首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Narazaki M  Tosato G 《Blood》2006,107(10):3892-3901
Neuropilin-1 (Npn-1) is a receptor shared by class 3 semaphorins and heparin-binding forms of vascular endothelial growth factor (VEGF), protein families that regulate endothelial and neuronal-cell function. Ligand interaction with Npn-1 dictates the choice of signal transducer; plexins transduce semaphorin signals, and VEGF receptors transduce VEGF signals. It is not clear how class 3 semaphorins affect endothelial-cell function and how the shared receptor Npn-1 selects its ligand. We report that semaphorin3A (Sema3A) inhibits endothelial-cell lamellipodia formation, adhesion, survival, proliferation, and cord formation. VEGF(165), but not VEGF(121), could block all these effects of Sema3A. VEGF(165) competed with Sema3A for binding to endothelial cells, effectively reduced cell-surface Npn-1, and promoted its internalization. Use of soluble forms of Npn-1 or VEGF receptor-1 to block VEGF(165) binding to Npn-1 or to VEGF receptors provided evidence that surface Npn-1 and VEGF receptors are required for VEGF(165)-induced Npn-1 internalization. Sema3A also reduced cell-surface Npn-1 in endothelial cells and promoted its internalization, but required a higher concentration than VEGF(165). These results demonstrate that preferential receptor binding and internalization by a ligand are mechanisms by which the common receptor Npn-1 can play an essential role in prioritizing conflicting signals.  相似文献   

2.
3.
Neuropilin-1 (NRP1) is a 130-kDa transmembrane receptor for semaphorins, mediators of neuronal guidance, and for vascular endothelial growth factor 165 (VEGF(165)), an angiogenesis factor. A 2.2-kb truncated NRP1 cDNA was cloned that encodes a 644-aa soluble NRP1 (sNRP1) isoform containing just the a/CUB and b/coagulation factor homology extracellular domains of NRP1. sNRP1 is secreted by cells as a 90-kDa protein that binds VEGF(165), but not VEGF(121). It inhibits (125)I-VEGF(165) binding to endothelial and tumor cells and VEGF(165)-induced tyrosine phosphorylation of KDR in endothelial cells. The 3' end of sNRP1 cDNA contains a unique, 28-bp intron-derived sequence that is absent in full-length NRP1 cDNA. Using a probe corresponding to this unique sequence, sNRP1 mRNA could be detected by in situ hybridization differentially from full-length NRP1 mRNA, for example, in cells of liver, kidney, skin, and breast. Analysis of blood vessels in situ showed that NRP1, but not sNRP1, was expressed. sNRP1 was functional in vivo. Unlike control tumors, tumors of rat prostate carcinoma cells expressing recombinant sNRP1 were characterized by extensive hemorrhage, damaged vessels, and apoptotic tumor cells. These results demonstrate the existence of a naturally occurring, soluble NRP1 that is expressed differently from intact NRP1 and that appears to be a VEGF(165) antagonist.  相似文献   

4.
Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells into vascular structures. All 3 ligands induced similar level of VEGFR-2 tyrosine phosphorylation in the presence of NRP1. In contrast, sprouting angiogenesis in differentiating embryonic stem cells (embryoid bodies), formation of branching pericyte-embedded vessels in subcutaneous matrigel plugs, and sprouting of intersegmental vessels in developing zebrafish were induced by VEGF-A165 and VEGF-E-NZ2 but not by VEGF-A121. Analyses of recombinant factors with NRP1-binding gain- and loss-of-function properties supported the conclusion that NRP1 is critical for VEGF-induced sprouting and branching of endothelial cells. Signal transduction antibody arrays implicated NRP1 in VEGF-induced activation of p38MAPK. Inclusion of the p38MAPK inhibitor SB203580 in VEGF-A165-containing matrigel plugs led to attenuated angiogenesis and poor association with pericytes. Our data strongly indicate that the ability of VEGF ligands to bind NRP1 influences p38MAPK activation, and formation of functional, pericyte-associated vessels.  相似文献   

5.
Neuropilin-1 and -2 (NRP1 and NRP2) are the transmembrane glycoproteins interacting with 2 types of ligands: class III semaphorins and several members of the VEGF family, the main regulators of blood and lymphatic vessel growth. We show here that both NRP1 and NRP2 can also bind hepatocyte growth factor (HGF). HGF is a pleiotropic cytokine and potent proangiogenic molecule that acts on its target cells by binding to the c-met receptor. We found that the N-terminal domain of HGF is involved in the interaction with neuropilins. We demonstrated that invalidation of NRP1 or NRP2 by RNA interference in human umbilical vein endothelial cells (HUVECs) decreased HGF-induced c-met phosphorylation and VEGF-A(165)- and HGF-mediated intracellular signaling. Accordingly, the disruption of NRP1 or NRP2 binding to VEGF-A(165) or HGF with a blocking antibody, decreased the proliferation and migration of endothelial cells. This effect may be further enhanced if VEGF-A(165) or HGF binding to both NRP1 and NRP2 was disrupted. Using a mouse Matrigel model, we demonstrated that NRP1 is essential for HGF-mediated angiogenesis in vivo. Our results suggest that, in endothelial cells, both NRP1 and NRP2 function as proangiogenic coreceptors, potentiating the activity of at least 2 major proangiogenic cytokines, VEGF-A(165) and HGF.  相似文献   

6.
Vascular endothelial growth factor165 (VEGF165) and semaphorin3A (SEMA3A) elicit pro- and antiangiogenic signals respectively in endothelial cells (ECs) by binding to their receptors VEGFR-2, neuropilin-1 (NRP1), and plexin-A1. Here we show that the VEGF165-driven angiogenic potential of multiple myeloma (MM) ECs is significantly higher than that of monoclonal gammopathy of undetermined significance (MGUS) ECs (MGECs) and human umbilical vein (HUV) ECs. This is probably due to a constitutive imbalance of endogenous VEGF165/SEMA3A ratio, which leans on VEGF165 in MMECs but on SEMA3A in MGECs and HUVECs. Exogenous VEGF165 induces SEMA3A expression in MGECs and HUVECs, but not in MMECs. Moreover, by counteracting VEGF165 activity as efficiently as an anti-VEGFR-2 antibody, exogenous SEMA3A restrains the over-angiogenic potential of MMECs. Our data indicate that loss of endothelial SEMA3A in favor of VEGF165 could be responsible for the angiogenic switch from MGUS to MM.  相似文献   

7.
Sulfated polysaccharides have been shown to inhibit human immunodeficiency virus (HIV) infection in vitro. Dextrin sulfate, fucoidan, and dextran sulfate fail to neutralize virions directly, but interact with target cells to inhibit virus entry. Ionic interactions of sulfated polyanions with oppositely charged cell surface components, including CD4, have been assumed to be the inhibitory mechanism. It is shown that the sulfated polysaccharides inhibit infection of both CD4+ and CD4- cell lines by HIV and also that they inhibit HTLV-1 and, to a lesser extent, the simian retrovirus, MPMV, which use receptors other than CD4. One binding site for radiolabeled fucoidan on the surface of human T cells is an 18 kD protein, but its significance is not yet clear.  相似文献   

8.
Vascular Endothelial Growth Factor (VEGF), binding to its receptor in endothelial cells, seems to modulate the increased blood flow in the early phase of diabetic renal disease. The aim of the study was to evaluate, in a diabetic milieu, the expression, biological function and modulation of VEGF binding sites in human glomerular endothelial cells (GENC). We demonstrated the presence of VEGF binding sites with high (VEGFR-2) and low (heparan sulfate proteoglycans, HSPG) affinity. VEGF165 and VEGF121 working through VEGFR-2 stimulated nitric oxide (NO) production at low doses (0.1-1 nM), whereas only VEGF165 at high doses (10-100 nM) increased thymidine incorporation. 1 nM VEGF165 and VEGF121 induced in GENC a significant peak of inducible NO synthase (iNOS) production and, at a lower level, of endothelial NOS (eNOS). The copresence of VEGF165 with aminoguanidine (iNOS inhibitor) determined an increase of eNOS and a significant increase in thymidine incorporation. Advanced glycation end products (AGEs) working through specific receptors (RAGE) up-regulated the expression of VEGFR-2, decreased the expression of HSPG sites and reduced GENC growth. These results identify in GENC VEGFR-2 as a mediator of iNOS and eNOS release under control of VEGF, whereas HSPG binding sites seem to mediate the weak growth effect. The presence of AGEs, up-regulating the VEGFR-2 and decreasing HSPG sites might participate to the block of glomerular angiogenesis addressing the VEGF effects on glomerular permeability.  相似文献   

9.
10.
The angiogenic response of endothelial cells initiated by different growth factors is accompanied by assembly of cell surface-bound proteolytic machinery as a prerequisite for focal invasion. We have shown previously how the vascular endothelial growth factor (VEGF) initiates proteolysis by activation of pro-urokinase (pro-PA) via the VEGF receptor-2 (VEGFR-2). We now show that the cell surface receptor of the uPA-system, the urokinase receptor (uPAR), is redistributed to focal adhesions at the leading edge of endothelial cells in response to VEGF. VEGF165 and VEGF-E, both interacting with VEGFR-2, but not PlGF exclusively stimulating VEGFR-1, induce within minutes internalization of uPAR via an LDL receptor-like molecule, dependent on generation of active uPA and the presence of plasminogen activator inhibitor-1 (PAI-1). uPAR seems to play a pivotal role in VEGFR-2-induced endothelial cell migration because cleavage of surface uPAR impaired the migratory response of endothelial cells toward VEGF-E, but not toward PlGF.  相似文献   

11.
Neuropilin (NRP) 1, previously identified as a neuronal receptor that mediates repulsive growth cone guidance, has been shown recently to function also in endothelial cells as an isoform-specific receptor for vascular endothelial growth factor (VEGF)(165) and as a coreceptor in vitro of VEGF receptor 2. However, its potential role in pathologic angiogenesis remains unknown. In the present study, we first show that VEGF selectively up-regulates NRP1 but not NRP2 via the VEGF receptor 2-dependent pathway. By NRP1 binding analysis, we showed that its induction by VEGF accompanies functional receptor expression. Endothelial proliferation stimulated by VEGF(165) was inhibited significantly by antibody perturbation of NRP1. In a murine model of VEGF-dependent angioproliferative retinopathy, intense NRP1 mRNA expression was observed in the newly formed vessels. Furthermore, selective NRP1 inhibition in this model suppressed neovascular formation substantially. These results suggest that VEGF cannot only activate endothelial cells directly but also can contribute to robust angiogenesis in vivo by a mechanism that involves up-regulation of its cognate receptor expression.  相似文献   

12.
The acute increase in vascular permeability produced by vascular endothelial growth factor (VEGF-A(165)) requires activation of endothelial Flk-1 receptors (VEGFR-2) and stimulation of platelet-activating factor (PAF) synthesis. Like PAF, VEGF-A(165) promotes translocation of P-selectin to the endothelial cell (EC) surface. However, the mechanisms involved remain unknown. By treating human umbilical vein endothelial cells (HUVECs) with VEGF analogs, we show that activation of VEGFR-1 or VEGFR-2 or both induced a rapid and transient translocation of endothelial P-selectin and neutrophil adhesion to activated ECs. The effects mediated by VEGF-A(165) and VEGF-A(121) (VEGFR-1/VEGFR-2 agonists) were blocked by a selective VEGFR-2 inhibitor, SU1498. VEGF-A(165) was twice as potent as VEGF-A(121), which can be explained by the binding capacity of VEGF-A(165) to its coreceptor neuropilin-1 (NRP-1). Indeed, treatment with NRP-1 antagonist (GST-Ex7) reduced the effect of VEGF-A(165) to the levels observed upon stimulation with VEGF-A(121). Finally, the use of selective PAF receptor antagonists reduced VEGF-A(165)-mediated P-selectin translocation. Together, these data show that maximal P-selectin translocation and subsequent neutrophil adhesion was mediated by VEGF-A(165) on the activation of VEGFR-2/NRP-1 complex and required PAF synthesis.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a potent regulator of placental vascular function. Endothelial dysfunction is a key factor associated with preeclampsia. In this study, we examined expression of VEGF, endocrine gland-derived VEGF (EG-VEGF), VEGF receptors 1 and 2 (VEGFR-1 and VEGFR-2), and neuropilin-1 and -2 (NP-1 and NP-2) in human placentas from women with normal and preeclamptic (PE) pregnancies using quantitative or semiquantitative PCR. We found that total VEGF mRNA expression was increased 2.8-fold (P < 0.05), along with increases in mRNA expression of VEGF121, 165, and 189 (P < 0.05; 1.7-, 1.9-, and 1.8-fold, respectively) in PE vs. normal placentas. Expression of VEGFR-1 mRNA, but not EG-VEGF and the other three VEGF receptors studied, was elevated (P < 0.05) 2.7-fold in PE vs. normal placentas. Protein expression of VEGF and its four receptors was determined using Western blot analysis. For VEGF, two major isoforms (VEGF165 and 189) were detected. For VEGFR-1, VEGFR-2, NP-1, and NP-2, one major band was observed at 180, 235, 130, and 130 kDa, respectively. All of these bands were corresponding to their positive controls. Of these five proteins studied, only VEGFR-1 levels were increased (P < 0.05; 1.7-fold) in PE placentas. The expression of VEGF and the four VEGF receptors was confirmed using immunohistochemistry. They were primarily present in syncytiotrophoblasts and endothelial cells of villous capillaries and large vessels. Thus, together with previous reports that VEGFR-1 mediates trophoblast function and inhibits VEGF-induced angiogenesis and endothelium-dependent vasodilation, these data suggest that the increased VEGFR-1 expression may alter VEGF- mediated function on trophoblast and endothelial cells in PE placentas.  相似文献   

14.
Neuropilin 2 (NRP2) is a receptor for the vascular endothelial growth factor (VEGF) and the semaphorin (SEMA) families, 2 unrelated ligand families involved in angiogenesis and neuronal guidance. NRP2 specifically binds VEGF-A and VEGF-C, although the biological relevance of these interactions in human endothelial cells is poorly understood. In this study, we show that both VEGF-A and VEGF-C induce the interaction of NRP2 with VEGFR-2. This interaction correlated with an enhancement of the VEGFR-2 phosphorylation threshold. Overexpression of NRP2 in primary human endothelial cells promoted cell survival induced by VEGF-A and VEGF-C. In contrast, SEMA3F, another ligand for NRP2, was able to inhibit human endothelial cell survival and migration induced by VEGF-A and VEGF-C. Moreover, a siRNA targeting specifically NRP2 was a potent inhibitor of human endothelial cell migration induced by VEGF-A and VEGF-C. Thus, our data indicate that NRP2 acts as a coreceptor that enhances human endothelial cell biological responses induced by VEGF-A and VEGF-C.  相似文献   

15.
Orf virus, a member of the poxvirus family, produces a pustular dermatitis in sheep, goats, and humans. The lesions induced after infection with orf virus show extensive proliferation of vascular endothelial cells, dilation of blood vessels and dermal swelling. An explanation for the nature of these lesions may lie in the discovery that orf virus encodes an apparent homolog of the mammalian vascular endothelial growth factor (VEGF) family of molecules. These molecules mediate endothelial cell proliferation, vascular permeability, angiogenesis, and lymphangiogenesis via the endothelial cell receptors VEGFR-1 (Flt1), VEGFR-2 (KDR/Flk1), and VEGFR-3 (Flt4). The VEGF-like protein of orf virus strain NZ2 (ORFV2-VEGF) is most closely related in primary structure to VEGF. In this study we examined the biological activities and receptor specificity of the ORFV2-VEGF protein. ORFV2-VEGF was found to be a disulfide-linked homodimer with a subunit of approximately 25 kDa. ORFV2-VEGF showed mitogenic activity on bovine aortic and human microvascular endothelial cells and induced vascular permeability. ORFV2-VEGF was found to bind and induce autophosphorylation of VEGFR-2 and was unable to bind or activate VEGFR-1 and VEGFR-3, but bound the newly identified VEGF165 receptor neuropilin-1. These results indicate that, from a functional viewpoint, ORFV2-VEGF is indeed a member of the VEGF family of molecules, but is unique, however, in that it utilizes only VEGFR-2 and neuropilin-1.  相似文献   

16.
Huang Y  Chen X  Dikov MM  Novitskiy SV  Mosse CA  Yang L  Carbone DP 《Blood》2007,110(2):624-631
Vascular endothelial growth factor (VEGF), a major factor in tumor-host interactions, plays a critical role in the aberrant hematopoiesis observed in cancer-bearing hosts. To dissect the roles of VEGF receptor (VEGFR)-1 and VEGFR-2 in cancer-associated hematopoiesis in vivo, we selectively stimulated VEGFR-1 and VEGFR-2 by continuous infusion of receptor-specific ligands or selective blockade with VEGF receptor-specific antibodies in mice infused with recombinant VEGF at levels observed in tumor-bearing animals. We found that the effect of VEGF on the accumulation of Gr1(+)CD11b(+) cells is mediated by VEGFR-2, but that the 2 receptors have opposite effects on lymphocyte development. Pathophysiologic levels of VEGF strongly inhibit T-cell development via VEGFR-2, whereas VEGFR-1 signaling decreases this inhibition. VEGFR-1, and not VEGFR-2, signaling is responsible for the observed increase of splenic B cells. Both receptors are capable of inhibiting dendritic cell function. These data suggest that most of observed aberrant hematopoiesis caused by excess tumor-derived VEGF is mediated by VEGFR-2, and VEGFR-1 alone has very limited independent effects but clearly both positively and negatively modulates the effects of VEGFR-2. Our findings suggest that selective blockade of VEGFR-2 rather than of both receptors may optimally overcome the adverse hematologic consequences of elevated VEGF levels found in malignancy.  相似文献   

17.
Yamada Y  Takakura N  Yasue H  Ogawa H  Fujisawa H  Suda T 《Blood》2001,97(6):1671-1678
Neuropilin 1 (NP-1) is a receptor for vascular endothelial growth factor (VEGF) 165 (VEGF165) and acts as a coreceptor that enhances VEGF165 function through tyrosine kinase VEGF receptor 2 (VEGFR-2). Transgenic overexpression of np-1 results in an excess of capillaries and blood vessels and a malformed heart. Thus, NP-1 may have a key role in vascular development. However, how NP-1 regulates vascular development is not well understood. This study demonstrates how NP-1 can regulate vasculogenesis and angiogenesis in vitro and in vivo. In homozygous np-1 mutant (np-1(-/-)) murine embryos, vascular sprouting was impaired in the central nervous system and pericardium. Para-aortic splanchnopleural mesoderm (P-Sp) explants from np-1(-/-) mice also had vascular defects in vitro. A monomer of soluble NP-1 (NP-1 tagged with Flag epitope) inhibited vascular development in cultured wild-type P-Sp explants by sequestering VEGF165. In contrast, a dimer of soluble NP-1 (NP-1 fused with the Fc part of human IgG) enhanced vascular development in cultured wild-type P-Sp explants. Moreover, the NP-1-Fc rescued the defective vascular development in cultured np-1(-/-) P-Sp explants. A low dose of VEGF alone did not promote phosphorylation of VEGFR-2 on endothelial cells from np-1(-/-) embryos, but simultaneous addition of a low dose of VEGF and NP-1-Fc phosphorylated VEGFR-2 significantly. Moreover, NP-1-Fc rescued the defective vascularity of np-1(-/-) embryos in vivo. These results suggest that a dimer form of soluble NP-1 delivers VEGF165 to VEGFR-2-positive endothelial cells and promotes angiogenesis.  相似文献   

18.
We have previously reported that high levels of cellular vascular endothelial growth factor (VEGF) protein correlated with short survival of patients with acute myeloid leukaemia (AML). As VEGF exerts its effects via two receptors, VEGF receptor 1 (VEGFR-1) and VEGFR-2, we evaluated the significance of VEGFR-1 and VEGFR-2 protein levels in AML and myelodysplastic syndrome (MDS), and their relationship to VEGF protein levels. Western blot analysis and radioimmunoassay confirmed and quantified specific protein levels in bone marrow samples from 41 MDS and 66 AML previously untreated patients. VEGFR-1 levels were significantly higher in AML than in MDS (P = 0.0004), but no significant difference was found in the VEGFR-2 levels (P = 0.5). No significant correlation between VEGFRs levels and duration of survival was found. VEGF protein levels were significantly higher in MDS than in AML (P < 0.0001). A Cox proportional-hazard regression model showed increasing VEGF levels to significantly correlate with shorter survival of patients with MDS (P = 0.008), a finding similar to our previous report of the inverse relationship between VEGF levels and survival of AML patients. We found a significant correlation between VEGF and VEGFR-2 levels in both AML and MDS (P < 0.0000001 andP < 0.0002 respectively) but not between VEGF and VEGFR-1 levels. These data suggest that VEGF expression, rather than the expression of its receptors, is the determining factor in the biological behaviour of AML and MDS, and that VEGFRs are differentially expressed in AML and MDS.  相似文献   

19.
McCormick CJ  Newbold CI  Berendt AR 《Blood》2000,96(1):327-333
A novel adhesive pathway that enhances the adhesion of Plasmodium falciparum-infected erythrocytes (IEs) to endothelial cells has been identified. The sulfated glycoconjugates heparin, fucoidan, dextran sulfate 5000, and dextran sulfate 500 000 caused a dramatic increase in adhesion of IEs to human dermal microvascular endothelial cells. The same sulfated glycoconjugates had little effect on IE adhesion to human umbilical vein endothelial cells, a CD36-negative cell line. The effect was abolished by a monoclonal antibody directed against CD36, suggesting that enhanced adhesion to endothelium is dependent on CD36. No effect was observed on adhesion to purified platelet CD36 cells immobilized on plastic. The same sulfated glycoconjugates enhanced adhesion of infected erythrocytes to COS cells transfected with CD36, and this was inhibited by the CD36 monoclonal antibody. These findings demonstrate a role for sulfated glycoconjugates in endothelial adherence that may be important in determining the location and magnitude of sequestration through endogenous carbohydrates. In addition, they highlight possible difficulties that may be encountered from the proposed use of sulfated glycoconjugates as antiadhesive agents in patients with severe malaria.  相似文献   

20.
It was previously reported that treatment with the sulfated polysaccharide fucoidan or the structurally similar dextran sulfate increased circulating mature white blood cells and hematopoietic progenitor/stem cells (HPCs) in mice and nonhuman primates; however, the mechanism mediating these effects was unclear. It is reported here that plasma concentrations of the highly potent chemoattractant stromal-derived factor 1 (SDF-1) increase rapidly and dramatically after treatment with fucoidan in monkeys and in mice, coinciding with decreased levels in bone marrow. In vitro and in vivo data suggest that the SDF-1 increase is due to its competitive displacement from heparan sulfate proteoglycans that sequester the chemokine on endothelial cell surfaces or extracellular matrix in bone marrow and other tissues. Although moderately increased levels of interleukin-8, MCP1, or MMP9 were also present after fucoidan treatment, studies in gene-ablated mice (GCSFR(-/-), MCP1(-/-), or MMP9(-/-)) and the use of metalloprotease inhibitors do not support their involvement in the concurrent mobilization. Instead, SDF-1 increases, uniquely associated with sulfated glycan-mobilizing treatments and not with several other mobilizing agents tested, are likely responsible. To the authors' knowledge, this is the first published report of disrupting the SDF-1 gradient between bone marrow and peripheral blood through a physiologically relevant mechanism, resulting in mobilization with kinetics similar to other mobilizing CXC chemokines. The study further underscores the importance of the biological roles of carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号