首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine whether continuous infusion of cardioplegia retrograde through the coronary sinus could improve the salvage of infarcting myocardium, 54 pigs were utilized in a region at risk model. All hearts underwent 30 minutes of reversible coronary artery occlusion, and were divided into six groups. Group 1 served as controls and underwent two hours of coronary reflow without global ischemic arrest. The remaining five groups were subjected to 45 minutes of cardioplegia-induced hypothermic arrest followed by two hours of normothermic reflow. Group 2 had a single infusion of crystalloid cardioplegia, and Group 3 received an oxygenated perfluorocarbon cardioplegic solution initially and again after 20 minutes of ischemia. After initial cardiac arrest with crystalloid cardioplegia, all hearts in Groups 4, 5, and 6 underwent a continuous infusion of a cardioplegic solution retrograde through the coronary sinus. Group 4 received a nonoxygenated crystalloid cardioplegic solution, Group 5 received an oxygenated crystalloid cardioplegic solution, and Group 6 received an oxygenated perfluorocarbon cardioplegic solution. With results expressed as the percent of infarcted myocardium within the region at risk, Group 2 hearts, which received only antegrade cardioplegia, had a mean infarct size of 44.8 +/- 6.3%, a 2.2-fold increase over controls (p less than 0.05). While antegrade delivery of oxygenated perfluorocarbon cardioplegia (Group 3) and coronary sinus perfusion with nonoxygenated crystalloid cardioplegia (Group 4) limited infarct size to 33.6 +/- 4.7% and 35.3 +/- 5.4%, respectively, only oxygenated cardioplegia delivered retrograde through the coronary sinus (Groups 5 and 6) completely prevented infarct extension during global ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The increased susceptibility of hypertrophied hearts to ischemic injury during cardiac operations has long been recognized. Although the imbalances in oxygen supply and demand which may occur with hypertrophy during hypotension, ventricular fibrillation, or reperfusion have been extensively studied, the biochemical response of hypertrophied myocardium to ischemia has not been fully elucidated. In the present investigation, rat hearts in which hypertrophy was induced by chronic pressure overload were used to examine the relationship of the physiological parameter, ischemic contracture, to high-energy phosphate content and mitochondrial function during global ischemia. Hypertrophied hearts developed ischemic contracture after significantly shorter duration of ischemia than did normal hearts (5.8 +/- 0.3 minutes versus 10.1 +/- 0.7 minutes). High-energy phosphate content was lower in hypertrophied hearts at control and at ischemic contracture initiation and completion than in normal hearts, whereas mitochondrial function was consistently greater in the hypertrophy group. This investigation demonstrates that the hypertrophied myocardium, independent of flow-related events, is more vulnerable to ischemic injury than normal myocardium and suggests that the increased susceptibility may result from lower high-energy phosphate stores present at the onset of ischemia. The results emphasize the need for rapid cardiac arrest with the induction of ischemia in hypertrophied myocardium and suggest the potential for increasing myocardial high-energy phosphate content in the hypertrophied ventricle by interventions such as arrested perfusion with substrate containing oxygenated cardioplegic solutions prior to the onset of planned ischemia.  相似文献   

3.
Ischemic injury to the heart in the period between aortic cross-clamping and administration of cardioplegic solution was evaluated in the normothermic rat heart model. After isolation and control perfusion with oxygenated Krebs-Henseleit bicarbonate buffer, the hearts were given lactated Ringer's cardioplegic solution (30 mEq of K+ per liter) for 2 minutes at three different intervals following aortic clamping: no delay, 2-minute delay, and 5-minute delay. Thereafter, the hearts were left unper-fused and the time to initiation of ischemic contracture was recorded. Adenosine triphosphate (ATP) and creatine phosphate levels were measured in all groups prior to and at the conclusion of cardioplegia administration.A 2-minute delay in the administration of cardioplegic solution resulted in significantly lower (p < 0.001) ATP levels that were restored after 2 minutes of cardioplegia administration. Contracture times were not significantly altered. A 5-minute delay resulted in significantly shorter (p < 0.001) contracture times and significantly lower (p < 0.001) ATP levels that were not restored to preischemic levels by 2 minutes of cardioplegia administration.The fate of the myocardium may be insensitive to events that occur during the earliest moments of ischemia provided that rapid administration of oxygenated potassium cardioplegia follows the ischemic period and restores preischemic high-energy phosphate stores. However, there is a critical ischemic time during the initial interval before cardioplegia that is associated with an impaired ability of the myocardium to tolerate subsequent ischemia.  相似文献   

4.
The protective effect of cardioplegia upon neonatal myocardium during ischemia has not been clearly established. This study evaluated the effects of cardioplegia on left ventricular function in isolated working neonatal rabbit hearts (aged 1 week) subjected to 120 minutes of global ischemia at 28 degrees C. Four groups were studied: Group 1, hypothermia alone; Group 2, intermittent washout with an oxygenated noncardioplegic solution; Group 3, multidose cardioplegia; Group 4, single-dose cardioplegia. After ischemia, cardiac output was reduced to 72% +/- 5% (mean +/- standard error of the mean) of control (p less than 0.02) in Group 1 and to 56% +/- 4% in Group 2 (p less than 0.001). In contrast, there was no significant reduction from baseline cardiac output in those animals receiving cardioplegic solution (Group 3, 93% +/- 6%, and Group 4, 97% +/- 4%). Group 2 hearts demonstrated significantly worse recovery of cardiac output and stroke volume than all other groups. After ischemia, the first derivative of left ventricular pressure fell to 73% +/- 13% of control in Group 1 (p less than 0.1) and to 89% +/- 5% in Group 2 (p less than 0.05). However, the first derivative of left ventricular pressure was restored to control values in Group 3 (118% +/- 11%) and Group 4 (114% +/- 9%). When compared to baseline, creatine kinase was higher 30 minutes after reperfusion in Group 1 (40 +/- 8 versus 143 +/- 32 IU/L/gm, p less than 0.05) and in Group 2 (39 +/- 7 versus 163 +/- 33 IU/L/gm, p less than 0.05). Creatine kinase remained unchanged from baseline in Groups 3 and 4. This study demonstrates excellent preservation of left ventricular function in the neonatal rabbit heart protected with cardioplegic solution. In contrast, neither hypothermia alone nor intermittent washout with an oxygenated noncardioplegic solution was effective in preventing myocardial dysfunction. As in adults, the administration of cardioplegic solution preserves ventricular function during ischemia in neonatal hearts.  相似文献   

5.
Multidose administration of cardioplegic solution during cardiac operation is intended to maintain both electromechanical arrest of the heart and myocardial hypothermia as well as to remove accumulated metabolites of anaerobic glycolysis. This study was conducted to assess the effect of multidose infusion of three different types of cardioplegic solution on tissue acidosis during global myocardial ischemia. Three groups of five dogs each were placed on cardiopulmonary bypass and the aorta was cross-clamped for 3 hours. The hearts were maintained at a constant temperature (20 degrees C) and cardioplegic solution was infused at an initial dose of 500 ml and five supplementary doses of 250 ml administered every 30 minutes. Group 1 received a crystalloid solution weakly buffered with sodium bicarbonate, Group 2 received a blood-based solution, and Group 3 received a crystalloid solution strongly buffered with histidine (Bretschneider's solution). The buffering capacities of the solutions used in Groups 2 and 3 were 40 and 60 times, respectively, that of the solution used in Group 1. The average myocardial tissue pH at the end of 3 hours of ischemia was 6.54 +/- 0.07 in Group 1, 7.23 +/- 0.05 in Group 2, and 7.19 +/- 0.06 in Group 3 (Group 1 significantly lower than Groups 2 and 3). Multidose infusion of a cardioplegic solution with low buffering capacity was unable to prevent the progressive development of tissue acidosis during 3 hours of ischemia. However, the multidose infusion of either blood-based or crystalloid solutions with high buffering capacity completely prevented any further reduction of tissue pH after the first 30 minutes of ischemia.  相似文献   

6.
Experimental study on myocardial preservation with perfluorochemical   总被引:1,自引:0,他引:1  
The effect of perfluorochemical as cardioplegic solution was studied with isolated canine hearts. They were divided into two groups as follows each consisting of ten, and cardioplegia was made every 30 minutes during 3 hours of ischemia. Group I: The solution was oxygenated to PaO2 of 542 +/- 67 mmHg (mean +/- SD). Group II: The solution was deoxygenated to PaO2 of 55 +/- 12 mmHg. Both temperature were 20 degrees C. After 3 hours cardiac arrest, the hearts were fixed to the perfusion unit filled up with the diluted blood. Then hemodynamic and biochemical variables were measured every 30 minutes. There were some significant differences between the groups. Hemodynamic indices especially negative LV max dp/dt were recovered excellently in Group I but not so much in Group II. Negative LV max dp/dt, which was the distinction of the diastole, showed significant difference more than positive LV max dp/dt, which was the distinction of the systole. It was considered that under the same condition, negative LV max dp/dt reflected not only compliance but also preparatory ability of the left ventricle, and it could be one of the important indices evaluating cardiac function. As regarding metabolism, delivery of oxygen with cardioplegic solution was good for the aerobic metabolism also after reperfusion, and in these circumstances, catecholamine was available effectively to the hearts. The conclusion is as follows. It is important for myocardial preservation to suppress the anaerobic metabolism and to keep the circumstances in which catecholamine was available effectively. And oxygenated PFC is good to preserve myocardium and useful as cardioplegic solution.  相似文献   

7.
Inadequate delivery of cardioplegic solution distal to coronary artery stenosis may result in increased injury during ischemic arrest. This study was performed to determine the effects of cardioplegic perfusion pressure on cardioplegia delivery and myocardial preservation in hearts with critical coronary artery stenosis. Twenty dogs underwent 90 minutes of cold potassium cardioplegic arrest with partial occlusion of the circumflex coronary artery. Group 1 received cardioplegia at 50 mm Hg pressure, Group 2 at 90 mm Hg pressure, and Group 3 at 130 mm Hg pressure. It was found that cooling rates were 5.4 degrees, 9.1 degrees, and 18.2 degrees C per minute in the nonischemic area (p = 0.004) and 2.0 degrees, 4.5 degrees, and 7.9 degrees C in the ischemic area (p = 0.008) in Groups 1, 2, and 3, respectively. Total of cardioplegic solution flows were 86, 188, and 262 ml per minute per 100 gm in Groups 1, 2, and 3, respectively (p = 0.001). However, flow did not differ significantly between groups in the ischemic area. Rate of rise of left ventricular (LV) pressure decreased significantly in Groups 1 and 2 but not in Group 3 (p = 0.002). Other measured variables did not differ significantly between groups, although LV function curves showed less deterioration in the high-pressure groups. It is concluded that higher cardioplegic perfusion pressure resulted in more rapid cooling in normal and ischemic areas and slightly better preservation of ventricular function as measured by some indexes. However, preservation was generally good for each of the pressures for up to 90 minutes of ischemia when the septum was consistently cooled to 10 degrees C.  相似文献   

8.
The use of an oxygenated crystalloid cardioplegic solution to improve myocardial preservation during elective cardiac arrest was evaluated with the isolated perfused rat heart used as a model. Experiments were conducted at 4 degrees C and 20 degrees C. The oxygen tension of the nonoxygenated and oxygenated cardioplegic solutions averaged 117 and 440 mm Hg, respectively. At 4 degrees C, the adenosine triphosphate content of hearts subjected to 120 minutes of oxygenated cardioplegia was significantly higher than that of the nonoxygenated cardioplegia group. However, functional recovery during reperfusion was similar for both groups. At 20 degrees C, the myocardial adenosine triphosphate concentration decreased at a significantly faster rate during ischemia in the group receiving nonoxygenated cardioplegia compared with the oxygenated cardioplegia group. Hearts subjected to 180 minutes of ischemia with oxygenated cardioplegia had a normal ultrastructural appearance whereas hearts subjected to 120 minutes of nonoxygenated cardioplegia showed severe ischemic damage. Myocardial functional recovery in the group receiving oxygenated cardioplegia exceeded that of the group receiving nonoxygenated cardioplegia. The use of myocardial adenosine triphosphate concentration at the end of the ischemic period to predict subsequent cardiac output, peak systolic pressure, and total myocardial work showed significant positive correlations.  相似文献   

9.
Cold blood with potassium, 34 mEq/L, was compared with cold blood and with a cardioplegic solution. Three groups of 6 dogs had 2 hours of aortic cross-clamp while on total bypass at 28 degrees C with the left ventricle vented. An initial 5-minute coronary perfusion was followed by 2 minutes of perfusion every 15 minutes for the cardioplegic solution (8 degrees C) and every 30 minutes for 3 minutes with cold blood or cold blood with potassium (8 degrees C). Hearts receiving cold blood or cold blood with potassium had topical cardiac hypothermia with crushed ice. Peak systolic pressure, rate of rise of left ventricular pressure, maximum velocity of the contractile element, pressure volume curves, coronary flow, coronary flow distribution, and myocardial uptake of oxygen, lactate, and pyruvate were measured prior to ischemia and 30 minutes after restoration of coronary flow. Myocardial creatine phosphate (CP), adenosine triphosphate (ATP), and adenosine diphosphate (ADP) were determined at the end of ischemia and after recovery. Changes in coronary flow, coronary flow distribution, and myocardial uptake of oxygen and pyruvate were not significant. Peak systolic pressure and lactate uptake declined significantly for hearts perfused with cold blood but not those with cold blood with potassium. ATP and ADP were lowest in hearts perfused with cardioplegic solution, and CP and ATP did not return to control in any group. Heart water increased with the use of cold blood and cardioplegic solution. Myocardial protection with cold blood with potassium and topical hypothermia has some advantages over cold blood and cardioplegic solution.  相似文献   

10.
The value of verapamil hydrochloride as a myocardial preservative when administered prior to or during periods of myocardial ischemia was studied in patients with normal preoperative cardiac function during elective coronary artery bypass grafting. Myocardial protection included systemic hypothermia (28 degrees C) and hypothermic hyperkalemic cardioplegia. Patients were randomly divided into four groups. Group 1 received intravenous administration of verapamil prior to aortic cross-clamping. Group 2 received intravenous verapamil plus verapamil in the cardioplegic solution. Group 3 received verapamil in the cardioplegic solution only. Group 4 was given no verapamil. Oxygen extraction during the reperfusion period was greatest in Group 4. However, the incidence of pacing was 50 to 78% in Groups 2 and 3, who were given verapamil in the cardioplegic solution. These groups also had a greater need for inotropic agents for discontinuation of cardiopulmonary bypass (CPB). This study indicates that verapamil may be a useful pretreatment prior to CPB and ischemia, but is not effective and may even be detrimental when administered during ischemic periods to patients with good myocardial function.  相似文献   

11.
Oxygenated cardioplegic solutions can deliver sufficient oxygen to support aerobic metabolism of heart tissue during cardiac arrest, but little is known about oxygen use after cardioplegic solution infusion. Exhaustion of myocardial oxygen stores after infusion of oxygenated crystalloid cardioplegic solution or Krebs-Henseleit buffer was measured in rat hearts. Since nicotinamide adenine dinucleotide accumulates when mitochondria become anaerobic, the epicardium was monitored during perfusion and ischemia. As ischemia progressed, nicotinamide adenine dinucleotide fluorescence increased, indicating exhaustion of oxygen. After buffer perfusion, at 37 degrees C, 50% of peak fluorescence was seen at 13 +/- 1 seconds and 90% at 37 +/- 3 seconds. Oxygenated cardioplegic solution increased these intervals to 57 +/- 6 and 114 +/- 9 seconds, respectively. Oxygenated cardioplegic solution at 10 degrees C increased the time to 50% fluorescence to 238 +/- 12 seconds and to 90% to 320 +/- 14 seconds. Differences between buffer and cardioplegic solution were less at 10 degrees C. Aerobic metabolism was completely abolished 6 minutes after infusion of 10 degrees C oxygenated cardioplegic solution. Maintenance of continuous aerobic metabolism during surgical cardiac arrest would require frequent administration of oxygenated crystalloid cardioplegic solution.  相似文献   

12.
This study was designed to test the effect of glucose and a formulation enriched with branched chain amino acids as additives to oxygenated crystalloid cardioplegic solution in the ischemic heart. Energy-depleted isolated working rat hearts were subjected to 68 minutes of normothermic global ischemia during which oxygenated cardioplegic solution was used to protect them. The hearts were then reperfused in the nonworking mode for 10 minutes and for a further 30 minutes in the working mode. The hearts were randomly divided into three groups, in which various oxygenated cardioplegic solutions were perfused. Group 1 (control) was subjected to modified St. Thomas' Hospital cardioplegic solution and groups 2 and 3 to the same solution with the addition of glucose (11.1 mmol/L) and glucose (11.1 mmol/L) and branched chain amino acids, respectively. Recovery of aortic flow, coronary flow, cardiac output, aortic pressure, adenosine triphosphate, creatine phosphate, and oxygen consumption was significantly better in group 2 than in group 1. In addition, recovery of aortic flow, coronary flow, cardiac output, aortic pressure, stroke volume, minute work, adenosine triphosphate, and creatine phosphate was found to be significantly enhanced in group 3. Release of adenine catabolites and lactic dehydrogenase from these hearts during postischemic reperfusion was significantly decreased. Thus, during global ischemia in the energy-depleted heart, the presence of glucose and branched chain amino acids in oxygenated crystalloid cardioplegic solution enhanced myocardial protection.  相似文献   

13.
Twenty-four pigs were studied to assess the effect of potassium in a cardioplegic solution on the ability of the swine myocardium to maintain functional and metabolic integrity following induced ischemia. The pigs were evaluated on total and right heart bypass with measurement at normothermia and after a one-hour intervention of stroke volume (SV), coronary blood flow (CBF), myocardial oxygen consumption (MVO2), and lactate extraction. Myocardial tissue gases (PmO2 and PmCO2) were continuously monitored and, at the conclusion of the procedure tissues were analyzed for adenosine triphosphate (ATP). There were five interventions: (1) hypothermic perfusion (28 degrees C) (Group 1); (2) hypothermic ischemia (28 degrees C) (Group 2); and hypothermic ischemia with a cardioplegic solution (nonlactated Ringer's solution, pH 7.4, 4 degrees C) using (3) normokalemia (4 mEq of potassium chloride/L, 300 mOsm/L (Group 3), (4) hyperkalemia (43 mEq of KCl/L, 390 mOsm/L) (Group 4), and (5) normokalemia with increased osmolarity (3.6 mEq of KCl/L, 400 mOsm/L) (Groups 5). A significant decrease in SV and elevation in peak PmCO2 were seen in all groups subjected to ischemia except those protected with hyperkalemic solution. We conclude that the presence of hyperkalemia in a cold root perfusion solution provides better myocardial protection than cold root perfusion alone. Furthermore, potassium arrest appears to be more protective than coronary perfusion at 28 degrees C.  相似文献   

14.
We hypothesized that by inducing ventricular fibrillation (VF) prior to cardioplegic arrest in nonvented hypertrophied hearts of pigs, the metabolic characteristics of the epicardial and endocardial regions would be compromised compared with animals in which cardioplegic solution was infused while the hearts were in normal sinus rhythm (NSR). These abnormalities would be reflected not only in greater deterioration of myocardial metabolism after reperfusion in the VF group, but they would also be more pronounced in the subendocardial layers of hypertrophied left ventricles. Results obtained in hypothermic hearts (28 degrees C) maintained at 8 degrees to 12 degrees C during cardioplegic arrest demonstrated no major consistent differences in the stores of glycogen, creatine phosphate, adenine nucleotides, and lactate in both groups of hearts, for either layer of the left ventricular myocardium. The only significant difference was slightly lower creatine kinase content in the VF hearts than in the NSR group. It is concluded that induction of VF in hypothermic (28 degrees C), nonvented, hypertrophied hearts prior to infusion of cardioplegic solution does not affect myocardial energy stores compared with hearts in NSR, provided that the period of VF prior to clamping is short (3 minutes) and that the myocardial temperature is lowered to 28 degrees C prior to VF and is maintained at 8 degrees to 12 degrees C during cardioplegic arrest.  相似文献   

15.
The effect of the calcium and oxygen contents of a hyperkalemic glucose-containing cardioplegic solution on myocardial preservation was examined in the isolated working rat heart. The cardioplegic solution was delivered at 4 degrees C every 15 minutes during 2 hours of arrest, maintaining a myocardial temperature of 8 degrees +/- 2 degrees C. Hearts were reperfused in the Langendorff mode for 15 minutes and then resumed the working mode for a further 30 minutes. Groups of hearts were given the oxygenated cardioplegic solution containing an ionized calcium concentration of 0, 0.25, 0.75, or 1.25 mmol/L or the same solution nitrogenated to reduce the oxygen content and containing 0 or 0.75 mmol ionized calcium per liter. The myocardial adenosine triphosphate concentrations at the end of arrest in these six groups of hearts were 15.6 +/- 1.2, 9.5 +/- 0.5, 8.2 +/- 1.1, 4.9 +/- 1.8, 10.1 +/- 2.0, and 1.6 +/- 0.4 nmol/mg dry weight, respectively. At 5 minutes of working reperfusion, the percentages of prearrest aortic flow were 80 +/- 2, 62 +/- 4, 33 +/- 6, 37 +/- 5, 48 +/- 7 and 46 +/- 8, respectively. The differences among the groups in adenosine triphosphate concentrations and in functional recovery diminished during reperfusion. In hearts given the hypoxic calcium-containing solution, there was a marked increase in coronary vascular resistance during the administration of successive doses of cardioplegic solution, which was rapidly reversible upon reperfusion. These data indicate that hearts given the acalcemic oxygenated solution had better adenosine triphosphate preservation during arrest and better functional recovery than hearts in any other group. Addition of calcium to the oxygenated cardioplegic solution decreased adenosine triphosphate preservation and functional recovery. Oxygenation of the acalcemic solution increased adenosine triphosphate preservation and functional recovery. The lowest adenosine triphosphate levels at end arrest were observed in hearts given the hypoxic calcium-containing solution. In the setting of hypothermia and multidose administration, the addition of calcium to a cardioplegic solution resulted in increased energy depletion during arrest and depressed recovery.  相似文献   

16.
The effect of oxygenation of St. Thomas' Hospital cardioplegic solutions (ST solutions) was examined in isolated working rat hearts. They were subjected to hypothermic arrest (12 degrees C, 22 degrees C) for 3 hours with infusions of cardioplegic solutions repeated for 5 minutes every 30 minutes. Based on myocardial temperature and mode of oxygenation, the hearts were divided into six groups. Group I: 12 degrees C and non-oxygenated; Group II: 12 degrees C and 100%-oxygenated; Group III: 12 degrees C and 95% O2 + 5% CO2-oxygenated; Group IV: 22 degrees C and non-oxygenated; Group V: 22 degrees C and 100%-oxygenated; Group IV: 22 degrees C and 95% O2 + 5% CO2-oxygenated. The pH of ST solutions varied with the mode of oxygenation as follows: 7.9-8.2 in Groups I and IV; 8.7-8.9 in Groups II and V; 7.1-7.4 in Groups III and VI. In the two Groups (II and V) with 100%-oxygenated ST solutions, the functional recovery of the hemodynamic parameters was significantly inferior to that of Group I and III, VI with 95% O2 + 5% CO2-oxygenated ST solutions. It was concluded that 95% O2 + 5% CO2-oxygenated ST solutions were superior to 100%-oxygenated ones and the functional recovery at 22 degrees C of 95% O2 + 5% CO2-oxygenated ST solutions were comparable to that of non-oxygenated ones at 12 degrees C.  相似文献   

17.
There is a lot of controversy about potassium cardioplegic solution in its components and its method of perfusion. Although its effect emphasized in many reports, the optimal potassium level is still in question. In order to determine the optimal level of potassium, the isolated rat hearts were preserved in relatively bad conditions; such as 37 degrees C of infusates, non-oxygenation and continuous perfusion. The hypothermic effect on its optimal level was also studied by just reducing the temperature of the infusates to 4 degrees C. Thirty isolated rat hearts were divided into six groups of 5 hearts each. Each group received a different concentration (15, 25, 40, 60, 80, 100 mEq/L) in the cardioplegic solution. Using an isolated rat heart preparation, hemodynamic indices after 30 minutes preservation were compared with the previous control values of the same hearts. And the same protocol was performed on the profound hypothermia group using another 30 rat hearts. When Basic-Modified-Krebs-Solution was used as a base for the cardioplegic solutions, we concluded from the results that the solution' with 40 mEq/L of potassium chloride might offer the best myocardial protection of all concentrations tested; and that the safe range of the potassium was from 25 mEq/L to 60 mEq/l in the profound hypothermic preservation.  相似文献   

18.
The ideal temperature and hematocrit level of blood cardioplegia has not been clearly established. This study was undertaken (a) to determine the optimal temperature of blood cardioplegia and (b) to study the effect of hematocrit levels in blood cardioplegia. A comparison of myocardial preservation was done among seven groups of animals on the basis of variations in hematocrit levels and temperature of oxygenated cardioplegic solution. The experimental protocol consisted of a 2-hour hypothermic cardioplegic arrest followed by 1 hour of normothermic reperfusion. Group 1 received oxygenated crystalloid cardioplegic solution at 10 degrees C. Groups 2 through 7 received oxygenated blood cardioplegic solution with the following hematocrit values and temperatures: (2) 10%, 10 degrees C; (3) 10%, 20 degrees C; (4) 10%, 30 degrees C; (5) 20%, 10 degrees C; (6) 20%, 20 degrees C; and (7) 20%, 30 degrees C. Parameters studied include coronary blood flow, myocardial oxygen extraction, myocardial oxygen consumption, and myocardial high-energy phosphate levels of adenosine triphosphate and creatine phosphate during control (prearrest), arrest, and reperfusion. Myocardial oxygen consumption at 30 degrees C during arrest was significantly higher than at 10 degrees C and 20 degrees C, which indicates continued aerobic metabolic activity at higher temperature. Myocardial oxygen consumption and the levels of adenosine triphosphate and creatine phosphate during reperfusion were similar in all seven groups. Myocardial oxygen extraction (a measure of metabolic function after ischemia) during initial reperfusion was significantly lower in the 30 degrees C blood group than in the 10 degrees C blood group at either hematocrit level and in the oxygenated crystalloid group, which suggests inferior preservation. The hematocrit level of blood cardioplegia did not affect adenosine triphosphate or myocardial oxygen consumption or extraction. It appears from this study that blood cardioplegia at 10 degrees C and oxygenated crystalloid cardioplegia at 10 degrees C are equally effective. Elevating blood cardioplegia temperature to 30 degrees C, however, reduces the ability of the solution to preserve metabolic function regardless of hematocrit level. Therefore, the level of hypothermia is important in blood cardioplegia, whereas hematocrit level has no detectable impact, and cold oxygenated crystalloid cardioplegia is as effective as hypothermic blood cardioplegia.  相似文献   

19.
The experiments in the present study were designed to address two issues: Is it possible to manipulate intramyocardial pH in neonatal hearts with different buffers in cardioplegic solution and, if so, do differences in intramyocardial pH during ischemia influence functional recovery? Isolated working hearts from 7- to 10-day-old rabbits underwent 60 minutes of cardioplegic arrest at 37 degrees C with cardioplegic washouts at the onset of ischemia and at 30 minutes. Hearts were reperfused with oxygenated physiologic saline solution (pH = 7.4), returned to the working mode for 30 minutes, and hemodynamic measurements were obtained to compare with baseline values. Intramyocardial pH was held constant during the ischemic interval by infusing cardioplegic solution containing different buffers: histidine (pK 6.0 at 37 degrees C), bicarbonate (pK 6.4), or tromethamine (pK 8.1). The intramyocardial pH was measured continuously with a Khuri glass electrode system (Vascular Technology, Inc., North Chelmsford, Mass.). Cardioplegic solutions buffered to pH values of 6.0 (histidine), 7.4 (bicarbonate), and 8.0 (tromethamine) were associated with ischemic intramyocardial pH values of 6.3 +/- 0.03, 7.02 +/- 0.05, and 7.88 +/- 0.06, respectively. Functional recovery was best in the acidic (histidine) and worst in the basic (tromethamine) groups. Recoveries of developed pressure, the rate of rise of pressure over time, and aortic flow were significantly better for each parameter in the bicarbonate-treated compared with the tromethamine-treated hearts (p less than 0.005). Recovery in the histidine group, however, was superior to that in both the bicarbonate-treated and the tromethamine-treated hearts (p less than 0.005). Regression analysis demonstrated that a significant inverse relationship existed between functional recovery and intramyocardial pH, supporting the conclusions that intramyocardial pH is an important determinant of functional recovery in the neonatal heart and that acidic conditions during normothermic ischemia optimize preservation of myocardial function.  相似文献   

20.
Optimal methods of myocardial preservation in the neonate remain unknown. Hypothermia and cardioplegia have been shown to protect neonatal hearts, but few studies have examined the effects of cardioplegia when administered at normothermia. Accordingly, the role of 37 degrees C St. Thomas' cardioplegic solution in protecting the neonatal heart during 1 hour of ischemia in an isolated working rabbit heart model was examined. Both oxygenated and nonoxygenated cardioplegic solutions (CSs) were evaluated and compared with an oxygenated physiological saline solution (PSS). Following ischemia, control hearts were characterized by severely impaired left ventricular function, whereas all three treatment groups recovered well, indicating that the treatments provided substantial protection. Aortic flow recovered to 62, 63, and 57% of preischemic values for the oxygenated CS, nonoxygenated CS, and oxygenated PSS groups, respectively. Similarly, rate of change of pressure recovered to 76, 80, and 76% of preischemic values for oxygenated CS, nonoxygenated CS, and oxygenated PSS groups. All values were significantly greater than those for the control group. Recovery of developed pressure was significantly improved in all three groups. End-diastolic pressure rose markedly following ischemia in control hearts, was not increased after ischemia in hearts receiving oxygenated and nonoxygenated CS, but was increased in the oxygenated PSS group. These data indicate that crystalloid cardioplegia and oxygenated PSS provide substantial protection in neonatal rabbit hearts, even when delivered at 37 degrees C. No additional benefit was seen when the cardioplegic solution was oxygenated. Therefore, either method of balancing the oxygen supply/demand ratio appears to be beneficial: supplying oxygen intermittently during ischemia (oxygenated PSS group) or decreasing oxygen demand during the ischemic period (cardioplegia groups).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号