首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that a single point mutation (S(750)Q) in the splice variant region of rat Glu(1) subunits can eliminate positive allosteric modulation by cyclothiazide. The present study investigated the effects of mutating the equivalent residue (S(776)Q) in the human Glu(4) subunit on the activity and binding of a novel AMPA receptor potentiator, LY395153 (N-2-(4-benzamidophenylpropyl-2-propanesulfonamide)). The mutation markedly attenuated, but did not eliminate, potentiation by LY395153 and cyclothiazide. In addition, binding of [3H]LY395153 was significantly reduced by this mutation. These effects occurred in the absence of any change in the response to glutamate or the binding of a competitive AMPA receptor antagonist, [3H]Ro 48-8587 ([2,4,5-3H]9-imidazol-1-yl-8-nitro-2,3,5,6-tetrahydro[1,2,4]-triazolo[1,5-c]quinazoline-2,5-dione triethylammonium salt). Collectively, these results demonstrate that structurally diverse classes of potentiators are sensitive to mutations of this single Ser residue, suggesting that binding to this residue may be necessary for positive allosteric modulation of AMPA receptors.  相似文献   

2.
Maksay G  Bíró T 《Neuropharmacology》2002,43(7):1087-1098
Glycine receptors (GlyRs) were studied via [(3)H]strychnine binding to synaptosomal membranes of rat spinal cord. A ternary allosteric model was applied for the effects of tropeines, alcohols, minaxolone, nitrendipine, Zn(2+), muscarinic and serotonin receptor ligands. It enabled us to determine the dissociation constants of the allosteric agents (K(A)) and their cooperativity factors affecting the dissociation constants of [(3)H]strychnine (alphaK(S)) and glycine (betaK(L)). Cooperativity with [(3)H]strychnine ranged from strong negative for tropeines to weak positive for nitrendipine. Displacement curves of glycine were examined in the presence of allosteric agents. Positive cooperativities with glycine were found for submicromolar concentrations of tropisetron, bemesetron, zatosetron and nitrendipine; for tubocurarine, propofol, butanol, minaxolone, cocaine and 10 microM Zn(2+). Micromolar concentrations of tropisetron and nitrendipine showed weaker cooperativities. Other allosteric agents and 1 mM Zn(2+) displayed negative cooperativity with glycine. Binding parameters K(A) and beta correlate excellently with the activities of the allosteric agents on GlyR-ionophores. Combined inhibitory effects of the allosteric agents suggest that there are different subgroups (tropeines, alcohols and dihydropyridines) binding to distinct sites on GlyRs exerting cooperativity with glycine via a common mechanism. This is the first quantitative analysis of allosteric binding interactions for GlyRs.  相似文献   

3.
G蛋白偶联受体(GPCRs)介导多数激素及神经递质的细胞信号转导,同时也是最重要的药物作用靶点。相对于正位作用,对GPCRs别构调节具有能够达到高选择性、模拟生理性调制受体以及不易过度激活受体的特点而受到关注,A、B、C三族GPCRs均有别构调节剂被发现,有些已被用于临床。随着GPCRs别构理论研究的深入,若在别构调节剂开发策略指导下进行定向筛选和结构改造,将会获得更有前途的治疗药物。  相似文献   

4.
LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.  相似文献   

5.
Their ubiquitous nature, wide cellular distribution and versatile molecular recognition and signalling help make G-protein binding receptors (GPCRs) the most important class of membrane proteins in clinical medicine, accounting for ~40% of all current therapeutics. A large percentage of current drugs target the endogenous ligand binding (orthosteric) site, which are structurally and evolutionarily conserved, particularly among members of the same GPCR subfamily. With the recent advances in GPCR X-ray crystallography, new opportunities for developing novel subtype selective drugs have emerged. Given the increasing recognition that the extracellular surface conformation changes in response to ligand binding, it is likely that all GPCRs possess an allosteric site(s) capable of regulating GPCR signalling. Allosteric sites are less structurally conserved than their corresponding orthosteric site and thus provide new opportunities for the development of more selective drugs. Constitutive oligomerisation (dimerisation) identified in many of the GPCRs investigated, adds another dimension to the structural and functional complexity of GPCRs. In this review, we compare 60 crystal structures of nine GPCR subtypes (rhodopsin, ß2-AR, ß1-AR, A2a-AR, CXCR4, D3R, H1R, M2R, M3R) across four subfamilies of Class A GPCRs, and discuss mechanisms involved in receptor activation and potential allosteric binding sites across the highly variable extracellular surface of these GPCRs. This analysis has identified a new extracellular salt bridge (ESB-2) that might be exploited in the design of allosteric modulators.  相似文献   

6.
GYKI 53784 or LY303070 [(-)1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-4,5-dihydro-3-methylcarbamoyl-2,3-benzodiazepine] belongs to a new family of 2,3-benzodiazepine compounds (also called homophtalazines) selective and non-competitive antagonists at alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors. These compounds include the original GYKI-52466, its more potent derivative GYKI 53655 and the active isomer of the latter, GYKI 53784. This review summarizes current knowledge of this novel AMPA antagonist: GYKI 53784. GYKI 53784 is the most potent of the compounds in the 2,3-benzodiazepine class, blocking AMPA receptor-mediated responses. In contrast to the compounds of the quinoxalinedione family, that block AMPA as well as kainate receptors, GYKI 53784 does not block the activation of kainate receptors. Furthermore, GYKI 53784 does not act at the same receptor site as positive AMPA modulators (i.e., cyclothiazide, BDP-12, 1-BCP or aniracetam). GYKI 53784 is a powerful neuroprotective agent in both in vitro and in vivo models of AMPA receptor-mediated excitotoxicity. In contrast to NMDA receptor antagonists, whose favorable clinical actions are compromised by important side effects such as the impairment of memory functions, the selective AMPA antagonist, GYKI 53784, may be of potential clinical value, both in acute (stroke and trauma) and chronic (Alzheimer's disease, epilepsy) neurological disorders.  相似文献   

7.
Twenty esters of 3 alpha- and 3beta-hydroxy(nor)tropanes and two amides of 3 alpha-aminotropane were prepared with substituted benzoic acids. These (nor)tropeines inhibited [(3)H]strychnine binding to glycine receptors in synaptosomal membranes of rat spinal cord. A ternary allosteric model was applied to determine the dissociation constants (K(A)) of the tropeines having strong negative cooperativities with [(3)H]strychnine binding (alpha > 10). K(A) values about 10 nM are well below those of known allosteric agents. Low concentrations (0.1K(A)) of the (nor)tropeines potentiated the displacing effects of glycine. Positive cooperativity with glycine (beta < 1) decreased with the increase in concentration and binding affinity of tropeines. Displacing potencies were also measured for [(3)H]granisetron binding to 5-HT(3) type serotonin receptors of rat cerebral cortex. Selectivities to glycine receptors versus 5-HT(3) receptors varied within 4 orders of magnitude. Nortropeines might serve as a lead to high-affinity selective allosteric modulators of glycine receptors.  相似文献   

8.
Glutamate release at central synapses is transduced into a characteristic fast postsynaptic response by AMPA receptor gating and agonist affinity. The effect of two classes of modulators of AMPA receptor desensitization, the benzothiadiazides (cyclothiazide and IDRA 21) and the benzoylpiperidines (CX516 and CX546), were studied on gating kinetics of recombinant, native AMPA receptors and on synaptic currents. CX546 reduced the degree of desensitization more potently than CX516 or IDRA 21, but not as efficiently as cyclothiazide. In presence of CX516/CX546, desensitization of GluR2(flip) receptors was inhibited more than of GluR1(flip), whereas they had no effect upon response shape or conductance. CX546 increased agonist affinity threefold on nondesensitizing AMPA receptors by slowing agonist unbinding. Analysis of modulatory action suggests that, in contrast to cyclothiazide or IDRA 21, the Ampakine CX546 binds specifically to the agonist bound nondesensitized receptor, most likely acting by destabilizing the desensitized receptor conformation. All modulators tested showed higher efficiency on native receptors as compared to homomeric receptors. At the glutamatergic synapse, evoked synaptic amplitudes were weakly potentiated, while EPSC decay was slowed by nearly a factor of three in the presence of CX546 or cyclothiazide. In the presence of CX546, the current induced by short pulses of glutamate from recombinant GluR2 receptors decayed with a time course that was approximately twentyfold faster than EPSCs. The unique properties of CX546 may be beneficial for therapeutical use.  相似文献   

9.

BACKGROUND AND PURPOSE

In mammalian cells, the anti-parasitic drug ivermectin is known as a positive allosteric modulator of the ATP-activated ion channel P2X4 and is used to discriminate between P2X4- and P2X7-mediated cellular responses. In this paper we provide evidence that the reported isoform selectivity of ivermectin is a species-specific phenomenon.

EXPERIMENTAL APPROACH

Complementary electrophysiological and fluorometric methods were applied to evaluate the effect of ivermectin on recombinantly expressed and on native P2X7 receptors. A biophysical characterization of ionic currents and of the pore dilation properties is provided.

KEY RESULTS

Unexpectedly, ivermectin potentiated currents in human monocyte-derived macrophages that endogenously express hP2X7 receptors. Likewise, currents and [Ca2+]i influx through recombinant human (hP2X7) receptors were potently enhanced by ivermectin at submaximal or saturating ATP concentrations. Since intracellular ivermectin did not mimic or prevent its activity when applied to the bath solution, the binding site of ivermectin on hP2X7 receptors appears to be accessible from the extracellular side. In contrast to currents through P2X4 receptors, ivermectin did not cause a delay in hP2X7 current decay upon ATP removal. Interestingly, NMDG+ permeability and Yo-Pro-1 uptake were not affected by ivermectin. On rat or mouse P2X7 receptors, ivermectin was only poorly effective, suggesting a species-specific mode of action.

CONCLUSIONS AND IMPLICATIONS

The data indicate a previously unrecognized species-specific modulation of human P2X7 receptors by ivermectin that should be considered when using this cell-biological tool in human cells and tissues.  相似文献   

10.
Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca2+ homeostasis. Altered expression levels or mutations in CaSR cause Ca2+ handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling.

LINKED ARTICLES

This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc  相似文献   

11.
A series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide derivatives were synthesized and evaluated for their activity as allosteric modulators of kainate-activated currents in primary cultures of cerebellar granule neurons. Substitution of different groups at the 3-position of the benzothiadiazine ring distinguished between positive and negative allosteric modulatory properties.  相似文献   

12.
13.
As with all ligand-gated ion channels, ionotropic glutamate receptors (iGluRs) convert the free energy of agonist-binding into a sequence of conformational changes that allow regulated ion flux across an otherwise insulating membrane bilayer. In the case of iGluRs, the resulting membrane depolarization is a key mediator of intercellular signals in the synapses of the CNS. Recent biomedical and structural research has greatly expanded our understanding of the chemistry of iGluR agonist binding, and of the subsequent molecular changes that drive channel gating and desensitization.  相似文献   

14.
15.
Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. This study presents a high-resolution X-ray structure of the competitive antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals that ATPO and DNQX stabilize an open form of the ligand-binding core by different sets of interactions. Computational techniques are used to quantify the differences between these two ligands and to map the binding site. The isoxazole moiety of ATPO acts primarily as a spacer, and other scaffolds could potentially be used. Whereas agonists induce substantial domain closures compared to the apo structure, ATPO only induces minor conformational changes. These results are consistent with the hypothesis that domain closure is related to receptor activation. To facilitate the design of novel AMPA receptor antagonists, we present a modified model of the binding site that includes key residues involved in ligand recognition.  相似文献   

16.
17.
The role of AMPA and GluR5-containing kainate receptors in the development and expression of amygdala kindling was examined using the selective 2,3-benzodiazepine AMPA receptor antagonist GYKI 52466 [(1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine] and the decahydroisoquinoline mixed AMPA receptor and GluR5 kainate receptor antagonist LY293558 {(3S,4aR,6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline- 3-carboxy lic acid)}. Administration of GYKI 52466 (5-40 mg/kg, intraperitoneally) and LY293558 (10-40 mg/kg, intraperitoneally) prior to daily kindling stimulation in mice produced a dose-dependent suppression of the rate of development of behavioral kindled seizure activity and reduced the duration of the stimulation-induced electrographic afterdischarge. In drug-free stimulation sessions after the initial drug-treatment sessions, there was an acceleration in the rate of kindling development compared with the rate during the preceding drug-administration period; the "rebound" rate was also greater than the kindling rate in saline-treated control animals. In fully kindled animals, both GYKI 52466 and LY293558 produced a dose-dependent suppression of evoked seizures (ED(50), 19.3 and 16.7 mg/kg, respectively). Although AMPA receptors appear to be critical to the expression of kindled seizures, since kindling development progressed despite the suppression of behavioral seizure activity, AMPA receptors are less important to the kindling process. LY293558 was modestly less effective at suppressing behavioral seizures during kindling and was not superior to GYKI 52466 in retarding the overall extent of kindling development, indicating that GluR5 kainate receptors do not contribute to epileptogenesis in this model.  相似文献   

18.
Cocaine abusers remain vulnerable to drug craving and relapse for many years after abstinence is achieved. We have recently shown that ondansetron (a 5-HT3 receptor antagonist) given 3.5 h after each daily cocaine injection reverses previously established behavioral sensitization. The purpose of the present investigation was two-fold. First, as cocaine cannot be used as therapy, we examined whether pergolide (a D1/D2 receptor agonist with reduced abuse potential) and ondansetron could reverse behavioral sensitization. Second, we investigated whether these behavioral changes were associated with parallel alterations in expression levels and/or phosphorylation changes in the NR2B and GluR1 subunits of the respective NMDA and AMPA receptors. Rats were injected for 5 consecutive days with cocaine or saline followed by 9 days of withdrawal. Starting on withdrawal day 10, animals were given vehicle, pergolide/saline, or pergolide/ondansetron for 5 consecutive days. Following a second 9-day period of withdrawal, all animals were challenged with cocaine for assessment of behavioral sensitization and tissues were collected on the following day for Western blot. Sensitization was associated with increased NR2B expression in the accumbens (NAc) shell and decreased Tyr1472 phosphorylation in the NAc core, as well as increased Ser845 phosphorylation of the GluR1 subunit in prefrontal cortex, NAc core, and shell. Pergolide/ondansetron treatment, but not pergolide alone, consistently reversed both the behavioral sensitization and the associated changes in the NMDA and AMPA receptor subunits. To the extent that sensitization plays a role in chronic cocaine abuse, a combination of these clinically available drugs may be useful in treatment of the disorder.  相似文献   

19.
The experimental allergic encephalomyelitis (EAE) developed on the 11 - 12th day after inoculation of encephalitogenic mixture in 96% of female Wistar rats in the control group. In the majority of control rats, severe EAE with a long duration of action prevailed (average cumulative index, 25.6; average duration of illness, 15.8 days). A course of NMDA-antagonist memantine administration in a doze of 10 and 20 mg/kg prevented the development of EAE in 10% of rats. In rats with EAE (on the average, 12-13 days after the administration of encephalitogenic mixture) the drug slightly reduced the severity and duration of neurological disorder: the average cumulative index and duration of illness decreased by a factor of 1.4-1.5 in comparison to the control. The antagonist of NMDA and GluR1 AMPA receptors, IEM-1913, upon a course of administration in a doze of 0.1-1 mg/kg prevented the EAE development in 23-25% of rats. In the rats with EAE treated with IEM-1913 in the maximum doze (1 mg/kg), the EAE developed only after completion of the course of drug administration (on the 19-20th day), proceeded quickly (no more than 5 days), and in the easy form (average cumulative index. 8.3). High efficacy of IEM-1913 administration in rats with EAE is apparently connected with its neuroprotective and antiinflammatory action, which is related, on the one hand, to a combined block of NMDA and GluR1 AMPA of receptors in brain and, on the other hand, to a reduction of the permeability of BBB for encephalitogenic T-lymphocytes owing to the blockade of NMDA receptors in BBB.  相似文献   

20.
Monoammonium N-alkyl derivative of decylamine (IEM-1678), which blocks alpha3beta4 N-cholinoreceptors (but does not block GluR1 AMPA receptors), in doses of 1.0 - 3.0 mg/kg produces a 4-fold decrease in the frequency and lethality of nicotinic clonic-tonic seizures. However, even in the maximum dose of 3 mg/kg, IEM-1678 only slightly decreases kainate clonic-tonic seizures. Bis-ammonium compound IEM-1460 (containing adamantyl radical), which blocks both GluR1 AMPA receptors and alpha3beta4 N-cholinoreceptors, in a range of doses 0.1 - 3 mg/kg produces a 5- to 8-fold decrease in the frequency and virtually completely eliminates lethality of both clonic-tonic nicotinic and kainate seizures. Hence, the complete elimination of generalized kainate and nicotinic seizures requires combined blockade GluR1 AMPA and alpha3beta4 N-cholinoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号