首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enterotoxin of Vibrio cholerae causes copious fluid production throughout the lenght of the small intestine. As this is thought to be mediated by stimulation of adenyl cyclase, a study has been made of the activity and properties of this enzyme in jejunal biopsy tissue taken from patients during the diarrheal phase of cholera and after recovery. Adenyl cyclase activity during cholera was increased more than twofold relative to the enzyme in convalescence. Under both conditions stimulation by prostaglandin E(1) (PGE(1)) and by fluoride was observed. The responsiveness to PGE(1) was not altered in cholera; the total activity of the fluoride-stimulated enzyme was similar, a finding that suggests cholera toxin stimulates pre-existing enzyme in the intestinal cell. The enzymes during cholera and convalescence were similar in all other properties examined. Optimal Mg(++) concentration was 10 mM; Mn(++) at 5 mM stimulated the enzyme but could not replace Mg(++) except in the presence of 10 mM fluoride. Calcium was markedly inhibitory at concentrations greater than 10(-4) M. The pH optimum was 7.5 and the Michaelis constant (K(m)) for ATP concentration approximated 10(-4) M. Thus the interaction of cholera toxin with human intestinal adenyl cyclase does not alter the basic properties of the enzyme. When biopsy specimens were maintained intact in oxygenated Ringer's solution at 0 degrees C, no loss of activity was observed at 1(1/2) and 3 hr. In contrast, when the cells were homogenized, rapid loss of activity, with a half-life of 90 min was seen even at 0 degrees C. Consequently for comparative assays of human jejunal adenyl cyclase, strict control of the experimental conditions is required. It was under such conditions that a twofold increase in basal adenyl cyclase activity during cholera was observed.  相似文献   

2.
Both cholera enterotoxin and certain prostaglandins have been shown to stimulate intestinal fluid secretion in vivo, to cause ion flux changes in vitro similar to those caused by addition of cyclic 3',5'-adenosine monophosphate (cyclic AMP), and to activate intestinal mucosal adenyl cyclase. It has been suggested that the effects of the enterotoxin on intestinal cyclic AMP metabolism may be indirect, and that locally synthesized prostaglandins may serve as required intermediates for the effects of the enterotoxin in activating intestinal mucosal adenyl cyclase. In order to clarify certain aspects of the mechanisms by which these two agents alter intestinal mucosal cyclic AMP metabolism and ion transport, their effects on cyclic AMP accumulation in rabbit ileal mucosa were examined in vitro. Addition of 5 mug per ml (75 mug per 150 mg mucosa) of purified cholera enterotoxin produced a peak increase in cyclic AMP level in 3 h but there was a time delay of at least 30 min before any effect was observed. Inhibition of cyclic nucleotide phosphodiesterase with theophylline failed to reduce this time delay. In contrast, addition of prostaglandin E(1) (PGE(1)) increased the cyclic AMP level rapidly, a peak effect being observed in 2 min. The time of the peak prostaglandin-induced changes in cyclic AMP level and short-circuit current correlated closely. A maximal increment in cyclic AMP level was achieved with 5 x 10(-5) M PGE(1). When 10(-4) M PGE(1) was added to mucosa already maximally stimulated with cholera toxin, the resulting cyclic AMP level was equal to the sum of the levels reached when each agent was added alone. Furthermore, the effects of the enterotoxin on mucosal cyclic AMP levels were not influenced by indomethacin under conditions where mucosal prostaglandins synthesis was inhibited. The results suggest that endogenous prostaglandins do not provide an essential link in the activation of intestinal mucosal adenyl cyclase by cholera enterotoxin. The present study also indicates that the effect of cholera enterotoxin on intestinal mucosal cyclic AMP metabolism involves a definite time delay which is not due to cyclic nucleotide phosphodiesterase activity.  相似文献   

3.
Brush borders and plasma membranes have been purified from mucosal epithelial cells of rabbit ileum under control conditions and after treatment for 3 hr with cholera toxin in vivo. The activity of several enzymes in these preparations was measured. It was concluded that adenyl cyclase, like NaK-ATPase, seems not to be a normal constituent of brush borders. Both these enzymes are present in plasma membrane preparations derived largely from the basal and lateral margins of the epithelial cells, both may be phospholipid dependent enzymes and both are affected by cholera toxin. Adenyl cyclase activity is increased while NaK-ATPase is decreased. The activities of alkaline phosphatase, leucineaminopeptidase, 5'-nucleotidase, glucose-6-phosphatase, and Mg-ATPase were not found to be affected by the toxin. Cholera toxin, which makes contact with the luminal side of the epithelial cells, in the natural disease and in the experimental model, would appear to exert its pathologic effect on adenyl cyclase at the opposite (basal and lateral) side of the cells.  相似文献   

4.
The effects of several prostaglandins (PG) and a highly purified preparation of cholera enterotoxin (CT) on intestinal mucosal adenyl cyclase activity and the effect of CT on intestinal mucosal cyclic 3',5'-adenosine monophosphate concentration were determined in guinea pig and rabbit small intestine and were correlated with the effects of the same agents on ion transport. Adenyl cyclase activity, measured in a crude membrane fraction of the mucosa, was found at all levels of the small intestine with the highest activity per milligram protein in the duodenum. The prostaglandins, when added directly to the assay, increased adenyl cyclase activity; the greatest effect (2-fold increase) was obtained with PGE(1) (maximal effect at 0.03 mM) and PGE(2). The prostaglandins also increased short-circuit current (SCC) in isolated guinea pig ileal mucosa, with PGE(1) and PGE(2) again giving the greatest effects. The prior addition of theophylline (10 mM) reduced the subsequent SCC response to PGE(1) and vice versa. It was concluded, therefore, that the SCC response to PGE(1), like the response to theophylline, represented active Cl secretion. CT increased adenyl cyclase activity in guinea pig and rabbit ileal mucosa when preincubated with the mucosa from 1 to 2.5 hr in vitro or for 2.5 hr in vivo but not when added directly to the assay. The increments in activity caused by PGE(1) and NaF were the same in CT-treated and control mucosa. Cyclic 3',5'-AMP concentration in rabbit ileal mucosa was increased 3.5-fold after a 2 hr preincubation with CT in vitro. Phosphodiesterase activity in the crude membrane fraction of the mucosa was unaffected by either CT or PGE(1). A variety of other agents including insulin, glucagon, parathormone, thyroid-stimulating hormone, L-thyroxine, thyrocalcitonin, vasopressin, and epinephrine all failed to change adenyl cyclase activity. It is concluded that CT and certain prostaglandins produce small intestinal fluid secretion by increasing mucosal adenyl cyclase activity, thereby stimulating an active secretory process.  相似文献   

5.
Cholera enterotoxin inhibits the antigen-induced. IgE-mediated release of histamine from human leukocytes and the lysis of allogeneic mastocytoma cells by splenic lymphocytes from specifically immunized mice. This effect requires a prolonged preincubation time of the toxin with the lymphocyte/leukocyte preparations: a demonstrable inhibition requires about 30 min of pre-incubation and the toxin activity is still increasing at 90-180 min. Cholera enterotoxin also stimulates adenyl cyclase and leads to increased levels of cyclic AMP in the lymphocyte/leukocyte preparations. The concentration of toxin required for both cyclic AMP accumulation and inhibition of the biologic responses is about the same (ca. 1 ng/ml), and the time course of cyclic AMP accumulation parallels the development of inhibitory activity. Both activities, inhibition of the in vitro hypersensitivity reactions and cyclic AMP accumulation, are blocked by cholera antitoxin and by a toxoid prepared from the toxin (choleragenoid). These are specific antagonists in that they do not block the inhibiting activity or rise in cyclic AMP levels caused by other adenyl cyclase stimulators. Because cholera enterotoxin has no known activity other than the stimulation of adenyl cyclase and because of its unusual time course and the availability of specific antagonists, this data considerably strengthens the hypothesis that the cyclic AMP system influences the expression of these two forms of hypersensitivity phenomena.  相似文献   

6.
The rabbit fetus is one of the most commonly used animal models in experimental studies investigating fetal organ development. However, there is no detailed information about normal growth of organs of rabbit fetuses in English language literature. Fetal rabbits were studied in the second half of gestation between 18th and 30th days. Amniotic fluid volume, body mass (BM), lung, heart and liver masses (LM, HM, LiM), lung and thorax volumes (LV, TV) were determined and LM/BM, HM/BM, LiM/BM, TV/BM and LV/TV ratios were calculated. Additionally fetal lungs were evaluated histologically. BM, LM, HM, LiM and LV were increased until 27th gestational day and then remained unchanged. TV was always increased between 18th gestational day and term. The lung maturation was almost completed in the 27th-28th gestational days. Therefore, BM, LM, HM, LiM and LV are the parameters that can be used to evaluate normal fetal growth between 18th and 27th gestational days. TV seems to be the predictive parameter for evaluation of normal fetal growth during the second half of gestation in rabbit fetuses; 20th and 27th days of gestation are more appropriate for experiments to evaluate lung maturation.  相似文献   

7.
Cholera enterotoxin caused a delayed accumulation of adenosine 3',5'-monophosphate (cyclic AMP) in human leukocytes, associated with an increase in leukocyte adenyl cyclase activity. The action of cholera enterotoxin contrasted with that of other agents which stimulate adenyl cyclase: (a) the effects of the toxin were delayed in onset, while prostaglandin-E(1) (PGE(1)) and isoproterenol acted rapidly; (b) removal of the soluble toxin from the extracellular medium did not abolish its effects on cyclic AMP and inhibition of antigenic histamine release, while removal of PGE(1) did prevent its effects; (c) PGE(1), but not cholera enterotoxin, stimulated adenyl cyclase activity when added directly to broken cell preparations. Binding of the toxin to leukocytes was rapid and irreversible, and was followed by a gradual increase in cyclic AMP which was not prevented by cycloheximide.Cholera enterotoxin caused accumulation of cyclic AMP in purified human neutrophils as well as mono-nuclear cells, but did not prevent the extrusion of lysosomal hydrolases from phagocytic cells. The toxin only slightly inhibited the ability of human neutrophils to kill Candida albicans. Thus these results with the toxin cast doubt on previous proposals that cyclic AMP regulates these two functions of neutrophils. The unique action of cholera enterotoxin on cyclic AMP production provides a potentially useful pharmacologic tool, in addition to methylxanthines and dibutyryl cyclic AMP, for testing hypotheses relating cyclic AMP to altered function of leukocytes and, perhaps, of other mammalian cells.  相似文献   

8.
The rabbit fetus is one of the most commonly used animal models in experimental studies investigating fetal organ development. However, there is no detailed information about normal growth of organs of rabbit fetuses in English language literature. Fetal rabbits were studied in the second half of gestation between 18th and 30th days. Amniotic fluid volume, body mass (BM), lung, heart and liver masses (LM, HM, LiM), lung and thorax volumes (LV, TV) were determined and LM/BM, HM/BM, LiM/BM, TV/BM and LV/TV ratios were calculated. Additionally fetal lungs were evaluated histologically. BM, LM, HM, LiM and LV were increased until 27th gestational day and then remained unchanged. TV was always increased between 18th gestational day and term. The lung maturation was almost completed in the 27th–28th gestational days. Therefore, BM, LM, HM, LiM and LV are the parameters that can be used to evaluate normal fetal growth between 18th and 27th gestational days. TV seems to be the predictive parameter for evaluation of normal fetal growth during the second half of gestation in rabbit fetuses; 20th and 27th days of gestation are more appropriate for experiments to evaluate lung maturation.  相似文献   

9.
Both thyroid-stimulating hormone (TSH) and long-acting thyroid stimulator (LATS) stimulated adenyl cyclase activity in plasma membranes obtained from bovine thyroid glands. The stimulation induced by LATS was much less than that obtained with maximal amounts of TSH. LATS inhibited TSH stimulation of adenyl cyclase activity while an equivalent amount of normal human gamma-globulin did not influence basal or TSH-stimulated activity. The inhibition by LATS appeared to be noncompetitive and was greatest when the plasma membranes were initially exposed to LATS for 30 min at 0 degrees C before being incubated with TSH for 10 min at 37 degrees C. Inhibition could still be demonstrated when the plasma membranes were incubated for 30 min at 0 degrees C with TSH before the addition of LATS. Prolonging the period of incubation of plasma membranes with LATS from 30 to 60 min did not augment the stimulation of adenyl cyclase or increase the inhibition of the effect of TSH. Papain digests of LATS also increased adenyl cyclase activity of thyroid plasma membrane and inhibited the stimulation induced by TSH. The inhibitory effect of LATS was not completely specific for TSH and thyroid plasma membranes since glucagon stimulation of adenyl cyclase in hepatic plasma membranes was also inhibited, but to a lesser extent. In contrast to the results obtained with thyroid plasma membranes, LATS did not influence basal adenyl cyclase activity in hepatic plasma membranes. Furthermore equivalent amounts of normal human gamma-globulin also decreased glucagon stimulation of adenyl cyclase activity in plasma membranes obtained from liver. The present data suggest that LATS stimulation of adenyl cyclase in thyroid plasma membranes might be due to a change in the membrane configuration rather than binding to a specific receptor site. Such modification of the membrane structure could interfere with the binding of TSH to specific receptors or to the subsequent stimulation of adenyl cyclase. However, the results do not exclude the possibility that some component in the preparation other than LATS might be responsible for the inhibition of the stimulation by TSH.  相似文献   

10.
Prior studies have indicated that effects of cholera enterotoxin (CT) on the small intestine are delayed in onset and involve an interaction with adenyl cyclase in the mucosa. It has also been shown that the administration of cycloheximide to rabbits in doses which inhibit crypt cell mitoses (20 mg/kg), diminishes CT-induced fluid production in jejunal loops. These latter studies have been interpreted as indications that CT-related intestinal secretion is a crypt cell function and that it is mediated by a CT-induced protein.The present study was undertaken to delineate more precisely the nature of the interaction in the intestine between cycloheximide and cholera toxin. Pretreatment of rabbits with cycloheximide reduced by 60% the secretory response to CT in isolated ileal loops with intact blood supply. Sodium and chloride flux measurements on mucosa isolated from these and control loops indicated that this antisecretory effect of cycloheximide persists in vitro. Measurements of radioactive leucine incorporation into mucosal protein indicated that the dose of cycloheximide employed inhibited protein synthesis by 90%. This inhibitory effect was shown to be independent of any effect of cycloheximide on amino acid uptake across the brush border. Measurements of adenyl cyclase activity and cyclic AMP levels in ileal mucosa of cycloheximide pretreated and control animals indicated that cycloheximide did not diminish the CT-induced increases in these parameters.These observations demonstrate that cycloheximide reduces CT-induced intestinal fluid production without interfering with the CT-induced augmentation of adenyl cyclase activity or the consequent rise in cyclic. AMP concentration. Since the antisecretory effect of cycloheximide persists in vitro, it probably involves a direct interaction of the antibiotic with mucosal cell ion transport mechanisms rather than an indirect effect mediated by other humoral or neurogenic factors. The present observations also suggest that the secretory response of the intestine to CT involves neither the synthesis of new adenyl cyclase nor that of a protein modifying its activity.  相似文献   

11.
Fetal lung development progresses in a sex-specific manner with male fetuses exhibiting delayed maturation. Androgens, both exogenous and endogenous, inhibit while epidermal growth factor (EGF) enhances fetal lung development. We hypothesized that one mechanism responsible for the delay in male fetal lung development is an androgen-induced delay in EGF receptor binding activity. We measured EGF binding in sex-specific fetal rabbit lung plasma membranes isolated from control fetuses (days 21, 23, 25, 27, 29, and 30 of gestation) and from androgen-treated fetuses (days 21, 23, and 27 of gestation) that had been continuously exposed in vivo to exogenous 5 alpha-dihydrotestosterone from day 12 through 27 of gestation. Specific binding of EGF was significantly lower in male than in female fetal lung tissue isolated from controls at day 21 of gestation. Scatchard analysis revealed that this decrease in EGF binding was associated with decreased EGF receptor density without any significant change in affinity. Prenatal exogenous androgen treatment led to decreased EGF binding in fetal rabbit lung tissue from both sexes secondary to a decrease in EGF receptor density. These findings suggest that one mechanism responsible for the delay in male fetal lung maturation is an androgen-induced delay in EGF receptor binding activity during fetal lung development.  相似文献   

12.
The present studies were undertaken to determine the role, if any, of cyclic 3′,5′-adenosine monophosphate (cyclic AMP) as a chemical inducer of rat liver alkaline phosphatase. Cholera enterotoxin, given intravenously to rats, led to a rapid rise in the activity of hepatic adenyl cyclase that was 7½ times greater than control values in 6 h. Cyclic AMP levels were also significantly increased above control values while the activity of cyclic nucleotide phosphodiesterase was unchanged. Hepatic alkaline phosphatase activity was increased 5½ times above control in 12 h, but its rise followed that of adenyl cyclase and cyclic AMP by several hours. Cycloheximide inhibited the rise of hepatic alkaline phosphatase but not that of adenyl cyclase. The administration of glucagon, a known stimulator of hepatic adenyl cyclase, and of dibutyryl cyclic AMP, led to similar striking increases in hepatic alkaline phosphatase activity. This alkaline phosphatase increase was blocked by the prior administration of cycloheximide. Bile duct ligation, a known stimulator of hepatic alkaline phosphatase activity, failed to produce any significant changes in adenyl cyclase or cyclic AMP. Concomitant treatment of rats with bile duct ligation and cholera enterotoxin or bile duct ligation and glucagon, had no additive effect on the increase in hepatic alkaline phosphatase activity, although the increase occurred earlier. These results suggest that: (a) cyclic AMP may act as an inducer of hepatic alkaline phosphatase: (b) the stimulation of hepatic alkaline phosphatase by cholera enterotoxin is mediated by cyclic AMP; (c) the rise in hepatic alkaline phosphatase following bile duct ligation is not mediated by cyclic AMP; (d) the same alkaline phosphatase in rat liver may be induced by two (or more) mechanisms, only one of which requires cyclic AMP.  相似文献   

13.
Placentas from streptozotocin-diabetic rats have previously been shown to be morphologically and biochemically immature when compared with those of control rats. The binding of epidermal growth factor (EGF) to plasma membranes prepared from placentas of control and streptozotocin-diabetic fetuses has been characterized on days 17 and 21 of gestation. Results from competitive binding data analyzed by Scatchard analysis indicate the presence of a single class of receptors on day 17 (KD = 5.4 X 10(-10)) and the appearance of a second class of binding sites for 125I-EGF by day 21 (Kd = 3.5 X 10(-9)) in membranes from control fetuses. Placental membranes from diabetic fetuses show decreased specific binding (approximately 30%) on both days and the absence of a second class of binding sites on day 21 of gestation. Results from a radioreceptor assay indicate that the quantity of EGF in the serum of fetuses removed from control rats on day 21 is twofold greater than the quantity in serum of fetuses from diabetic rats. These data reveal a developmental increase in EGF-binding sites in the placenta of normal, near-term fetal rats, largely because of the appearance of a second class of binding sites with a lower affinity for EGF. The failure (or delay) of this second class to develop in the diabetic may be important for the control of maturation and growth of this tissue.  相似文献   

14.
Rat liver adenyl cyclase activity in various thyroid states   总被引:3,自引:3,他引:0       下载免费PDF全文
Thyroidectomized and euthyroid rats were injected with three doses of triiodothyronine (T(3)) or of the diluent over a 6 day period, and liver homogenates were assayed for basal, epinephrine-stimulated, and NaF-stimulated adenyl cyclase activity. Based on NaF-stimulated levels, total adenyl cyclase activity, expressed per milligram of liver protein, was increased after thyroidectomy. Administration of T(3) to either hypothyroid or euthyroid rats, however, had no effect on the NaF-stimulated levels. Basal and epinephrine-stimulated enzyme activities were the same in hypothyroid, euthyroid, and hyperthyroid (euthyroid + T(3)) liver homogenates. In contrast, injections of T(3) in hypothyroid rats increased the activities of basal and epinephrine-stimulated adenyl cyclase. In view of the findings in euthyroid and hyperthyroid liver, it is possible that this effect is transient. In general, no correlation was found between the effects of thyroid hormone on respiration and on adenyl cyclase activity of the rat liver. These results imply that the hepatic thermogenic response to thyroid hormone is not mediated by stimulation of adenyl cyclase activity with the possible exception of the early effects of T(3) in the athyroid rat.  相似文献   

15.
Canine marrow erythroid colony growth is enhanced by agents linked to the adenyl cyclase/cyclic AMP (cAMP) system, including cAMP, a phosphodieterase inhibitor (RO-20-1724), cholera enterotoxin, and beta-adrenergic agonists. The adrenergic effect is mediated by receptors having beta2-subspecificity. These receptors are distinct from putative receptors for erythropoietin and those acted upon by cholera enterotoxin. In addition, the population of cells most responsive to beta-agonists is distinct from the majority of erythropoientin-responsive cells, perhaps representing a subpopulation of this class of cell. This demonstration of an adenyl cyclase-linked mechanism regulating mammalian erythroid colony growth provides a model for the modulation by other hormones or small molecules of in vitro and, perhaps, in vivo erythropoiesis.  相似文献   

16.
Ontogenesis of somatomedin and insulin receptors in the human fetus   总被引:14,自引:2,他引:14       下载免费PDF全文
This study examines the ontogenesis of somatomedin and insulin receptors in man. Particulate plasma membranes were prepared by ultracentrifugation from various tissues removed from fetuses after abortion and classified as less than 17, 17-25, and greater than 25 cm in length. The binding of iodinated insulinlike growth factors 1 (IGF-1) and 2 (IGF-2), somatomedin A (SMA), multiplication-stimulating activity (MSA), and insulin was examined at the different ages. In the liver, cross-reaction studies revealed separate insulin and IGF-2 receptors. The Scatchard plots of insulin binding to liver membranes were curvilinear and showed an increase in the concentration of insulin receptors with advancing age. A single IGF-2 receptor was found on liver and no alteration was observed during development. The brain contained a lower concentration of insulin receptors. A change in the brain receptors for somatomedins occurred during development. Early in gestation, a high concentration of a low-affinity IGF-1 receptor was found. After approximately the 17th wk of gestation a higher affinity IGF-1 receptor appeared, which then increased in concentration. Cross-reaction studies also revealed changes in the specificity of these receptors during development. In the youngest fetal group IGF-2 was preferentially bound. Around midgestation a separate IGF-1 receptor, indicated by the preferential displacement of iodinated IGF-1 by IGF-1, appeared. In contrast, iodinated IGF-2 bound to a receptor where IGF-1 and IGF-2 were equipotent.  相似文献   

17.
Prostaglandin E1 (PGE1) and cholera enterotoxin stimulate small-intestine mucosal adenylate cyclase and intestinal secretion of water and electrolytes. The previous suggestion that PGE may mediate cholera-toxin effects was explored in these studies. Closed rabbit jejunal loops were injected in vivo with cholera toxin and compared to similar loops in the same animal injected with buffer. Loop mucosal homogenates and intestinal secretions were analyzed by radioimmunoassay for cAMP and PGE concentrations. Cholera toxin produced significant increases in mucosal and intestinal fluid cAMP; however, there were no significant increases in PGE in the toxin-treated loops when compared to the control loops. In addition, there was no correlation between cAMP and PGE in the same samples. These studies indicate that cholera toxin stimulates intestinal cAMP anc secretion independent of PGE synthesis and provide evidence against a specific role for PGE in mediating cholera-toxin effects.  相似文献   

18.
This report describes studies of the mucosal antitoxic response in rats after enteric administration of several forms of cholera toxin or toxoid, proteins which differ primarily in their ability to bind to cell membranes and activate cellular adenyl cyclase. These two characteristics appeared to markedly enhance the local primary response to these antigens. A single dose of toxoid lacking these features was ineffective in local priming even though it was absorbed and induced a systemic immune response. Single dose mucosal priming occurred only with preparations which bind to cell membranes and was enhanced by those which also activate cellular adenyl cyclase. In contrast, single-dose mucosal boosting was best accomplished by materials with these properties but was also seen with a toxoid lacking both of these functions. The property of membrane binding appears to be most advantageous in mucosal priming, perhaps by increasing effective trapping of absorbed antigen in unprimed mucosal lymphoid tissue, whereas the ability to activate adenyl cyclase appears to enhance primary and secondary type responses about equally. Combinations of crude toxoid and toxin were also more effective in mucosal priming than purified materials, a finding which is unexplained. A single dose of this combination induced mucosal priming which was fully developed in 2 wk, undiminished after 4 too, and only modestly diminished after 8 mo, thus demonstrating relatively prolonged memory in the IgA mucosal immune system. Effective two-dose local immunizing regimens were developed, and it was shown that there was no correlation between the mucosal and systemic secondary antitoxin responses provoked by these regimens.  相似文献   

19.
To investigate the role of hepatic glucagon receptors in the hypersensitivity to glucagon observed in insulin-deprived diabetics, liver plasma membranes were prepared from control rats and from streptozotocin-induced diabetic rats some of whom were treated with high-dose and low-dose insulin. The untreated diabetic animals exhibited hyperglycemia, weight loss, hypoinsulinemia, and hyperglucagonemia. High-dose insulin treatment (2 U Protamine-zinc-insulin/100 g per day) resulted in normoglycemia, normal weight gain, mild hyperinsulinemia, and return of glucagon levels toward base line. The low-dose (1 U protamine-zinc-insulin/100 g per day) insulin-treated diabetic group demonstrated chemical changes intermediate between the untreated and the high-dose insulin-treated animals.In liver plasma membranes from the untreated diabetic rats, specific binding of (125)I-glucagon was increased by 95%. Analysis of binding data suggested that the changes in glucagon binding were a consequence of alterations in binding capacity rather than changes in binding affinity. Furthermore, in the untreated diabetic rats, both basal and glucagon (2 muM)-stimulated adenylate cyclase activity were twofold higher than in controls. In the high-dose insulin-treated diabetic rats, glucagon binding and basal and glucagon-stimulated adenylate cyclase activity were normalized to control values, whereas low-dose insulin treatment resulted in changes intermediate between control and untreated diabetic rats. In contrast to glucagon-stimulated adenylate cyclase activity, fluoride-stimulated adenylate cyclase activity was similar in all groups of rats. Liver plasma membranes from untreated and insulin-treated diabetic animals degraded (125)I-glucagon to the same extent as control rats.The specific binding of (125)I-insulin in the untreated diabetic animals was 40% higher than in control rats. In low-dose insulin-treated diabetic rats, insulin binding was not significantly different from that of control rats, whereas in the high-dose insulin-treated group in whom plasma insulin was 70% above control levels, insulin binding was 30% lower than in control rats.These findings suggest that alterations in glucagon receptors may contribute to the augmented glycemic and ketonemic response to glucagon observed in insulin-deprived diabetics.  相似文献   

20.
Transplacental infection with mouse hepatitis virus, JHM strain was studied by intravenous inoculation of pregnant dams. Inoculation on day 9 or 12 of gestation brought about the death of more than 50% of the fetuses at 4 days postinfection while inoculation on day 6 or 15 of gestation effected the death of 12% of fetuses or neonates. Inoculation of day 12 of gestation resulted in markedly higher virus titers. At 72 h postinfection in the placentas, fetal membranes and fetuses than in the maternal livers and blood. Virus-specific antigen and virus particles were noted in the placentas, visceral yolk sac and fetal livers by immunofluorescence and electron microscopy. Histopathology revealed degenerative and necrotic changes in these tissues and in the fetal bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号