首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
ONO-4007 is a synthetic analogue of the lipid A moiety of bacterial lipopolysaccharide, which exhibits antitumor activity by the induction of intratumoral tumor necrosis factor alpha, the potentiation of tumor-infiltrating macrophages, and the inhibition of angiogenesis. Interleukin (IL)-1 alpha, IL-6, and IL-12 induction by ONO-4007 activates cytotoxic natural killer cells to up-regulate IFN-gamma and nitric oxide synthase activity. ONO-4007 was given to 24 patients (13 males and 11 females; median age, 53 years) as a 30-min i.v. infusion on day 1, followed on day 15 by a first treatment cycle consisting of three weekly infusions at the same dose, followed by a rest period of 1 week. Cohorts of six patients received up to a maximum of four treatment cycles at increasing dose levels (75, 100, and 125 mg). The maximum tolerated dose was 125 mg, with grade 3 National Cancer Institute Common Toxicity Criteria toxicity (rigors with cyanosis) occurring in two of six patients at this dose level. An additional six patients were treated at 100 mg, the dose below the maximum tolerated dose. Other toxicities included grade 2 National Cancer Institute Common Toxicity Criteria myalgia, nausea, and hypotension. The pharmacokinetics of ONO-4007 appeared to be independent of dose and showed linearity with respect to time. ONO-4007 has a low systemic clearance (approximately 1.3 ml/min) and a small volume of distribution (5-8 liters) with a long t1/2 of 74-95 h. The administration of ONO-4007 was shown to result in a significant increase in circulating levels of tumor necrosis factor alpha and IL-6. No objective antitumor responses were observed. Seven patients maintained stable disease for at least two cycles, whereas five patients maintained stable disease for the full four-cycle duration of the study. Additional studies are required to determine the antitumor activity of ONO-4007.  相似文献   

2.
The pathophysiological functions and the underlying molecular basis of PE /PPE proteins of M. tuberculosis remain largely unknown. In this study, we focused on the link between PPE26 and host response. We demonstrated that PPE26 can induce extensive inflammatory responses in macrophages through triggering the cross-talk of multiple pathways involved in the host response, as revealed by iTRAQ-based subcellular quantitative proteomics. We observed that PPE26 is able to specifically bind to TLR2 leading to the subsequent activation of MAPKs and NF-κB signaling. PPE26 functionally stimulates macrophage activation by augmenting pro-inflammatory cytokine production (TNF-α, IL-6 and IL-12 p40) and the expression of cell surface markers (CD80, CD86, MHC class I and II). We observed that PPE26-treated macrophages effectively polarizes naïve CD4+ T cells to up-regulate CXCR3 expression, and to secrete IFN-γ and IL-2, indicating PPE26 contributes to the Th1 polarization during the immune response. Importantly, rBCG::PPE26 induces stronger antigen-specific TNF-α and IFN-γ activity, and higher levels of the Th1 cytokines TNF-α and IFN-γ comparable to BCG. Moreover, PPE26 effectively induces the reciprocal expansion of effector/memory CD4+/CD8+ CD44highCD62Llow T cells in the spleens of mice immunized with this strain. These results suggest that PPE26 may be a TLR2 agonist that stimulates innate immunity and adaptive immunity, indicating that PPE26 is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis.  相似文献   

3.
We investigated in the current study the effect of TX-1877, a bifunctional hypoxic cell radiosensitizer, in augmenting anticancer host response. In the syngeneic squamous cell carcinoma-bearing mouse model, a single administration of TX-1877 significantly inhibited the primary tumor growth as well as lung metastasis. TX-1877 administration resulted in a significant infiltration of immune cells, such as CD4+T, CD8+T cells, macrophages and dendritic cells (DCs), and an increased expression of chemokines for cytotoxic T lymphocytes (CTLs), helper T-cell 1 (Th1) cells, monocytes/macrophages and DCs, in tumor tissues. Nitric oxide (NO) production and the expression of inducible NO synthase (iNOS) and interferon-gamma, a major Th1 cytokine that plays a major role in anticancer immunity, were also enhanced. Furthermore, neutralization of NO by N-monomethyl-L-arginine acetate resulted in a marked inhibition of the antitumor effect of TX-1877. In tumor-draining lymph nodes, MHC class I-restricted CD8+ memory CTLs specific for inoculated cancer cells were induced by TX-1877. In in vitro experiments, TX-1877 induced chemokines and iNOS/NO in several types of culture cells. These findings strongly suggested that TX-1877 induces migration of CD8+CTLs, CD4+Th1 cells, macrophage/monocytes and dendritic cells into the tumor site, and that this migration is mediated by chemokine induction. In addition, it was suggested that NO produced by several types of cells stimulated by TX-1877 in the tumor sites plays a major role in the anticancer effect of TX-1877. TX-1877 was thus shown to be an effective immunopotentiator as well as a hypoxic cell radiosensitizer.  相似文献   

4.
5.
Purpose  Prostate cancer is a major cause of cancer mortality in American males. Once prostate cancer has metastasized, there is currently no curative therapy available. The development of effective agents is therefore a continuing effort to combat this disease. In the present study, the effects and potential mechanisms of NSC606985 (NSC), a water-soluble camptothecin analog, in prostate cancer cells were investigated. Methods  Prostatic tumor cells, DU-145, LNCaP and PC-3, were used for the study. Cell proliferation, cell cycle, cell apoptosis and caspase 3/7 activity were determined in the presence or absence of NSC. The levels of Bax and Bak, and the release of cytochrome c from mitochondria were analyzed by Western blot. Results  Treatment with NSC at nanomolar concentrations produced a time- and dose-dependent decrease in viable cell numbers of multiple prostate cancer cells. In DU-145 cells, NSC produced a time-and dose-dependent induction of cell apoptosis and cell cycle arrest as evidenced by cell morphological changes, increases in S-phase and sub-G1 cell fractions, an elevation of caspase 3/7 activity, DNA fragmentation and apoptotic cells. NSC increased the levels of apoptotic proteins, Bax and Bak, and induced a release of cytochrome c from mitochondria to cytosol in DU-145 cells. Co-administration of Z-VAD-FMK, a pan-caspase inhibitor, blocked NSC-induced caspase 3/7 activity and cell apoptosis without affecting NSC-induced cell cycle arrest. In contrast, co-administration of a PKCδ inhibitor, rottlerin, had no significant effect on NSC induction of caspase activity, and slightly potentiated NSC-induced cell death. Furthermore, like camptothecin, a mutation of topoisomerase 1 that prevents the binding of camptothecin to the enzyme completely abolished the NSC effect in DU-145 cells. Conclusion  The data obtained suggest that NSC is able to decrease cell growth, induce cell apoptosis and cause growth arrest in prostatic tumor cells, which may involve an interaction with topoisomerase 1 and an activation of mitochondrial apoptotic pathway.  相似文献   

6.
The therapeutic mechanism of taxol is believed to reside primarily in its ability to stabilize microtubules and prevent cell progression through mitosis. Taxol also can activate macrophage-mediated antitumor mechanism through a nitric oxide (NO)-dependent pathway. To address whether any mechanisms account for superficial urinary bladder tumor cell killing, we evaluated the effects of taxol on the growth and viability of murine bladder tumor-2 (MBT-2) cells in vitro, both in the absence and presence of murine macrophages. In addition, we evaluated whether a soluble factor generated from MBT-2 cells could modulate the antitumor activity of the taxol-activated macrophages. Although taxol inhibited the growth of MBT-2 cells, it did not kill the tumor cells. However, preincubation of macrophages with taxol significantly decreased the viability of MBT-2 cells. Secretion of NO correlated with MBT-2 cell killing, and the activated macrophages failed to kill tumor cell targets in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of NO synthase. By the co-culture of macrophages and MBT-2 cells, untreated macrophages also released modest amount of NO and this was synergistically augmented by the treatment with taxol, indicating that MBT-2 tumor cells released some unknown factor that activated the macrophages and enhanced NO production. We named this factor the tumor-derived macrophage activating factor (TMAF). The TMAF-mediated activation of macrophages to enhance the NO production was not blocked by treatment of macrophages with oxidized low-density lipoprotein (Ox-LDL), implying that the scavenger receptor of macrophages is not involved. Sodium nitroprusside (SNP), an NO donor given to the MBT-2 cells, increased the activities of c-Jun N-terminal kinase and caspase-3 in MBT-2 cells and associated with nucleosomal fragmentation or apoptosis, whereas taxol had no direct effect on these parameters. Collectively, our results strongly suggest that taxol kills the murine bladder tumor cells through indirect activation of macrophages via NO-dependent apoptosis, instead of its better-known role as the direct antimitotic action. Our results further demonstrate that TMAF acts in synergy with taxol to activate the macrophages to elicit enhanced tumor cell killing ability.  相似文献   

7.
We have investigated the antimetastatic effect of a new synthetic lipid A analogue, of low endotoxicity, DT-5461, against two highly metastatic tumor cell lines, L5178Y-ML25 T-lymphoma and B16-BL6 melanoma cells in mice. Four intermittent i.v. administrations of DT-5461 at intervals of 4 days resulted in a significant inhibition of liver metastasis caused by i.v. injection of L5178Y-ML25 cells and lung metastasis of B16-BL6 cells in the experimental metastasis models. Intraperitoneal and intranasal administrations as well as i.v. administration of DT-5461 were also effective in preventing lung metastasis of the melanoma cells. Multiple administrations of DT-5461 before the surgical excision of primary tumors significantly reduced the number of lung colonies of melanoma cells and primary tumor size. Similarly, this treatment modality after the surgical excision of primary tumors showed a greater reduction of lung tumor colonies as compared with lipopolysaccharide, a synthetic lipid A (No. 506) and its analogue as well as untreated control in the spontaneous lung metastasis model. Furthermore, the group that received DT-5461 after the inoculation of lymphoma or melanoma cells showed significantly enhanced survival rate compared with the untreated control. These results suggested that DT-5461 may be therapeutically useful for the inhibition of tumor metastasis.  相似文献   

8.
The clinical potential of tumor therapies must be evaluated using animal models closely resembling human cancers. We investigated the impact of locally delivered interferon-gamma (IFN-gamma) on primary hepatocarcinoma spontaneously developed by T-SV40 transgenic mice. A single intratumor injection of adenovirus IFN-gamma was sufficient enough to induce in vivo production of biologically active IFN-gamma, as assessed by STAT1 activation. IFN-gamma secretion led to the regression of primary tumor, principally by apoptosis of tumor hepatocytes. The lack of T-cells infiltrates in the liver upon treatment excluded a role of a specific immune response. In contrast, indirect pathways may include tumoricidal function of macrophages. Indeed, they were massively recruited in the entire liver under IFN-gamma treatment; transmigration through hepatic blood vessels could be observed and co-localization with damaged hepatocytes was obvious. This correlated with nonparenchymal liver cell iNOS expression and high level of NO in hepatic extracts. Moreover, in vitro experiments showed that NO releasing agents induced cell death of freshly isolated tumor hepatocytes, suggesting that NO could be one of the major effector molecules. Altogether, these observations defined an important role of IFN-gamma in controlling tumor development in a model of primary hepatocarcinoma.  相似文献   

9.
10.
Rat peritoneal macrophages were induced to produce high amounts of nitric oxide (NO) when rats were challenged by MTH68/H, (a live attenuated oncolytic Newcastle disease virus strain). The increase in NO production was observed to be viral particle dose dependent. The higher NO production measured could be due to the enhanced expression of NO synthase II enzyme. In addition, viral administration caused a higher macrophage cell count in the peritoneal cavity of treated rats. Interleukin-1 and granulocyte-monocyte colony stimulating factors were also produced by the induced macrophages. COS 7, a transformed cell line was killed by both NO donors and activated macrophages; the latter effect was markedly decreased in the presence of the inhibitors of NO production. Cytotoxic effect of NO was evidenced by the decrease of cell viability and proliferation of COS 7 cells. Excessive NO production may also be cytotoxic for macrophages themselves as proved by the addition of exogenous NO donors. These results strongly suggested the participation of induced NO synthesis of macrophages in the anti-tumor effect of MTH-68/H vaccine treatment.  相似文献   

11.

Background  

The novel cytokine, interleukin (IL)-18, is a strong interferon-γ inducer and costimulatory factor in Th1 cell activation. IL-18 triggers IFN-γ production and enhances cytolytic activity in both T and NK cells. However, the exact mechanism of antitumor action of IL-18 remains to be clarified. To determine the effects of IL-18 plasmid DNA on hepatic cancer in mice, CT26 murine colon adenocarcinoma cells were established in mouse liver.  相似文献   

12.
Nitric oxide (NO) induces differentiation and apoptosis in acute myelogenous leukemia (AML) cells. The NO prodrug O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate, or JS-K, has potent antileukemic activity. JS-K induces apoptosis in HL-60 cells by a caspase-dependent mechanism. The purpose of this study was to determine the pathway through which JS-K induces apoptosis. We show that JS-K alters mitochondrial membrane potential (DeltaPsim) and induces cytochrome c release from mitochondria into the cytoplasm. Treatment with JS-K resulted in activation of Caspase (Casp) 9, Casp 3 and Casp 8. JS-K constitutes a promising lead for a new class of anti-leukemic agents.  相似文献   

13.
Class A scavenger receptors (SR-A, CD204) are highly expressed in tumor-associated macrophages (TAM). To investigate the function of SR-A in TAM, wild-type and SR-A-deficient (SR-A−/−) mice were injected with EL4 cells. Although these groups of mice did not differ in the numbers of infiltrating macrophages and lymphocytes and in neovascularization, SR-A−/− mice had delayed growth of EL4 tumors. Expression of inducible nitric oxide (NO) synthase and interferon (IFN)-γ mRNA increased significantly in tumor tissues from SR-A−/− mice. Engulfment of necrotic EL4 cells induced upregulation of NO and IFN-γ production by cultured macrophages, and production of NO and IFN-γ increased in SR-A−/− macrophages in vitro . IFN-β production by cultured macrophages was also elevated in SR-A−/− macrophages in vitro . These results suggested that the antitumor activity of macrophages increased in SR-A−/− mice because of upregulation of NO and IFN-γ production. These data indicate an important role of SR-A in regulating TAM function by inhibiting toll-like receptor (TLR)4–IFN-β signaling. ( Cancer Sci 2009); 00: 000–000)  相似文献   

14.
NO-mediated inhibition of base excision DNA repair may potentiate oxidativeDNA damage in cells and could be relevant to carcinogenesis associated with chronic inflammation. Because 8-oxoguanine, a ubiquitous oxidative DNA lesion, is repaired predominantly by human 8-oxoguanine glycosylase (hOgg1), our aim was to determine whether NO directly inhibits its repair activity. Neither induction of NO-generating enzyme inducible NO synthase nor treatment with S-nitroso-N-acetyl-D-L-pencillamine altered expression of hOgg1 in a human cholangiocarcinoma cell line (KMBC). In contrast, both treatments completely inhibited activity of hOgg1 immunoprecipitated from KMBC cells overexpressing hOgg1 and in a cell-free system. Both NO and peroxynitrite were capable of inhibiting hOgg1 activity. Inhibition of hOgg1 protein was characterized by formation of S-nitrosothiol adducts and loss/ejection of zinc ions. Our data indicate that NO, an inflammatory mediator, directly inhibits a key base excision repair enzyme (hOgg1) responsible for base excision repair of 8-oxoguanine. These data support the concept that NO-mediated inhibition of DNA contributes to the mutagenic environment of chronic inflammation.  相似文献   

15.
Stimulation of [methyl-3H]thymidine incorporation in mixed cultures of mouse peritoneal cells (PC) and tumor cells required a large adherent PC. Flow cytometric analysis, as well as autoradiography, showed that the stimulation involved increased proliferation of tumor cells. The stimulation required contact between tumor and PC; it was partly inhibited by Trasylol (aprotinin) and potentiated by dexamethasone. In addition, there was minor stimulation of PC by a soluble product of tumor cells; this stimulation was not affected by Trasylol or dexamethasone. It is suggested that macrophages can stimulate tumor cell proliferation and that such stimulation may be an important factor in host-tumor relationships.  相似文献   

16.
The effect of tumor necrosis factor alpha (TNF-alpha) on vascular resistance, nitric oxide production, and consumption of oxygen and glucose was examined in a perfused tissue-isolated tumor model in nude mice. One experimental group was perfused with heparinized Krebs-Henseleit buffer, a second one was perfused with TNF-alpha (500 microgram/kg) 5 h before perfusion. The vascular resistance increased significantly 5 h after TNF-alpha injection. The increase in vascular resistance did not seem to be mediated by a decrease in tumor nitric oxide production, as determined by perfusate nitrate/nitrite concentrations, but may be due to aggregation of leukocytes, platelets, and erythrocytes and/or endothelial consumption among the three experimental groups. The oxygen consumption was linearly dependent on the amount of available oxygen in the perfusate, whereas the glucose consumption was constant and independent of the glucose delivery rate. The present experiments provide new insights into physiological and metabolic mechanisms of action of TNF- alpha for optimization of future treatment schedules involving TNF-alpha.  相似文献   

17.
18.
19.
20.
PURPOSE: The purpose of this research was to evaluate theinfluence of the combination of the vitamin D(3) analogue EB 1089 with fractionated radiation on growth and apoptosis of MCF-7 tumor xenografts in athymic mice. EXPERIMENTAL DESIGN: Four to six-week-old ovariectomized mice were injected s.c. with MCF-7 tumor cells suspended in Matrigel. When tumors reached a size of approximately 150-200 mm(3), animals were exposed to EB 1089 (45 pmols/day) for 8 days, whereas mice that were to be irradiated in the absence of EB 1089 received solvent (Solutol HS15). After the termination of EB 1089 and solvent administration, tumors were irradiated (3 x 5 Gy) over a period of 3 days using a 300 KV Pantax Therapax irradiator. Tumor growth was monitored for 25-30 days after the last dose of irradiation in a double-blind manner; tumor cellularity was assessed by H&E and trichrome staining, cell proliferation by Ki-67 staining, and apoptosis by terminal deoxynucleotidyltransferase-mediated nick end labeling assay. Rates of tumor regression were assessed using a mixed effects statistical model. RESULTS: A significantly higher rate of decline in tumor volume (7.5% per day) was observed in mice exposed to radiation subsequent to EB 1089 compared with animals treated with radiation alone (5.6% per day). Final tumor volumes in animals irradiated after EB 1089 were approximately 50% lower than in the group that received radiation alone. Loss of cellularity, a marked reduction in the fraction of proliferating cells, and the promotion of apoptosis confirmed that the combination of EB 1089 with radiation was significantly more effective than radiation alone in blocking tumor cell growth and promoting tumor cell death. CONCLUSIONS: This work demonstrates that EB 1089 can improve local tumor control by fractionated radiation, in part through the promotion of apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号