首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human AChE-enzyme (hAChE) enhances the over-expression of beta-amyloid (Abeta) containing plaques in the brain of transgenic mice (APP(SWE)/hAChE-Tg) carrying mutated genes for human amyloid precursor protein (APP(SWE)) and hAChE. In this study, we showed that interaction of hAChE with Abeta affects the plasticity of the alpha7 nicotinic acetylcholine receptors (nAChRs) both in the brain and adrenal medulla. An age-related increase in the (125)I-alphabungarotoxin ((125)I-alphaBTX) binding (specific to alpha7 nAChRs) was observed in the adrenal medulla of 3, 7 and 10 months old control mice. In contrast, a significant decrease in (125)I-alphaBTX binding was detected in the adrenal medulla of 10 months old APP(SWE)/hAChE-Tg. A significantly higher alpha7 nAChR mRNA level was observed in the brain of APP(SWE)/hAChE-Tg at 3 and 7 months of age and in the adrenal medulla at 3 and 10 months of age compared to those of the control mice. The alpha3 nAChR mRNA level was significantly higher in the brain of APP(SWE)/hAChE-Tg at 3 months of age and in the adrenal medulla at 10 months of age. The alpha4 nAChR mRNA level remained unchanged in the brain and adrenal medulla of APP(SWE)/hAChE-Tg for all age groups. Based on these observations, we conclude that a high load of Abeta and an over-expression of hAChE induce differences in the expression of the nAChR subtypes at various ages in the brain and in the adrenal medulla of hAChE/APP(SWE)Tg mice. The findings may have implications for a better understanding the underlying mechanism for AD-related pathogenesis.  相似文献   

2.
The molecular mechanisms of the interrelationship between cholinergic neurotransmission, processing of amyloid precursor protein (APP) and beta-amyloid (Abeta) production in vivo are still less understood. To reveal any effect of cholinergic dysfunction on APP processing in vivo, 11-month-old transgenic Tg2576 mice with Abeta plaque pathology received intraperitoneal injections of scopolamine at a daily dosage of 2mg/kg body weight for 14 days in order to suppress cortical cholinergic transmission by chronic inhibition of muscarinic acetylcholine receptors. Scopolamine treatment of transgenic Tg2576 mice resulted in increased levels of fibrillar Abeta(1-40) and Abeta(1-42), while the soluble, SDS-extractable Abeta level remained unchanged as compared to vehicle-injected Tg2576 mice. alpha-Secretase activity determined in cortical tissue from scopolamine-treated Tg2576 mice was lower by about 30% as compared to that assayed in control mice, while beta-secretase activity and BACE1 protein expression appeared unaffected by scopolamine treatment. The amount of sAPPalpha, the product secreted by alpha-secretase-mediated APP cleavage, and the unprocessed APP were assayed in the soluble and membrane fraction, respectively, of cortical tissue preparations from treated and control mice by Western blotting. Using the anti antibody 6E10 which specifically labels human sAPPalpha and full length APP in transgenic Tg2576, an enhanced APP level was detected in the membrane fraction from treated mice as compared to controls, while in the soluble fraction scopolamine treatment did not affect the protein level of sAPPalpha. These data indicate an accumulation of APP in cortical membrane fraction in scopolamine-treated Tg2576 mice presumably due to the decreased level of alpha-secretase-mediated APP cleavage, and further suggest that chronic suppression of cortical muscarinic cholinergic transmission may alter the balance between alpha- and beta-secretory APP processing by favouring the amyloidogenic route.  相似文献   

3.
Selective nicotinic receptor consequences in APP(SWE) transgenic mice   总被引:3,自引:0,他引:3  
The nicotinic (nAChRs) and muscarinic (mAChRs) acetylcholine receptors and acetylcholinesterase (AChE) activity were studied in the brains of APP(SWE) transgenic mice (Tg+) and age-matched nontransgenic controls (Tg-) that were between 4 and 19 months of age. A significant increase in the binding of 125I-labeled alpha-bungarotoxin (alpha7 nAChRs) was observed in most brain regions analyzed in 4-month-old Tg+ mice, preceding learning and memory impairments and amyloid-beta (Abeta) pathology. The enhanced alpha7 receptor binding was still detectable at 17-19 months of age. Increase in [3H]cytisine binding (alpha4beta2 nAChRs) was measured at 17-19 months of age in Tg+ mice, at the same age when the animals showed heavy Abeta pathology. No significant changes in [3H]pirenzepine (M1 mAChRs) or [3H]AFDX 384 (M2 mAChRs) binding sites were found at any age studied. The upregulation of the nAChRs probably reflects compensatory mechanisms in response to Abeta burden in the brains of Tg+ mice.  相似文献   

4.
Amyloid deposition appears to be an early and crucial event in Alzheimer's disease (AD). To generate animal models of AD, mice expressing full-length amyloid precursor protein (APP), with mutations linked to FAD, have been created. These animals exhibit abnormalities characteristic of AD, including deposits of beta-amyloid (Abeta), neuritic plaques, and glial responses. In studies of cognition in these animals, there have been several reports of memory disturbances well before the appearance of amyloid deposits. We have developed two distinct lines of transgenic mice (C3-3 and E1-2) that express the "Swedish" variant of APP (APP(SWE)) at levels that are approximately three-fold higher than endogenous mouse APP. Both lines have been backcrossed to C57BL/6J mice for 10 generations. Here, we use longitudinal and cross-sectional studies to evaluate the cognitive performance of our animals, where the concentration of Abeta1-42 in brain increases with aging from low levels (2-10 pmol/g) at 6-14 months of age to relatively high levels (60-100 pmol/g) at 24-26 months, when deposits of Abeta were beginning to form. When 12-month-old mice were tested in tasks that assess reference and working memory, transgenic mice from both lines could not be distinguished from nontransgenic littermates. Further study of 24- to 26-month-old transgenic mice (C3-3 line) found no evidence of memory impairment despite the presence of high levels of human Abeta (60-100 pmol/g). Thus, the expression of APP(SWE) at approximately three-fold over endogenous levels, which is sufficient to induce amyloid deposition at advanced ages, does not significantly erode cognitive performance in aged mice.  相似文献   

5.
Alzheimer's disease is associated with markedly impaired cerebral glucose metabolism as detected by reduced cortical desoxyglucose utilization, by altered activities of key glycolytic enzymes or by reduced densities of cortical glucose transporter subtypes. To determine whether formation and/or deposition of beta-amyloid plays a role in the pathology of glucose metabolism, transgenic Tg2576 mice that overexpress the Swedish mutation of the human amyloid precursor protein and demonstrate a progressive, age-related cortical and hippocampal deposition of beta-amyloid plaques, were used to study expression and activity of key enzymes of brain glycolysis (phosphofructokinase, PFK) and glyconeogenesis (fructose1,6-bisphosphatase; FbPase). Quantitative RT-PCR revealed high expression levels of both C- and M-type PFK mRNA in non-transgenic mouse cerebral cortex, whilst there was little expression of the L-type. In 24-month-old transgenic Tg2576 mouse cortex, but not in 7-, 13-, and 17-month-old mice, the copy number of PFK-C mRNA was significantly reduced in comparison to non-transgenic littermates, while the mRNA level of the other PFK isoforms and FbPase did not differ between transgenic and non-transgenic tissue samples. In situ hybridization in brain sections from aged Tg2576 mice revealed reduced PFK-C mRNA expression in beta-amyloid plaque-associated neurons and upregulation in reactive astrocytes surrounding beta-amyloid deposits. The decreased PFK-C protein level detected by Western analysis in cerebral cortical tissue from 24-month-old transgenic Tg2576 mice was accompanied by reduced enzyme activity of PFK in comparison to non-transgenic littermates. Our data demonstrate that impairment of cerebral cortical glucose metabolism occurs only due to the long-lasting high beta-amyloid burden. This results from a reduction in glycolytic activity in beta-amyloid plaque-associated neurons and a concomitant upregulation in reactive, plaque-surrounding astrocytes.  相似文献   

6.
7.
We measured tissue distribution and expression pattern of the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE) in the brains of transgenic Tg2576 mice that show amyloid pathology. BACE protein was expressed at high levels in brain; at lower levels in heart and liver; and at very low levels in pancreas, kidney, and thymus and was almost absent in spleen and lung when assayed by Western blot analysis. We observed strictly neuronal expression of BACE protein in the brains of nontransgenic control mice, with the most robust immunocytochemical labeling present in the cerebral cortex, hippocampal formation, thalamus, and cholinergic basal forebrain nuclei. BACE protein levels did not differ significantly between control and transgenic mice or as a result of aging. However, in the aged, 17-month-old Tg2576 mice there was robust amyloid plaque formation, and BACE protein was also present in reactive astrocytes present near amyloid plaques, as shown by double immunofluorescent labeling and confocal laser scanning microscopy. The lack of astrocytic BACE immunoreactivity in young transgenic Tg2576 mice suggests that it is not the APP overexpression but rather the amyloid plaque formation that stimulates astrocytic BACE expression in Tg2576 mice. Our data also suggest that the neuronal overexpression of APP does not induce the overexpression of its metabolizing enzyme in neurons. Alternatively, the age-dependent accumulation of amyloid plaques in the Tg2576 mice does not require increased neuronal expression of BACE. Our data support the hypothesis that neurons are the primary source of beta-amyloid peptides in brain and that astrocytic beta-amyloid generation may contribute to amyloid plaque formation at later stages or under conditions when astrocytes are activated.  相似文献   

8.
The up-regulation of the angiogenic vascular endothelial growth factor (VEGF) in brains of Alzheimer patients in close relationship to β-amyloid (Aβ) plaques, suggests a link of VEGF action and processing of the amyloid precursor protein (APP). To reveal whether VEGF may affect APP processing, brain slices derived from 17-month-old transgenic Tg2576 mice were exposed with 1 ng/ml VEGF for 6, 24, and 72 h, followed by assessing cytosolic and membrane-bound APP expression, level of both soluble and fibrillar Aβ-peptides, as well as activities of α- and β-secretases in brain slice tissue preparations.Treatment of brain slices with VEGF did not significantly affect the expression level of APP, regardless of the exposure time studied. In contrast, VEGF exposure of brain slices for 6 h reduced the formation of soluble, SDS extractable Aβ(1–40) and Aβ(1–42) as compared to brain slice cultures incubated in the absence of any drug, while the fibrillar Aβ peptides did not change significantly. This effect was less pronounced 24 h after VEGF exposure, but was no longer detectable when brain slices were exposed by VEGF for 72 h, which indicates an adaptive response to chronic VEGF exposure. The VEGF-mediated reduction in Aβ formation was accompanied by a transient decrease in β-secretase activity peaking 6 h after VEGF exposure. To reveal whether the VEGF-induced changes in soluble Aβ-level may be due to actions of VEGF on Aβ fibrillogenesis, the fibrillar status of Aβ was examined using the thioflavin-T binding assay. Incubation of Aβ preparations obtained from Tg2576 mouse brain cortex, in the presence of VEGF slightly decreased the fibrillar content with increasing incubation time up to 72 h. The data demonstrate that VEGF may affect APP processing, at least in vitro, suggesting a role of VEGF in the pathogenesis of Alzheimer's disease.  相似文献   

9.
Reductions in the number of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to occur in connection with Parkinson's disease (PD), but it is still unclear which subtype of this receptor is affected. In the present study we examined various nAChR subtypes employing ligand binding, as well as levels of subunit protein and mRNA in the brains of PD patients and age-matched controls. Binding of [3H]epibatidine and levels of alpha3 mRNA in the caudate nucleus and temporal cortex, but not in the hippocampus were significantly decreased in the PD brain. The level of the alpha3 protein subunit was significantly reduced in all these brain regions but there was no change in the level of alpha4. The level of the beta2 protein subunit in the temporal cortex and hippocampus and the beta2 mRNA in the temporal cortex was lowered. Both the levels of the alpha7 subunit protein and [125I]alpha-bungarotoxin binding were significantly increased in the temporal cortex of PD patients whereas the alpha7 mRNA level was unchanged. These findings reveal selective losses of the alpha3- and beta2-containing nAChRs and an increase in the alpha7 nAChRs that might be related to the pathogenesis of PD.  相似文献   

10.
The molecular mechanisms of beta-amyloidogenesis in sporadic Alzheimer's disease are still poorly understood. To reveal whether aging-associated increases in brain oxidative stress and inflammation may trigger onset or progression of beta-amyloid deposition, a transgenic mouse (Tg2576) that express the Swedish double mutation of human amyloid precursor protein (APP) was used as animal model to study the developmental pattern of markers of oxidative stress and APP processing. In Tg2576 mouse brain, cortical levels of soluble beta-amyloid (1-40) and (1-42) steadily increased with age, but significant deposition of fibrillary beta-amyloid in cortical areas did not occur before postnatal age of 10 months. The slope of increase in cerebral cortical beta-secretase (BACE1) activities in Tg2576 mice between ages of 9 and 13 months was significantly higher as compared to that of the alpha-secretase, while the expression level of BACE1 protein and mRNA did not change with age. The activities of superoxide dismutase and glutathione peroxidase in cortical tissue from Tg2576 mice steadily increased from postnatal age 9-12 months. The levels of cortical nitric oxide, and reactive nitrogen species demonstrated peak values around 9 months of age, while the level of interleukin-1beta steadily increased from postnatal month 13 onwards. The developmental temporal coincidence of increased levels of reactive nitrogen species and antioxidative enzymes with the onset of beta-amyloid plaque deposition provides further evidence that developmentally and aging-induced alterations in brain oxidative status exhibit a major factor in triggering enhanced production and deposition of beta-amyloid, and potentially predispose to Alzheimer's disease.  相似文献   

11.
Striatal‐enriched phosphatase 61 (STEP61) plays an essential role in synaptic plasticity and has recently been implicated in neurodegenerative disease. Here we characterized a possible role of STEP61 in Alzheimer's disease (AD) pathology using a mouse model of AD (Tg‐APPswe/PSEN1dE9, APP/PS1 mice) and an in vitro model of AD [cortical neurons treated with amyloid β (Aβ)1–42 peptides]. Our data indicate age‐related elevation of STEP61 levels and the proportion of dephosphorylated STEP61 (active STEP61) in wild‐type mice, which was enhanced in APP/PS1 mice. Furthermore, the increased STEP61 levels and active STEP61 were observed in the hippocampus and cortex from 12‐month‐old APP/PS1 mice and in Aβ1–42‐treated cortical neurons. An α7 nicotinic acetylcholine receptors (nAChRs) antagonist, α‐bungarotoxin (BTX), inhibited the Aβ1–42‐induced increase of STEP61 expression and activation. In addition, extracellular signal‐regulated kinase 1/2 (ERK1/2) and cAMP response element binding (CREB) were impaired in Aβ1–42‐treated cortical neurons, and knockdown of STEP61 enhanced the activation of ERK1/2 and CREB. Collectively, these findings indicate two alternate pathological pathways effecting STEP61 regulation in AD. First, Aβ regulating STEP61 activity is mediated by Aβ binding to α7 nAChRs. Second, STEP61 negatively regulates Aβ‐mediated ERK/CREB pathway, an important signaling cascade involved in memory formation. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
13.
Alzheimer's disease (AD) is a complex, progressive neurological disorder characterized by the formation of extracellular amyloid plaques composed of β‐amyloid protein (Aβ), the key component in pathogenesis of AD. Peripheral administration of enoxaparin (ENO) reportedly reduces the level of Aβ and the amyloid plaques in the cortex of amyloid precursor protein (APP) transgenic mice. However, the exact mechanism of these effects is unclear. Our previous studies indicated that ENO can inhibit APP processing to Aβ in primary cortical cells from Tg2576 mice by downregulating BACE1 levels. This study examines whether ENO‐induced reduction of amyloid load is due to the decreased APP processing to Aβ in Tg2576 mice. Surprisingly, our results indicated that ENO significantly increases the Aβ42/Aβ40 ratio in cortex and enhances the amyloid plaque load in both cortex and hippocampus, although overall APP processing was not influenced by ENO. Moreover, ENO stimulated the aggregation of both Aβ40 and Aβ42 in vitro. Although ENO has been reported to improve cognition in vivo and has potential as a therapeutic agent for AD, the results from our study suggest that ENO can exacerbate the amyloid pathology, and the strategy of using ENO for the treatment of AD may require further assessment. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Presynaptic facilitatory nicotinic receptors (nAChRs) on noradrenergic axon terminals were studied in slices of human or rat neocortex and of rat hippocampus preincubated with [3H]noradrenaline ([3H]NA). During superfusion of the slices, stimulation by nicotinic agonists for 2 min only slightly increased [3H]NA outflow in the rat neocortex, but caused a tetrodotoxin-sensitive. Ca(2+)-dependent release of [3H]NA in rat hippocampus and human neocortex. In both tissues a similar rank order of potency of nicotinic agonists was found: epibatidine > DMPP > nicotine approximately cytisine > or = acetylcholine; choline was ineffective. In human neocortex, the effects of nicotine (100 microM) were reduced by mecamylamine, methyllycaconitine, di-hydro-beta-erythroidine (10 microM, each) and the alpha3beta2/alpha6betax-selective alpha-conotoxin MII (100/200 nM). The alpha3beta4 selective alpha-conotoxin AuIB (1 microM), and the alpha7 selective alpha-conotoxin ImI (200 nM) as well as alpha-bungarotoxin (125 nM) were ineffective. Glutamate receptor antagonists (300 microM AP-5, 100 microM DNQX) acted inhibitory, suggesting the participation of nAChRs on glutamatergic neurons. On the other hand, nAChR agonists were unable to evoke exocytotic release of [3H]acetylcholine from human and rat neocortical slices preincubated with [3H]choline. In conclusion: (1) alpha3beta2 and/or alpha6 containing nAChRs are at least partially responsible for presynaptic cholinergic facilitation of noradrenergic transmission in human neocortex; (2) nicotinic autoreceptors were not detectable in rat and human neocortex.  相似文献   

15.
In this study we used two lines of transgenic mice overexpressing tumor necrosis factor alpha (TNF-α) in the central nervous system (CNS), one characterized by reactive gliosis, inflammatory demyelination and neurological deficits (Tg6074) the other showing no neurological or phenotypical alterations (TgK3) to investigate the effect of TNF-α on brain nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels and learning abilities. The results showed that the amount of NGF in the brain of Tg6074 and TgK3 transgenic mice is low in the hippocampus and in the spinal cord, increases in the hypothalamus of Tg6074 and showed no significant changes in the cortex. BDNF levels were low in the hippocampus and spinal cord of TgK3. BDNF increased in the hypothalamus of TgK3 and Tg6074 while in the cortex, BDNF increased only in Tg6074 mice. Transgenic mice also had memory impairments as revealed by the Morris Water Maze test. These findings indicate that TNF-α significantly influences BDNF and NGF synthesis, most probably in a dose-dependent manner. Learning abilities were also differently affected by overexpression of TNF-α, but were not associated with inflammatory activity. The possible functional implications of our findings are discussed.  相似文献   

16.
Transgenic mice carrying disease-linked forms of genes associated with Alzheimer disease often demonstrate deposition of the beta-amyloid as senile plaques and cerebral amyloid angiopathy. We have characterized the natural history of beta-amyloid deposition in APPswe/PS1dE9 mice, a particularly aggressive transgenic mouse model generated with mutant transgenes for APP (APPswe: KM594/5NL) and PS1 (dE9: deletion of exon 9). Ex vivo histochemistry showed Abeta deposition by 4 months with a progressive increase in plaque number up to 12 months and a similar increase of Abeta levels. In vivo multiphoton microscopy at weekly intervals showed increasing beta-amyloid deposition as CAA and plaques. Although first appearing at an early age, CAA progressed at a significantly slower rate than in the Tg2576 mice. The consistent and early onset of beta-amyloid accumulation in the APPswe/PS1dE9 model confirms its utility for studies of biochemical and pathological mechanisms underlying beta-amyloid deposition, as well as exploring new therapeutic treatments.  相似文献   

17.
18.
Free RB  McKay DB 《Brain research》2003,974(1-2):60-69
The presence and importance of assembled, intracellular neuronal nicotinic acetylcholine receptors (nAChRs) has not been established in native systems. In these studies [3H]epibatidine binding techniques were used to characterize surface and intracellular sites expressed in intact bovine adrenal chromaffin cells in culture. Permeant (300 microM nicotine) and impermeant (5 mM carbachol) cholinergic agents were used to define specific [3H]epibatidine binding to total (surface and intracellular) sites and surface sites, respectively. Intracellular [3H]epibatidine binding sites were characterized after eliminating surface binding sites via alkylation. Equilibrium binding to all sites was reached within 30 min at room temperature. Homologous (epibatidine) competition experiments on total (surface and intracellular) binding sites demonstrated a significant fraction of the high affinity sites were localized to intracellular compartments. Saturation binding assays to surface and intracellular sites revealed K(d) values of 1.9+/-1.1 and 3.6+/-1.9 nM, respectively. These binding studies document the existence of a significant population of high affinity, intracellular binding sites in native neuronal cells and support their characterization as assembled, alpha3beta4* nAChRs. Although the intracellular nAChRs represent approximately 70% of the total, high-affinity nAChRs expressed in cultured chromaffin cells, they do not appear to be involved in functional recovery after nAChR down-regulation.  相似文献   

19.
The amyloid precursor protein (APP) in brain is processed either by an amyloidogenic pathway by beta-secretase and gamma-secretase to yield Abeta (beta-amyloid 4 kDa) peptide or by alpha-secretase within the beta-amyloid domain to yield non-amyloidogenic products. We have studied blood platelet levels of a 22-kDa fragment containing the Abeta (beta-amyloid 4 kDa) peptide, beta-secretase (BACE1), alpha-secretase (ADAM10), and APP isoform ratios of the 120-130 kDa to 110 kDa peptides from 31 Alzheimer's disease (AD) patients and 10 age-matched healthy control subjects. We found increased levels of Abeta4, increased activation of beta-secretase (BACE1), decreased activation of alpha-secretase (ADAM10) and decreased APP ratios in AD patients compared to normal control subjects. These observations indicate that the blood platelet APP is processed by the same amyloidogenic and non-amyloidogenic pathways as utilized in brain and that APP processing in AD patients is altered compared to control subjects and may be a useful bio-marker for the diagnosis of AD, the progression of disease and for monitoring drug responses in clinical trials.  相似文献   

20.
Alzheimer's disease (AD) is the most common progressive dementia and is pathologically characterized by brain deposition of amyloid‐β (Aβ) peptide as senile plaques. Inflammatory and immune response pathways are chronically activated in AD patient brains at low levels, and likely play a role in disease progression. Like microglia, activated astrocytes produce numerous acute‐phase reactants and proinflammatory molecules in the AD brain. One such molecule, S100B, is highly expressed by reactive astrocytes in close vicinity of β‐amyloid deposits. We have previously shown that augmented and prolonged activation of astrocytes has a detrimental impact on neuronal survival. Furthermore, we have implicated astrocyte‐derived S100B as a candidate molecule responsible for this deleterious effect. To evaluate a putative relationship between S100B and AD pathogenesis, we crossed transgenic mice overexpressing human S100B (TghuS100B mice) with the Tg2576 mouse model of AD, and examined AD‐like pathology. Brain parenchymal and cerebral vascular β‐amyloid deposits and Aβ levels were increased in bigenic Tg2576‐huS100B mice. These effects were associated with increased cleavage of the β‐C‐terminal fragment of amyloid precursor protein (APP), elevation of the N‐terminal APP cleavage product (soluble APPβ), and activation of β‐site APP cleaving enzyme 1. In addition, double transgenic mice showed augmented reactive astrocytosis and microgliosis, high levels of S100 expression, and increased levels of proinflammatory cytokines as early as 7–9 months of age. These results provide evidence that (over)‐expression of S100B acts to accelerate AD‐like pathology, and suggest that inhibiting astrocytic activation by blocking S100B biosynthesis may be a promising therapeutic strategy to delay AD progression. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号