首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that in patients in whom the central stump of the hypoglossal nerve has been anastomosed to the peripheral stump of a lesioned facial nerve, supraorbital nerve stimulation can elicit a short-latency reflex (12.5±0.6 ms; mean±S.D.) in facial muscles similar to the R1 disynaptic blink reflex response, but not followed by an R2 blink reflex component46. Thus in addition to replacing the facial neurons at peripheral synapses, these hypoglossal nerves contribute to a trigemino-hypoglossal reflex. The aim of this work was to study the type of reflex activities which can be elicited in both facial and tongue muscles by electrical stimulation of cutaneous (supraorbital nerve) or mucosal (lingual nerve) trigeminal (V) afferents in normal subjects. The results show that although stimulation of cutaneous V1 afferents elicits the well-known double component (R1–R2) blink reflex response in the orbicularis oculi muscles, it does not produce any detectable reflex response in the genioglossus muscle, even during experimental paradigms designed to facilitate the reflex activity. Conversely, stimulation of mucosal V3 afferents can elicit a single reflex response of the R1 type in the genioglossus muscle but not in the orbicularis oculi muscles, even during experimental paradigms designed to facilitate the reflex activity. These data are discussed in terms of two similar but separate circuits for the R1 responses of cutaneous (blink reflex) and mucosal (tongue reflex) origins. They suggest that in patients with hypoglossal-facial (XII–VII) nerve anastomosis, the short-latency trigemino-‘hypoglossal-facial' reflex of the R1 blink reflex type observed in facial muscles following supraorbital nerve stimulation could be due to changes in synaptic effectiveness of the central connectivity within the principal trigeminal nucleus where both cutaneous and mucosal trigeminal afferents project.  相似文献   

2.
One of the classic features of hemifacial spasm (HFS) is spread of the blink reflex responses to muscles other than the orbicularis oculi. The pathophysiological mechanisms underlying the generation of such abnormal responses include lateral spread of activity between neighboring fibers of the facial nerve and hyperexcitability of facial motoneurons. In this report we present evidence for another mechanism that can contribute to the generation of responses in lower facial muscles resembling the R1 response of the blink reflex. In 13 HFS patients, we studied the responses induced in orbicularis oris by electrical stimuli applied at various sites between the supraorbital and zygomatic areas. We identified responses with two different components: an early and very stable component, with an onset latency ranging from 10.5 to 14.8 ms, and a more irregular longer-latency component. Displacement of the stimulation site away from the supraorbital nerve and towards the extracranial origin of the facial nerve caused a progressive shortening of response latency. These features indicate that, in our patients, the shortest latency component of the orbicularis oris response was likely generated by antidromic conduction in facial nerve motor axons followed by axono-axonal activation of the fibers innervating the lower facial muscles. Our results suggest that motor axono-axonal responses are generated by stimulation of facial nerve terminals in HFS.  相似文献   

3.
The blink reflex cannot normally be elicited during surgical anesthesia using inhalation anesthetics. However, in patients with hemifacial spasm (HFS) the early component of the reflex response (R1) can be elicited on the affected side but not on the unaffected side during such anesthesia. The electromyographic (EMG) response from the mentalis muscle to stimulation of the supraorbital nerve was recorded during microvascular decompression (MVD) of the facial nerve to relieve HFS and compared to the response from the same muscle to stimulation of the zygomatic branch of the facial nerve in four patients. During the operation before the facial nerve was decompressed, contractions in both the orbicularis oculi and the mentalis muscles could be elicited by stimulation of the supraorbital nerve (mean latencies 12.2 +/- 1.9 and 12.9 +/- 2.0 ms, respectively). When the facial nerve had been decompressed the blink reflex could no longer be elicited, and there was no response from the mentalis muscle to stimulation of the zygomatic branch of the facial nerve. Compound action potentials (CAP) recorded from the 7th cranial nerve in response to stimulation of the supraorbital nerve had latencies of 7.5 ms +/- 1.4 ms to the negative peak.  相似文献   

4.
OBJECTIVE: To study the electrophysiologic effects of unilateral facial weakness on the excitability of the neuronal circuitry underlying blink reflex, and to localize the site of changes in blink reflex excitability that occur after facial weakness. BACKGROUND: Eyelid kinematic studies suggest that adaptive modification of the blink reflex occurs after facial weakness. Such adaptations generally optimize eye closure. A report of blepharospasm following Bell's palsy suggests that dysfunctional adaptive changes can also occur. METHODS: Blink reflex recovery was evaluated with paired stimulation of the supraorbital nerve at different interstimulus intervals. Comparisons were made between normal control subjects and patients with Bell's palsy who either recovered facial strength or who had persistent weakness. RESULTS: Blink reflex recovery was enhanced in patients with residual weakness but not in patients who recovered facial strength. Facial muscles on weak and unaffected sides showed enhancement. In patients with residual weakness, earlier blink reflex recovery occurred when stimulating the supraorbital nerve on the weak side. Sensory thresholds were symmetric. CONCLUSION: Enhancement of blink reflex recovery is dependent on ongoing facial weakness. Faster recovery when stimulating the supraorbital nerve on the paretic side suggests that sensitization may be lateralized, and suggests a role for abnormal afferent input in maintaining sensitization. Interneurons in the blink reflex pathway are the best candidates for the locus of this plasticity.  相似文献   

5.
Functional motor control requires perfect matching of the central connections of motoneurons with their peripheral inputs. It is not known, however, to what extent these central circuits are influenced by target muscles, either during development or after a lesion. Surgical interventions aimed at restoring function after peripheral nerve lesions provide an opportunity for studying this interaction in the mature human nervous system. A patient was studied in whom the spinal accessory nerve was anastomosed into a lesioned facial nerve, allowing voluntary contractions of the previously paralysed muscles. This procedure, in addition to replacing the facial neurons at peripheral synapses, allowed a new short latency trigeminospinal accessory reflex of the R1 blink reflex type to be demonstrated, implying that trigeminal neurons had sprouted towards spinal accessory motoneurons over a distance of at least 1 cm. These results show an unexpected influence of the periphery in remodelling central connectivity in humans. The motoneuronal excitability for this R1 reflex response was therefore studied to compare the convergent properties of facial motoneurons (normal side) with those of the spinal accessory motoneurons (operated side) using a classic double shock technique with variable interstimulus intervals (conditioning test stimulus). On the normal side, conditioning stimuli (to the ipsilateral or contralateral infraliminar supraorbital nerve) produced a clearcut facilitation of the R1 blink reflex when the interstimulus interval was 30-80 ms. By contrast, a similar procedure had no effect on the R1 blink reflex mediated via the trigeminal-spinal accessory reflex arc. These data indicate that despite the heterotopic sprouting of some axons from neurons in the XIth nucleus, motoneurons involved in the newly formed reflex arc remain totally inexcitable by other trigeminal afferents and seem unable to ensure a physiological functioning of the normal blink reflex. Thus the functional relevance of the recovered R1 blink response remains unclear.  相似文献   

6.
Patients with hemifacial spasm (HFS) have an abnormal muscle response (AMR) that can be elicited by stimulating one branch of the facial nerve and recording electromyographically from muscles innervated by other branches of the facial nerve. In addition, the R1 component of the blink reflex can be elicited from the affected side in patients with HFS who are undergoing microvascular decompression (MVD) operations under inhalation anesthesia. A synkinetic component of the blink reflex response that corresponds to the R1 component can be recorded from the mentalis muscle. In the present study we show that the blink reflex elicited by electrical stimulation of the supraorbital nerve can suppress the AMR elicited by electrical stimulation of the temporal branch of the facial nerve in patients with HFS when the interval between stimulation of the supraorbital nerve and stimulation of the temporal branch of the facial nerve (interstimulus interval, ISI) is such that the blink reflex response would appear later than the AMR if they had been elicited independently. Within a short range of ISIs the two responses suppress each other partially or totally. We find evidence that the suppression of the AMR is the result of an interaction in the facial motonucleus. We believe that the results of the present study support the hypothesis that the facial motonucleus is hyperactive in patients with HFS, and we suggest that the AMR is a result of backfiring from the facial motonucleus and that it may thus be an exaggerated F-response.  相似文献   

7.
It has been claimed that functional recovery of the blink reflex occurs after hypoglossal-facial nerve anastomosis. This has been explained through central nervous system plasticity and reorganization of neuronal connections. In 5 patients with reinnervated facial muscles after hypoglossal-facial nerve anastomosis, we observed “R1-like” responses that fulfilled criteria for facial nerve axon reflexes or ephapses. First, displacement of the stimulating electrode from the supraorbital to the zygomatic area shortened the latency of the evoked response. Second, these responses were stable (jitter mean consecutive difference < 25 μs) and they had complex potential shapes unmodified by high-frequency stimulation. Finally, collision techniques demonstrated antidromic conduction of impulses in the facial nerve from supraorbital to zygomatic points. Therefore, these “R1-like” responses are not the early component of a functionally recovered blink reflex but motor axon reflexes or ephaptic responses similar to the short latency responses observed following facial nerve regeneration or from sutured nerves in human forearms. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
A crossed short latency component (R1) of the human blink reflex could be elicited in orbicularis oculi muscles to stimulation of the contralateral supraorbital nerve, when infraliminal conditioning stimuli were applied to various cutaneous afferents of the body (facial, upper and lower limbs). The crossed R1 responses appeared when the time interval between the conditioning and the test stimuli was of 30 to 40 ms, 50 to 65 ms and 95 to 110 ms for facial, upper and lower limbs afferents respectively. For the same time intervals, these conditioning volleys also exerted a facilitatory effect on the ipsilateral R1 responses. Furthermore, crossed R1 responses were also obtained during supraspinal facilitation induced by a voluntary contraction of the eyelids. These data show that crossed oligosynaptic trigemino-facial reflex connections exist in normal subjects, which become functional when adequate conditioning stimuli are available.  相似文献   

9.
We studied 18 patients with complete unilateral denervation of the facial muscles after idiopathic facial nerve palsy to determine whether motoneuronal excitability is enhanced in the few motor units that are active at onset of muscle reinnervation. The study was carried out between 75 and 90 days after the facial nerve lesion. We used two needle electrodes to record simultaneously the spontaneous and voluntary activity of the orbicularis oris (OOris) and orbicularis oculi (OOculi) muscles, as well as the responses to ipsilateral and contralateral facial and supraorbital nerve stimuli. All patients showed involuntary firing of motor unit action potentials (MUAPs) in at least one of the muscles. Synkinetic activation of motor units in the OOris was induced by spontaneous blinking in all patients, and by inhalation and swallowing in some. Electrical stimulation of the ipsilateral facial nerve induced a direct M response in only 4 patients. In contrast, long-latency reflex responses were induced in both muscles by electrical stimulation of ipsilateral and contralateral facial and supraorbital nerves in all patients, at latencies ranging between 44 and 132 ms. The shape of such MUAP reflex responses was the same as that of the MUAPs seen to fire at rest. These findings provide evidence of enhanced excitability of facial motoneurons in our patients. Such hyperexcitability may be partly responsible for the postparalytic motor dysfunction syndrome that occurs after facial palsy with severe axonal damage.  相似文献   

10.
In normal subjects, electrical stimulation of trigeminal mucosal afferents (lingual nerve - V3) can elicit a short latency (12.5+/-0. 3 ms; mean+/-S.D.) reflex response in the ipsilateral genioglossus muscle (Maisonobe et al., Reflexes elicited from cutaneous and mucosal trigeminal afferents in normal human subjects. Brain Res. 1998;810:220-228). In the present study on patients with hypoglossal-facial (XII-VII) nerve anastomoses, we were able to record similar R1-type blink reflex responses in the orbicularis oculi muscles, following stimulation of either supraorbital nerve (V1) or lingual nerve (V3) afferents. However, these responses were not present in normal control subjects. Voluntary swallowing movements produced clear-cut facilitations of the R1 blink reflex response elicited by stimulation of V1 afferents. In a conditioning-test procedure with a variable inter-stimulus interval, the R1 blink reflex response elicited by supraorbital nerve stimulation was facilitated by an ipsilateral mucosal conditioning stimulus in the V3 region. This facilitatory effect was maximal when the two stimuli (conditioning and test) were applied simultaneously. This effect was not observed on the R1 component of the blink reflex in the normal control subjects. These data strongly suggest that in patients with XII-VII anastomoses, but not in normal subjects, both cutaneous (V1) and mucosal (V3) trigeminal afferents project onto the same interneurones in the trigeminal principal sensory nucleus. This clearly supports the idea that peripheral manipulation of the VIIth and the XIIth nerves induces a plastic change within this nucleus.  相似文献   

11.
ObjectiveBone-conducted vibration (BCV) in the midline at the hairline (Fz), results in short latency potentials recorded by surface electrodes beneath the eyes – the ocular vestibular-evoked myogenic potential (oVEMP). The early negative component of the oVEMP, n10, is due to vestibular stimulation, however it is similar to the early R1 component of the blink reflex. Here we seek to dissociate n10 from R1.MethodsSurface potentials were recorded from the infraorbital electromyogram of 10 healthy subjects, 6 patients with bilateral vestibular loss, 2 with unilateral vestibular loss, 4 with facial palsy and 3 with facial and vestibular nerve lesions on the same side. BCV was delivered at Fz, the inion, the glabella or the supraorbital ridge using a tendon hammer or a bone-conduction vibrator.ResultsOnset latencies of the n10 evoked by taps at Fz or inion were significantly shorter than the R1 components of blink responses to supraorbital and glabellar stimuli. Upward gaze increased the amplitude of n10 but not R1. The n10 was absent bilaterally in patients with bilateral vestibular loss and beneath the contralesional eye in patients with unilateral vestibular loss, but in both these groups of patients R1 was preserved. In severe facial palsy the R1 component was absent or delayed and attenuated ipsilesionally, but n10 was preserved bilaterally. In subjects with unilateral facial and vestibular nerve lesions (Herpes Zoster of the facial and vestibulocochlear nerves) the dissociation was complete – the ipsilesional R1 was absent or attenuated whereas the ipsilesional n10 was preserved.Conclusionsn10 is distinguished from R1 by its earlier onset, laterality, modulation by gaze position and dissociation in patient groups.SignificanceThe n10 component evoked by BCV at Fz is not the R1 component of the blink reflex.  相似文献   

12.
A series of 53 cases of primary hemifacial spasm have been evaluated by means of blink reflexes and their results compared with a normal control group. Reflex responses were obtained by percutaneous electrical stimulus of both the supraorbital nerve (trigemino-facial reflex), and the facial nerve at the stylo-mastoid region (facio-facial reflex). The R2 response was considered abnormal when its latency was shortened (hyperactivity) or delayed (hypoactivity). Thirty-six out of 53 cases with primary hemifacial spasm showed abnormal responses, with a combination of facial nerve impairment (delayed R2 in the facio-facial reflex) and trigeminal-facial hyperactivity (shortened R2 in the trigemino-facial reflex). Five cases showed hyperactivity in both the trigemino-facial reflex and the facio-facial reflex reflexes. These results suggest a state of hyperexcitability, probably at the level of the facial nucleus, combined with a peripheral facial nerve involvement in a high proportion of patients with primary hemifacial spasm.  相似文献   

13.
The blink reflex in patients with idiopathic torsion dystonia   总被引:2,自引:0,他引:2  
The blink reflex and its recovery cycle were examined in 57 patients with idiopathic dystonia affecting different parts of the body. The group comprised 9 patients with generalized and 15 with segmental forms, 19 with torticollis, and 14 with focal arm dystonia. None had blepharospasm. The duration and amplitude of the R2 component of the blink reflex showed only minor changes. However, its recovery cycle to paired supraorbital nerve stimuli was abnormal in all groups of patients, except those with focal arm dystonia. These findings may be interpreted as showing abnormal control of the interneuronal networks mediating the blink reflex in patients with dystonia affecting sites other than the facial muscles. The fact that the principal changes were seen in patients with torticollis, and generalized or segmental dystonia, suggests that the extent of dystonia (rather than the severity) and, therefore, the close proximity to the cranial muscles was important in determining the extent of the abnormal interneuron function.  相似文献   

14.
A brief mechanical or electrical stimulus to peripheral nerve afferents from the upper and lower limbs elicited a small and inconsistent EMG response of the orbicularis oculi muscles. This response was facilitated when the stimuli were delivered at fixed leading time intervals, of 45–300 ms, with respect to a supraorbital nerve electrical stimulus. Also, the peripheral nerve stimulus modified the conventional blink reflex responses, inducing facilitation of R1 and inhibition of R2. These results suggest a complex processing of sensory inputs from the face and the limbs at the brainstem, where they are probably integrated in a network of interneurons influencing the excitability of facial motoneurons.  相似文献   

15.
Sensorimotor integration is an essential feature of the central nervous system that contributes to the accurate performance of motor tasks. Some patients with multiple system atrophy with parkinsonian features (MSAp) exhibit clinical signs compatible with an abnormal central nervous system excitability to somatosen– sory inputs, such as action myoclonus or enhanced cutaneo–muscular reflexes. To investigate further the site where such dysfunction in sensorimotor integration takes place, we examined the inhibitory effects of a cutaneous afferent volley at two different levels of the motor system in 10 MSAp patients and in 10 agematched healthy volunteers. Electrical digital nerve stimuli were given as the conditioning stimulus for the motor evoked potentials (MEP) elicited by transcranial magnetic stimulation in hand muscles, and for the blink reflex responses obtained in the orbicularis oculi muscles by supraorbital nerve stimulation. Intervals for the conditioning were 20 to 50ms for the MEP and 90 to 110ms for the blink reflex. The MEP was significantly inhibited in test trials in healthy volunteers, reaching a mean of 32% of the baseline values at the ISI of 35 ms. Significant inhibition occurred also in the blink reflex, in which the R2 response was a mean of 12% of baseline values at the ISI of 100 ms. The inhibitory effects were abnormally reduced in 8 patients on the MEP, and in 7 patients on the blink reflex. There were significant group differences between patients and control subjects in the size of the conditioned MEP and blink reflex. These results suggest that sensorimotor integration is abnormal in patients with MSAp in at least two central nervous system sites: the sensorimotor cortex, and the brainstem reticular formation.  相似文献   

16.
The authors describe the clinical and electrophysiologic findings in a patient with synkinesis between muscles innervated by the facial and trigeminal nerves after resection of a trigeminal schwannoma. Conventional facial nerve conduction and blink reflex studies were normal. Stimulation of the supraorbital and facial nerves elicited reproducible responses in the masseter and pterygoid muscles, confirming a peripheral site of aberrant regeneration of the facial and trigeminal nerves.  相似文献   

17.
The corneal reflex and the R2 component of the blink reflex   总被引:2,自引:0,他引:2  
A reflex contraction of the human orbicularis oculi muscles can be evoked by stimulation of either the supraorbital region ("blink reflex") or the cornea ("corneal reflex"). We found that the latency of the corneal reflex was longer, and the duration was longer than the R2 component of the blink reflex. The absolute refractory period of the R2 component of the blink reflex was longer after supraorbital than after corneal conditioning stimulation. When the R2 component of the blink reflex was habituated by repetitive stimuli, stimulation of the cornea still evoked a reflex, but supraorbital stimulation produced only a depressed R2 response. These findings suggest that the two reflexes do not have identical neural connections.  相似文献   

18.
OBJECTIVES: Patients with peripheral facial palsy (PFP) may present with transient hyperkinetic movement disorders in the side contralateral to the paralysis. One possible cause of such enhanced motor activity is sensitization of reflex responses to afferent inputs from the unprotected cornea. We hypothesized that if this sensitization occurs, the size of the orbicularis oculi (OOc) responses induced by afferents from the ophthalmic branch of the paralyzed side would be larger than those induced by afferents from the contralateral side. METHODS: In 68 patients with complete PFP and in a group of 30 age-matched control subjects we recorded the response of the OOc muscle of one side to electrical stimulation of the supraorbital nerve of both sides, and calculated the ratio between R2c and R2 (R2c/R2). RESULTS: The mean R2c/R2 ratio was significantly larger in patients than in control subjects (unpaired t test, P<0.05). Larger R2c than R2 responses were observed in 23.1% of control subjects and in 80.9% of patients (chi(2)=13.3, P<0.01). CONCLUSIONS: Our results suggest that patients with PFP have an enhanced blink reflex gain to inputs from the paralyzed side compared to those of the non-paralyzed side. Sensitization of the blink reflex polysynaptic pathways to inputs carried by afferent fibers from the ophthalmic branch of the paralyzed side can play a role in inducing an abnormal facial motor behavior after PFP.  相似文献   

19.
To determine the physiological features of startle reactions in children with hereditary hyperekplexia, motor responses to auditory and trigeminal stimulation were investigated in 2 patients and 3 control subjects by means of multiple surface electromyographic recordings. The pattern of motor activation in auditory startle was similar in the two groups, although the responses in the patients were increased in terms of the extent of the responses. In the patients, nose taps elicited two separate responses in various muscles. The initial, short-latency response was often elicited in all the muscles examined. This reflex was similar to the R1 component of the electrical blink reflex. In addition, the early reflex was immediately followed by the second response, which also appeared widely and was similar to R2 of the blink reflex. Taps on the supraorbital nerve elicited multiple startle patterns consisting of these two responses, although generalization was infrequent. In the control subjects, these responses were elicited in a few muscles. In the hyperekplectic children, both the early and second responses to trigeminal stimulation were increased, in addition to the audiogenic reflex. It was suggested that enhancement of these responses occurred due to hyperexcitability in the brainstem reticular formation in our patients.  相似文献   

20.
Fifty patients with Bell's palsy and 30 patients with etiologically different symptomatic peripheral facial nerve palsy were studied by means of electrically evoked blink reflexes 1-23 days after onset of paresis. Their results were compared with a normal control group of 30 healthy subjects. In a significant number of patients (64% in Bell's palsy and 53% in symptomatic facial nerve palsy) a contralateral early blink reflex response (R1) could be elicited upon stimulation of the normal side as compared to 13% in the control group. It is suggested that this result may be explained by synaptic reorganization of the facial nucleus leading to functional unmasking of pre-existing crossed trigemino-facial reflex pathways during regeneration. This view is in line with previous experimental data in animals on the time course of structural changes in the facial nucleus after lesioning of the ipsilateral facial nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号