl-D-aspartatereceptor,NMDAR)的变化规律,探讨其在血管性痴呆(vasculardementia,VD)形成中的作用机制。方法改良的Pulsinelli's4VO法建立大鼠VD模型;电脑控制的穿梭箱系统和离体海马脑片诱导的CA1区长时程增强(long-termpotentia-tion,LTP)检测大鼠学习记忆;原位杂交方法检测大鼠海马NM-DAR1mRNA的表达。结果VD组大鼠的主动回避反应(activeavoidanceresponse,AAR)在2周时较对照组显著下降(P<0.05),4周和2个月时更加明显(P<0.01),海马脑片LTP的诱导出现明显障碍;VD组2周时CA1和CA3区NMDAR1mRNA表达较对照组增高,DG区无明显改变;4周和2个月时海马各区表达均减低。结论大鼠海马区NMDAR与学习记忆有关,在脑缺血的早期表达增高介导了兴奋毒性作用;但在缺血后期,NMDARmRNA表达减低可能与学习记忆损害有关,为进一步进行NMDAR拮抗剂和激动剂治疗VD的研究提供了实验依据。  相似文献   

14.
Long-term potentiation (LTP), a model of activity-dependent synaptic plasticity, involves the persistent enhancement of excitatory neurotransmission. Several recent studies have suggested a critical role for nitric oxide (NO) production in hippocampal LTP. However, increase in NO production in living tissue has not yet been directly demonstrated. We used 1,2-diaminoanthraquinone (DAQ) to demonstrate NO production in rat brain slices in relation to induction of LTP. DAQ was found to be without neurotoxic effects and it neither influenced normal evoked field potential amplitudes nor did it affect induction of LTP in comparison to controls. We found that DAQ-induced fluorescence is elevated within a limited area of about 40,000 microm(2) during LTP induction in the hippocampal area CA1. Furthermore, we could demonstrate that application of the NO-synthetase inhibitor l-NAME inhibits the induction of LTP in area CA1 and causes a strong reduction of DAQ induced fluorescence. Our results are consistent with the hypothesis that NO can serve as a retrograde messenger during induction of LTP in the hippocampus.  相似文献   

15.
运动训练对血管性痴呆大鼠认知障碍及长时程增强的影响   总被引:1,自引:0,他引:1  
目的:探讨运动训练对大鼠空间学习、记忆能力和长时程增强(LTP)的影响。方法:选用Wistar雄性大鼠随机分成对照组5只,血管性痴呆组10只,血管性痴呆+运动训练组10只。用电生理学方法检测在体海马CAI区LTP。用Morris水迷宫评价大鼠学习记忆能力。结果:血管性痴呆组大鼠水迷宫逃避潜伏期明显延长.血管性痴呆+运动训练组大鼠较血管性痴呆组大鼠水迷宫隐匿平台逃避潜伏期缩短,但仍长于对照组(P〈0.05)。血管性痴呆组大鼠LTP诱导明显受到抑制,血管性痴呆+运动训练组大鼠较血管性痴呆组大鼠LTP诱导明显改善.但仍比对照组差(P〈0.05)。结论:血管性痴呆大鼠学习记忆能力降低,LTP诱导障碍,运动训练可提高大鼠空间学习、记忆能力,增强LTP的形成.  相似文献   

16.
慢性应激对大鼠海马长时程增强和氨基酸神经递质的影响   总被引:1,自引:0,他引:1  
背景:严重或持久的应激是很多身心疾病的诱发因素,明显损害机体的认知功能。目的:观察应激状态下海马氨基酸的变化及慢性应激对大鼠海马长时程增强的影响。设计:完全随机对照动物实验。单位:汕头大学精神卫生中心。材料:实验于2000-12在汕头大学医学院完成。实验动物为SD成年雄性大鼠16只,随机分为对照组和应激组,每组8只。方法:应激组强迫游泳4周建立慢性应激模型,采用离体海马脑片(500μm)结合电生理的方法观测海马CA1区长时程增强的变化。在海马CA3区Schaffer侧支施加高频刺激后,观察CA1区锥体神经元群体峰电位幅值和场兴奋性突触后电位斜率的改变。应用高效液相色谱紫外检测法对海马氨基酸神经递质进行定量分析。主要观察指标:①以群体峰电位的幅值和场兴奋性突触后电位的斜率作为观察长时程增强变化的指标。②海马氨基酸含量变化。结果:实验第2周应激组大鼠溺水死亡1只,给予补充,其余全部进入结果分析。①对照组的群体峰电位幅值和场兴奋性突触后电位斜率在高频刺激后增大的幅度明显高于应激组(P<0.05)。②对照组天冬氨酸和谷氨酸的水平明显低于应激组,[(2.425±0.211),(4.746±0.609)μmol/g,P<0.01];[(6.016±0.677)(8.094±1.035)μmol/g,P<0.01],而两组间γ-氨基丁酸的含量接近,差异无显著性[(4.229±0.449),(4.249±0.463)μmol/g,P>0.05]。结论:慢性应激抑制海马CA1区长时程增强的形成,提高海马组织天冬氨酸和谷氨酸的水平,而对γ-氨基丁酸的含量没有影响。慢性应激所引起的海马兴奋性氨基酸的堆积可能是学习和记忆能力损害的神经生化基础。  相似文献   

17.
A recently developed alpha-conotoxin, alpha-conotoxin Arenatus IB-[V11L,V16D] (alpha-CtxArIB[V11L,V16D]) [corrected], is a potent and selective competitive antagonist at rat recombinant alpha7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. alpha7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues, where they are implicated in a variety of functions. In this study, we evaluate this toxin at rat and human native nAChRs. Functional alpha7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea] in rat PC12 cells and human SH-SY5Y cells loaded with calcium indicators. alpha-CtxArIB[V11L,V16D] specifically inhibited alpha7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli, 5-I-A-85380 [5-iodo-3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride], nicotine, or KCl, that did not activate alpha7 nAChRs were unaffected. Human alpha7 nAChRs were also sensitive to alpha-CtxArIB[V11L, V16D]; acetylcholine-evoked currents in Xenopus laevis oocytes expressing human alpha7 nAChRs were inhibited by alpha-CtxArIB[V11L,V16D] (IC(50), 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the time course of recovery from blockade of rat alpha7 nAChRs in PC12 cells. alpha-CtxArIB[V11L,V16D] inhibited human native alpha7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 [(2)-spiro[1-azabicyclo[2.2.2]octane-3,59-oxazolidin]-29-one] plus PNU-120596. Rat brain alpha7 nAChRs contribute to dopamine release from striatal minces; alpha-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that alpha-CtxArIB[V11L,V16D] selectively inhibits human and rat native alpha7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating alpha7 nAChR functions.  相似文献   

18.
Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8–11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.  相似文献   

19.
We tested the hypothesis that differential sensitivity to ethanol of synaptic GABA(A) somatic and dendritic inhibitory postsynaptic currents (IPSCs) in hippocampal CA1 pyramidal neurons could be due to differences in the extent of GABA(B) receptor activity at GABAergic synapses in these two hippocampal subfields. Our present results show that dendritic (distally evoked) GABA IPSCs contain a larger GABA(B) IPSC component of the total GABA IPSC than the somatic (proximally evoked) subfield. The inhibition of GABA(B) receptors by pretreatment of hippocampal slices with CGP-52432 [3[[(3,4-dichlorophenyl)methyl]amino]propyl](diethoxymethyl) phosphinic acid], a selective GABA(B) receptor antagonist, changes the basal ethanol-insensitive, distally evoked GABA(A) IPSCs to become more sensitive to ethanol. In addition, paired-pulse stimulation of the proximal and distal subfields of hippocampal pyramidal neurons shows that ethanol alone increases the probability of GABA release at proximal but not distal regions. Changes by ethanol on the probability of GABA release are only seen at distal locations during GABA(B) blockade. Finally, when the modulation of presynaptic GABA(B) receptors is minimized by the local application of 10 mM GABA directly onto somatic or dendritic GABAergic synaptic regions, postsynaptic GABA(B) receptors seem to exert significant negative (inhibiting) influence on the effects of ethanol on GABA(A) IPSCs in the distal subfields of CA1 pyramidal neurons. Together, our data suggest that differences in both presynaptic and postsynaptic GABA(B) receptor activity at these GABAergic synapses may modulate the differential ethanol sensitivity of proximal and distal GABA IPSCs(A) in hippocampal CA1 pyramidal neurons.  相似文献   

20.
Ethanol intoxication results partly from actions of ethanol at specific ligand-gated ion channels. One such channel is the GABA(A) receptor complex, although ethanol's effects on GABA(A) receptors are variable. For example, we found that hippocampal neurons from selectively bred mice and rats with high hypnotic sensitivity to ethanol have increased GABA(A) receptor-mediated synaptic responses during acute ethanol treatment compared with mice and rats that display low behavioral sensitivity to ethanol. Here we investigate whether specific protein kinase C (PKC) isozymes modulate hypnotic and GABA(A) receptor sensitivity to ethanol. We examined acute effects of ethanol on GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) in mice lacking either PKCgamma (PKCgamma(-/-)) or PKCepsilon (PKCepsilon(-/-)) isozymes and compared the results to those from corresponding wild-type littermates (PKCgamma(+/+) and PKCepsilon(+/+)). GABA(A) receptor-mediated IPSCs were evoked in CA1 pyramidal neurons by electrical stimulation in stratum pyramidale, and the responses were recorded in voltage-clamp mode using whole-cell patch recording techniques. Ethanol (80 mM) enhanced the IPSC response amplitude and area in PKCgamma(+/+) mice, but not in the PKCgamma(-/-) mice. In contrast, ethanol markedly potentiated IPSCs in the PKCepsilon(-/-) mice, but not in PKCepsilon(+/+) littermates. There was a positive correlation between ethanol potentiation of IPSCs and the ethanol-induced loss of righting reflex such that mice with larger ethanol-induced increases in GABA(A) receptor-mediated IPSCs also had higher hypnotic sensitivity to ethanol. These results suggest that PKCgamma and PKCepsilon signaling pathways reciprocally modulate both ethanol enhancement of GABA(A) receptor function and hypnotic sensitivity to ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号