首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improving approaches for hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is clinically important because increased numbers of these cells are needed for enhanced transplantation. Chemokine stromal cell derived factor-1 (also known as CXCL12) is believed to be involved in retention of HSCs and HPCs in bone marrow. AMD3100, a selective antagonist of CXCL12 that binds to its receptor, CXCR4, was evaluated in murine and human systems for mobilizing capacity, alone and in combination with granulocyte colony-stimulating factor (G-CSF). AMD3100 induced rapid mobilization of mouse and human HPCs and synergistically augmented G-CSF-induced mobilization of HPCs. AMD3100 also mobilized murine long-term repopulating (LTR) cells that engrafted primary and secondary lethally-irradiated mice, and human CD34(+) cells that can repopulate nonobese diabetic-severe combined immunodeficiency (SCID) mice. AMD3100 synergized with G-CSF to mobilize murine LTR cells and human SCID repopulating cells (SRCs). Human CD34(+) cells isolated after treatment with G-CSF plus AMD3100 expressed a phenotype that was characteristic of highly engrafting mouse HSCs. Synergy of AMD3100 and G-CSF in mobilization was due to enhanced numbers and perhaps other characteristics of the mobilized cells. These results support the hypothesis that the CXCL12-CXCR4 axis is involved in marrow retention of HSCs and HPCs, and demonstrate the clinical potential of AMD3100 for HSC mobilization.  相似文献   

2.
Hematopoietic stem cells (HSC) give rise to cells of all hematopoietic lineages, many of which are short lived. HSC face developmental choices: self-renewal (remain an HSC with long-term multilineage repopulating potential) or differentiation (become an HSC with short-term multilineage repopulating potential and, eventually, a mature cell). There is a large overcapacity of differentiating hematopoietic cells and apoptosis plays a role in regulating their numbers. It is not clear whether apoptosis plays a direct role in regulating HSC numbers. To address this, we have employed a transgenic mouse model that overexpresses BCL-2 in all hematopoietic cells, including HSC: H2K-BCL-2. Cells from H2K-BCL-2 mice have been shown to be protected against a wide variety of apoptosis-inducing challenges. This block in apoptosis affects their HSC compartment. H2K-BCL-2-transgenic mice have increased numbers of HSC in bone marrow (2.4x wild type), but fewer of these cells are in the S/G(2)/M phases of the cell cycle (0.6x wild type). Their HSC have an increased plating efficiency in vitro, engraft at least as well as wild-type HSC in vivo, and have an advantage following competitive reconstitution with wild-type HSC.  相似文献   

3.
4.
HSCs differ during ontogeny in some important parameters, including anatomic site of residence and cell cycling characteristics. In this issue of the JCI, Bowie et al. show that postnatal HSCs as well as fetal liver HSCs in mice are active in the cell cycle at much higher rates than that of adult HSCs; however, this increased frequency of cycling abruptly ceases 4 weeks after birth (see the related article beginning on page 2808). The cycling postnatal HSCs expressed high levels of CXC chemokine ligand 12 (CXCL12, also known as stromal cell-derived factor 1 [SDF-1]), a chemokine previously implicated in stem cell trafficking to the marrow cavity and shown to be expressed by cells within the hematopoietic microenvironment. These cells also possessed an engraftment defect impeding reconstitution in irradiated recipient mice, which was reversible by pretransplant administration of antagonists of the CXCL12 receptor, CXCR4. Such agents are currently clinically available, suggesting that this approach could be used to improve stem cell transplantation and engraftment.  相似文献   

5.
Hematopoietic stem cells (HSCs) reside in specialized bone marrow (BM) niches regulated by the sympathetic nervous system (SNS). Here, we have examined whether mononuclear phagocytes modulate the HSC niche. We defined three populations of BM mononuclear phagocytes that include Gr-1(hi) monocytes (MOs), Gr-1(lo) MOs, and macrophages (MΦ) based on differential expression of Gr-1, CD115, F4/80, and CD169. Using MO and MΦ conditional depletion models, we found that reductions in BM mononuclear phagocytes led to reduced BM CXCL12 levels, the selective down-regulation of HSC retention genes in Nestin(+) niche cells, and egress of HSCs/progenitors to the bloodstream. Furthermore, specific depletion of CD169(+) MΦ, which spares BM MOs, was sufficient to induce HSC/progenitor egress. MΦ depletion also enhanced mobilization induced by a CXCR4 antagonist or granulocyte colony-stimulating factor. These results highlight two antagonistic, tightly balanced pathways that regulate maintenance of HSCs/progenitors in the niche during homeostasis, in which MΦ cross talk with the Nestin(+) niche cell promotes retention, and in contrast, SNS signals enhance egress. Thus, strategies that target BM MΦ hold the potential to augment stem cell yields in patients that mobilize HSCs/progenitors poorly.  相似文献   

6.
The quiescence of hematopoietic stem cells (HSCs) is critical for preserving a lifelong steady pool of HSCs to sustain the highly regenerative hematopoietic system. It is thought that specialized niches in which HSCs reside control the balance between HSC quiescence and self-renewal, yet little is known about the extrinsic signals provided by the niche and how these niche signals regulate such a balance. We report that CXCL12 produced by bone marrow (BM) stromal cells is not only the major chemoattractant for HSCs but also a regulatory factor that controls the quiescence of primitive hematopoietic cells. Addition of CXCL12 into the culture inhibits entry of primitive hematopoietic cells into the cell cycle, and inactivation of its receptor CXCR4 in HSCs causes excessive HSC proliferation. Notably, the hyperproliferative Cxcr4(-/-) HSCs are able to maintain a stable stem cell compartment and sustain hematopoiesis. Thus, we propose that CXCR4/CXCL12 signaling is essential to confine HSCs in the proper niche and controls their proliferation.  相似文献   

7.
8.
Mice and rats lacking the guanosine nucleotide-binding protein Gimap5 exhibit peripheral T cell lymphopenia, and Gimap5 can bind to Bcl-2. We show that Gimap5-deficient mice showed progressive multilineage failure of bone marrow and hematopoiesis. Compared with wild-type counterparts, Gimap5-deficient mice contained more hematopoietic stem cells (HSCs) but fewer lineage-committed hematopoietic progenitors. The reduction of progenitors and differentiated cells in Gimap5-deficient mice resulted in a loss of HSC quiescence. Gimap5-deficient HSCs and progenitors underwent more apoptosis and exhibited defective long-term repopulation capacity. Absence of Gimap5 disrupted interaction between Mcl-1-which is essential for HSC survival-and HSC70, enhanced Mcl-1 degradation, and compromised mitochondrial integrity in progenitor cells. Thus, Gimap5 is an important stabilizer of mouse hematopoietic progenitor cell survival.  相似文献   

9.
10.
Human hematopoietic tissue contains rare stem cells with multilineage reconstituting ability demonstrable in receptive xenogeneic hosts. We now show that within 3 wk nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice transplanted with human fetal liver cells regenerate near maximum levels of daughter human hematopoietic stem cells (HSCs) able to repopulate secondary NOD/SCID mice. At this time, most of the human HSCs (and other primitive progenitors) are actively proliferating as shown by their sensitivity to treatments that kill cycling cells selectively (e.g., exposure to high specific-activity [(3)H]thymidine in vitro or 5-fluorouracil in vivo). Interestingly, the proliferating human HSCs were rapidly forced into quiescence by in vivo administration of stromal-derived factor-1 (SDF-1) and this was accompanied by a marked increase in the numbers of human HSCs detectable. A similar result was obtained when transforming growth factor-beta was injected, consistent with a reversible change in HSCs engrafting potential linked to changes in their cell cycle status. By 12 wk after transplant, most of the human HSCs had already entered G(o) and treatment with SDF-1 had no effect on their engrafting activity. These findings point to the existence of novel mechanisms by which inhibitors of HSC cycling can regulate the engrafting ability of human HSCs executing self-renewal divisions in vivo.  相似文献   

11.
High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo.  相似文献   

12.
HSCs either self-renew or differentiate to give rise to multipotent cells whose progeny provide blood cell precursors. However, surprisingly little is known about the factors that regulate this choice of self-renewal versus differentiation. One candidate is the Notch signaling pathway, with ex vivo studies suggesting that Notch regulates HSC differentiation, although a functional role for Notch in HSC self-renewal in vivo remains controversial. Here, we have shown that Notch2, and not Notch1, inhibits myeloid differentiation and enhances generation of primitive Sca-1(+)c-kit(+) progenitors following in vitro culture of enriched HSCs with purified Notch ligands. In mice, Notch2 enhanced the rate of formation of short-term repopulating multipotential progenitor cells (MPPs) as well as long-term repopulating HSCs, while delaying myeloid differentiation in BM following injury. However, consistent with previous reports, once homeostasis was achieved, neither Notch1 nor Notch2 affected repopulating cell self-renewal. These data indicate a Notch2-dependent role in assuring orderly repopulation by HSCs, MPPs, myeloid cells, and lymphoid cells during BM regeneration.  相似文献   

13.
14.
BACKGROUND: Marrow damage from chemo‐ and radiation therapies has been suggested to affect quality and quantity of hematopoietic stem cell (HSC) products. We tested the hypothesis that CD34+ cells (HSCs) from low mobilizers are qualitatively inferior to HSCs from high mobilizers. STUDY DESIGN AND METHODS: HSC quality was defined by proportion of primitive HSC subsets (CD34+CD38?, CD34+HLA‐DR?, and CD34+ in G0 stage of cell cycle), the proportion of HSCs that express CXCR4 and CD26 homing proteins, and days to neutrophil and platelet (PLT) engraftments after transplant. HSC content and CD34 subsets analyses were performed using flow cytometry following the ISHAGE protocol. We evaluated the HSC quantity and quality of 139 autologous filgrastim‐mobilized HSC products. Patients were categorized into low, moderate, and high mobilizers if their total HSC collection was less than 3 × 106, 3 × 106 or more and less than 5 × 106, and 5 × 106/kg or more, respectively. RESULTS: The median number of primitive CD34 subsets increases with increasing HSC numbers and this association was significant (p = 0.001). However, when the ratios of the primitive CD34 subsets to total HSC counts were compared among the mobilization groups, the ratios were not significantly different. Coexpression of neither CD26 nor CXCR4 with CD34 antigen correlated with HSC mobilization. Evaluation of days to neutrophil engraftment among the mobilization groups did not show a significant difference (p = 0.1). However, days to PLT engraftment among the mobilization groups was significantly different (p = 0.05). CONCLUSION: The quality of HSCs from low mobilizers was comparable to HSCs from high mobilizers.  相似文献   

15.
Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.  相似文献   

16.
We previously reported on the successful engraftment and long-term multilineage expression (erythroid, myeloid, lymphoid) of human fetal liver hematopoietic stem cells in sheep after transplantation in utero. That the engraftment of long-term repopulating pluripotent stem cells occurred in these animals was shown here by the fact that transplantation of human CD45+ cells isolated from bone marrow of these chimeric animals into preimmune fetal sheep resulted in engraftment and expression of human cells. Marrow cells were obtained from three chimeric sheep at 3.2-3.6 yr after transplant. The relative percentage of human CD45+ cells present in these marrows was 3.3 +/- 0.32%. A total of 29 x 10(6) CD45+ cells were isolated by panning, pooled, and transplanted into six preimmune sheep fetuses (4.8 x 10(6) cells/fetus). All six recipients were born alive. Hematopoietic progenitors exhibiting human karyotype were detected in marrows of two lambs soon after birth. Cells expressing human CD45 antigen were also detected in blood and marrow of both lambs. Human cell expression has been multilineage and has persisted for > 1 yr. These results demonstrate that the expression of human cells in this large animal model resulted from engraftment of long-term repopulating pluripotent human stem cells.  相似文献   

17.
Jiang S  Fu Y  Avraham HK 《Transfusion》2011,51(Z4):65S-71S
The cannabinoid receptors CB(1) and CB(2) are seven-transmembrane Gαi protein-coupled receptors and are expressed in certain mature hematopoietic cells. We recently showed that these receptors are expressed in murine and human hematopoietic stem cells (HSCs) and that CB(2) agonists induced chemotaxis, enhanced colony formation of marrow cells, as well as caused in vivo mobilization of murine HSCs with short- and long-term repopulating abilities. Based on these observations, we have further explored the role of CB(2) and its agonist AM1241 on hematopoietic recovery following sublethal irradiation in mice. Cannabinoid receptor 2 knockout mice (Cnr2(-/-) deficient mice) exhibited impaired recovery following sublethal irradiation as compared with irradiated wild-type (WT) mice, as determined by low colony-forming units and low peripheral blood counts. WT mice treated with CB(2) agonist AM1241 following sublethal irradiation demonstrated accelerated marrow recovery and increased total marrow cells (approximately twofold) and total lineage- c-kit(+) cells (approximately sevenfold) as well as enhanced HSC survival as compared with vehicle control-treated mice. When the CB(2) agonist AM1241 was administered to WT mice 12 days before their sublethal irradiation, analysis of hematopoiesis in these mice showed decreased apoptosis of HSCs, enhanced survival of HSCs, as well as increase in total marrow cells and c-kit+ cells in the marrow. Thus, CB(2) agonist AM1241 promoted recovery after sublethal irradiation by inhibiting apoptosis of HSCs and promoting survival, as well as enhancing the number of HSCs entering the cell cycle.  相似文献   

18.
Transplantation with bone marrow (BM) hematopoietic stem cells (HSC) has been used for curative therapy of hematologic diseases and inborn errors of metabolism for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow and traffic to peripheral blood in response to external stimuli, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. Although a variety of agents can mobilize stem cells with different kinetics and efficiencies and these agents can be additive or synergistic when used in combination, currently G-CSF is the predominant stem cell mobilizer used clinically based upon potency, predictability and safety. Recent studies have demonstrated that the interaction between the chemokine stromal-derived factor 1 (SDF-1/CXCL12) and its receptor CXCR4 serves as a key regulator of HSC trafficking. AMD3100, a novel bicyclam CXCR4 antagonist, induces the rapid mobilization of HSC with both short- and long-term repopulation capacity. Mobilization with G-CSF and AMD3100 in clinical trials resulted in more patients achieving sufficient PBSC for transplantation than with G-CSF alone. Thus, chemokine axis-mobilization could allow rapid PBSC harvests with increased cell yields in difficult-to mobilize patients. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts demonstrated prompt and stable engraftment.Enhanced homing properties of chemokine axis-mobilized PBSC suggest that these cells may have greater therapeutic utility in other areas including tissue repair and regeneration.  相似文献   

19.
The effects of interleukin-2 (IL-2) deficiency on hematopoiesis were tested by measuring cellular compositions in peripheral blood, spleen, thymus, and bone marrow of 3- to 5-month-old gene-targeted Il2 null (Il2(-/-)) mice using the Advia 120 Hematology system and fluorescence-activated cell staining (FACS). Il2(-/-) mice developed hematological failure and autoimmune responses, showing variable but significant degrees of anemia, lymphocytopenia, thrombocytopenia, splenomegaly, thymus involution, and weight loss. Surprisingly, Il2(-/-) mice had normal numbers of bone marrow cells (BMCs) with increased numbers of Lin(-)Kit(+)Sca1(+)CD34(-) and Lin(-)Kit(+)Sca1(+)CD34(+) cells that are normally associated with hematopoietic stem cells (HSCs) and progenitor cells. Day-12 colony-forming units-spleen cells were slightly reduced in Il2(-/-) mice. When Il2(-/-) and Il2(+/+) mice were compared for long-term HSC function in vivo in the competitive repopulation assay, BMCs from Il2(-/-) donors had 10- to 20-fold less HSC repopulating ability, which affected both myeloid and lymphoid cell lineages. Thus, HSCs from Il2(-/-) mice can proliferate normally but are functionally defective for reconstituting lethally irradiated recipients.  相似文献   

20.
Thrombopoietin expands hematopoietic stem cells after transplantation   总被引:10,自引:0,他引:10       下载免费PDF全文
Multiple lines of evidence indicate that thrombopoietin (TPO) contributes to the development of hematopoietic stem cells (HSC), supporting their survival and proliferation in vitro. To determine whether TPO supports the impressive expansion of HSC observed following transplantation, we transplanted normal marrow cells into lethally irradiated Tpo(-/-) and Tpo(+/+) mice and quantified HSC self-renewal and expansion and hematopoietic progenitor cell homing. Although essentially identical numbers of marrow-associated colony forming unit-culture (a surrogate measure of stem cell homing) were observed in each type of recipient 24 hours following transplantation, we found that a minimum of fourfold greater numbers of marrow cells were required to radioprotect Tpo-null mice than to radioprotect controls. To assess whether long-term repopulating (LTR) HSCs self-renew and expand in Tpo(-/-) recipients or controls, we performed limiting-dilution secondary transplants using donor cells from the Tpo(-/-) or Tpo(+/+) recipients 5-7.5 weeks following primary transplantation. We found that LTR HSCs expand to levels 10-20 times greater within this time period in normal recipients than in Tpo-null mice and that physiologically relevant amounts of TPO administered to the Tpo(-/-) recipients could substantially correct this defect. Our results establish that TPO greatly promotes the self-renewal and expansion of HSCs in vivo following marrow transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号