首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a simple yet powerful method for the isolation and analysis of exosomes released by antigen-presenting cells (APC). Exosomes are small vesicles (40-90 nm) released by APC, and may have an immuno-regulatory function in vivo. Such exosomes originate from MHC class II peptide loading compartments and, as such, express high levels of MHC Class II. We have utilised magnetic beads, coated with monoclonal antibodies specific for HLA DP, DQ, DR for the specific isolation of exosomes from cell-free supernatants. Beads coated with exosomes are subsequently stained with conjugated antibodies, and analysed by flow cytometry. Characterisation of exosomes by this method demonstrated that exosomes derived from B-lymphocytes express abundant MHC Class I and II molecules. Other immunologically important molecules detected included the co-stimulatory molecules B7.1 (CD80) and B7.2 (CD86). The adhesion molecule ICAM-1 (CD54) was also detected. These exosomes also expressed the B cell marker CD20, and the complement inhibitory protein CD59. The expression of CD63, a lysosomal marker, was variable, and there was no detectable expression of transferrin receptor (CD71). Monocyte derived dendritic cells (cultured for 7 days in GM-CSF/IL-4), demonstrated an immature phenotype, and secreted exosomes with a similar phenotype, with abundant MHC molecules. The expression of CD63 was consistently strong, and the MHC Class I-like molecule CD1a was also present, suggesting a possible function in the presentation of lipid antigens. Again CD59 was expressed suggesting a possible role for APC exosomes in complement regulation. There was no detectable CD71, CD40, CD14, CD20 or CD83. Modification of the extraction protocol allowed a comparative analysis of exosome secretion under various conditions. Treatment of cells with calcium ionophore, or phorbol ester resulted in apparent increases in exosome release, while the phosphatidyl inositol 3-kinase inhibitor, wortmannin, reduced exosome secretion. The immuno-magnetic isolation and analysis of exosomes is a versatile and rapid tool for the analysis of APC exosomes, and may prove a valuable tool for the study of exosome biology.  相似文献   

2.
Exosomes are 50-90 nm vesicles with antigen presenting ability carrying major histocompatibility complex (MHC) class I, class II, abundant co-stimulatory molecules and some tetraspan proteins. Although dendritic cells (DCs) are one of the professional antigen presenting cells capable of presenting exogenous antigens in MHC class I-mediated antigen specific manner (cross-presentation), the cross-presentation ability by exosomes from immature or mature DCs are unknown. Here we show that exosomes released from ovalbumin (OVA) protein-pulsed bone marrow derived dendritic cells (BM-DCs) weakly present the peptide determinants to OVA specific MHC class I-restricted CD8(+) T cell hybridomas. The exosomes secreted by OVA(257-264) peptide- or OVA protein-pulsed mature BM-DCs activated OVA specific MHC class I-restricted T cell hybridomas more efficiently than those from immature BM-DCs. Transporters associated with antigen processing (TAP) deficient mice-derived BM-DCs were also used to examine whether functional TAP activity was required for cross-presentation by exosomes. The exosomes obtained from OVA(257-264) peptide-pulsed BM-DCs derived from TAP(-/-) mice showed a significant antigen presenting ability to OVA specific MHC class I-restricted T cell hybridomas. Altogether, our data indicate that BM-DCs secrete exosomes with weak cross-presentation ability.  相似文献   

3.
Direct exosome stimulation of peripheral human T cells detected by ELISPOT   总被引:5,自引:0,他引:5  
Exosomes from APC are nano-vesicles that can induce antigen-specific T cell responses and are presently explored as therapeutic tools in different clinical settings. Investigations of the capacity of exosomes to stimulate T cells in vitro have mostly been performed on T cell hybridomas, clones or lines. Whether exosomes can stimulate T cells directly or need the presence of dendritic cells (DC) is debated. We could detect exosome-induced antigen-specific CD8(+) T cell responses in peripheral blood from humans. Exosomes from monocyte-derived DC (MDDC) were loaded with a mix of 23 immunogenic peptides from EBV, CMV and influenza virus, and added to autologous peripheral CD8(+) T cells. IFN-gamma-producing cells were detected by enzyme-linked immunospot assay (ELISPOT). MDDC-exosomes induced IFN-gamma production in CD8(+) T cells without addition of DC. The response was exosome dose dependent, and dependent on exosomal MHC class I. Furthermore, we detected an enhanced T cell stimulatory capacity by exosomes from lipopolysaccharide-matured MDDC compared to exosomes from immature MDDC. Exosomes could also induce TNF-alpha production. These results show, for the first time, that exosomes can directly stimulate human peripheral CD8(+) T cells in an antigen-specific manner and that ELISPOT is a suitable method for detecting exosome-induced peripheral T cell responses. This system may provide a useful tool when developing exosomes as therapeutic agents.  相似文献   

4.
Previous studies have provided evidence that myelin basic protein (MBP)-specific rat T cells acquire antigen via transfer of preformed peptide/MHC class II complexes from splenic antigen-presenting cells (APC). The purpose of the present study was to determine how T cells acquire peptide/MHC class II complexes from APC in vitro. Our results show that a MHC class II+ T cell line, R1-trans, released MHC class II-bearing vesicles that directly stimulated MBP-specific CD4+ T cells. Vesicles expressing complexes of MHC class II and MBP were also specifically cytotoxic to MBP-specific T cells. Surviving T cells acquired MHC class II/antigen complexes from these vesicles by a mechanism that did not require protein synthesis but depended on specific TCR interactions with peptide/self MHC complexes. Furthermore, MBP/MHC class II-bearing vesicles enabled T cells to present MBP to other T cell responders. These studies provide evidence that APC release vesicles expressing preformed peptide/MHC class II complexes that interact with clonotypic TCR, allowing MHC class II acquisition by T cells. Vesicular transport of antigen/MHC class II complexes from professional APC to T cells may represent an important mechanism of communication among cells of the immune system.  相似文献   

5.
Two class I major histocompatibility (MHC) mutant mouse strains, H-2bm14 and H-2bm6, differ from the strain of origin C57BL/6 (B6, H-2b) in one and two amino acids of the H-2Db and H-2Kb molecule, respectively. The bm14 Db mutation results in specific failure of female bm14 mice to generate a cytotoxic T lymphocyte (Tc) response to the male-specific antigen H-Y. The allospecific Tc response of CD8+ B6T cells against bm6 Kb mutant spleen cells, in contrast to that against other Kb mutants, is absolutely CD4+ T helper cell dependent. Purified CD8+ T cells completely fail to respond. We now report that the inability to mount these specific immune responses is restored by the use of dendritic cells (DC) as antigen-presenting cells (APC). Comparison of MHC expression on various types of APC by cytofluorimetry and quantitative immunoprecipitation showed very high expression of class I and class II MHC molecules on DC. Strikingly, examination of class I and class II molecules by isoelectric focusing revealed qualitative differences as well. We show that the surface MHC class I molecules of DC are present in greater quantity and carry on average fewer sialic acids than the same molecules isolated from other APC types such as spleen cells, lipopolysaccharide blasts or concanavalin A blasts. That sialic acids on cell surface molecules, including MHC, may play a role in antigen presentation is suggested by our finding that removal of sialic acids, by neuraminidase, can restore specific responses to nonresponder APC as well.  相似文献   

6.
Effective immune responses require antigen uptake by antigen-presenting cells (APC), followed by controlled endocytic proteolysis resulting in the generation of antigen-derived peptide fragments that associate with intracellular MHC class II molecules. The resultant peptide-MHC class II complexes then move to the APC surface where they activate CD4(+) T cells. Dendritic cells (DC), macrophages and B cells act as efficient APC. In many settings, including the T helper type 1 (Th1) -dependent, proteoglycan-induced arthritis model of rheumatoid arthritis, accumulating evidence demonstrates that antigen presentation by B cells is required for optimal CD4(+) T cell activation. The reasons behind this however, remain unclear. In this study we have compared the activation of CD4(+) T cells specific for the proteoglycan aggrecan following antigen presentation by DC, macrophages and B cells. We show that aggrecan-specific B cells are equally efficient APC as DC and macrophages and use similar intracellular antigen-processing pathways. Importantly, we also show that antigen presentation by aggrecan-specific B cells to TCR transgenic CD4(+) T cells results in enhanced CD4(+) T cell interferon-γ production and Th1 effector sub-set differentiation compared with that seen with DC. We conclude that preferential CD4(+) Th1 differentiation may define the requirement for B cell APC function in both proteoglycan-induced arthritis and rheumatoid arthritis.  相似文献   

7.
Major histocompatibility complex (MHC) class II molecules bind to numerous peptides and display these on the cell surface for T cell recognition. In a given immune response, receptors on T cells recognize antigenic peptides that are a minor population of MHC class II-bound peptides. To control which peptides are presented to T cells, it may be desirable to use recombinant MHC molecules with covalently bound antigenic peptides. To study T cell responses to such homogenous peptide-MHC complexes, we engineered an HLA-DR1 cDNA coding for influenza hemagglutinin, influenza matrix, or HIV p24 gag peptides covalently attached via a peptide spacer to the N terminus of the DR1 β chain. Co-transfection with DR α cDNA into mouse L cells resulted in surface expression of HLA-DR1 molecules that reacted with monoclonal antibodies (mAb) specific for correctly folded HLA-DR epitopes. This suggested that the spacer and peptide did not alter expression or folding of the molecule. We then engineered an additional peptide spacer between the C terminus of a truncated β chain (without transmembrane or cytoplasmic domains) and the N terminus of full-length DR α chain. Transfection of this cDNA into mouse L cells resulted in surface expression of the entire covalently linked heterotrimer of peptide, β chain, and α chain with the expected molecular mass of approximately 66 kDa. These single-chain HLA-DR1 molecules reacted with mAb specific for correctly folded HLA-DR epitopes, and identified one mAb with [MHC + peptide] specificity. Affinity-purified soluble secreted single-chain molecules with truncated α chain moved in electrophoresis as compact class II MHC dimers. Cell surface two-chain or single-chain HLA-DR1 molecules with a covalent HA peptide stimulated HLA-DR1-restricted HA-specific T cells. They were immunogenic in vitro for peripheral blood mononuclear cells. The two-chain and single-chain HLA-DR1 molecules with covalent HA peptide had reduced binding for the bacterial superantigens staphylococcal enterotoxin A and B and almost no binding for toxic shock syndrome toxin-1. The unique properties of these engineered HLA-DR1 molecules may facilitate our understanding of the complex nature of antigen recognition and aid in the development of novel vaccines with reduced superantigen binding.  相似文献   

8.
To demonstrate that DR αβ dimers still complexed to invariant chain (Ii) have not yet acquired peptides recognized by alloreactive T cells, complexes between DR molecules and Ii isolated from Epstein-Barr-virus (EBV)-transformed B cells were analyzed by affinity chromatography and gel filtration. First, it was shown that DR/Ii complexes inserted into artificial planar membranes (PM) failed to stimulate proliferative response of five alloreactive T cell clones and a polyclonal alloreactive Tcell line, while PM bearing mature DR αβ dimers from the same EBV-B cells were stimulatory for the Tcell clones and the Tcell line. These findings indicate that either Ii inhibits binding of peptides to DR molecules or Ii hinders T cells recognition of peptide/DR complexes. Second, to discriminate between these two possibilities, DR αβ dimers, which were artificially released from complexes between DR molecules and Ii, were inserted into PM. These DR αβ dimers were devoid of alloreactive stimulatory capacity while fully capable of binding and presenting a tetanus toxin synthetic peptide to a specific Tcell clone, indicating that DR molecules released from complexes with Ii are empty. This study, by showing that DR molecules bound to Ii do not bear peptides recognized by alloreactive T cells, supports the notion that association of Ii with class II major histocompatibility complex (MHC) molecules prevents premature peptide loading and hence favors encounter with peptides derived from proteins of the extracellular compartment. Since allogeneic class II MHC molecules released from complexes with Ii were not stimulatory for five out of five alloreactive Tcell clones and a polyclonal alloreactive Tcell line, these data also indicate that, in most cases, alloreactive T cells recognize ligands constituted by complexes between allogeneic class II MHC molecules and specific peptides which derive from the antigen-presenting cells themselves or serum proteins.  相似文献   

9.
Exosomes secreted by tumor cells could serve as a promising immunotherapeutic tumor vaccine. Heat shock proteins (HSP) induced in tumor cells by heat shock are molecular chaperones with potent adjuvant activity in the induction of antigen-specific T cell responses. To improve exosome-based tumor vaccines, we have investigated the efficacy of exosomes derived from heat-shocked mouse B lymphoma cells (HS-Exo) in the induction of antitumor immune responses. We found that HS-Exo, compared with control exosomes derived from the same cells (Exo), contain more HSP60 and HSP90 and increased amounts of molecules involved in immunogenicity including MHC class I, MHC class II, CD40, CD86, RANTES and IL-1beta. Furthermore, HS-Exo induce both phenotypic and functional maturation of dendritic cells more efficiently. HS-Exo immunization activates T cell responses more potently. Importantly, HS-Exo induce dramatically increased antitumor immune responses compared to control exosomes from the same cells in prophylaxis and therapeutic in vivo lymphoma models. We further demonstrate that CD8(+) T cells are the predominant T cell subset responsible for the antitumor effect of HS-Exo and that CD4(+) T cells are necessary in the induction phase of tumor rejection in a prophylaxis model. These findings provide a novel strategy to improve the efficacy of exosome-based tumor vaccines.  相似文献   

10.
Professional antigen-presenting cells (APC) are able to process and present exogenous antigen leading to the activation of T cells. Antigen-immunoglobulin (Ig)G complexes (IC) are much more efficiently processed and presented than soluble antigen. Dendritic cells (DC) are known for their ability to take up and process immune complex (IC) via FcgammaR, and they have been shown to play a crucial role in IC-processing onto major histocompatibility complex (MHC) class I as they contain a specialized cross-presenting transport system required for MHC class I antigen-processing. However, the MHC class II-antigen-processing pathway is distinct. Therefore various other professional APC, like macrophages and B cells, all displaying FcgammaR, are thought to present IC-delivered antigen in MHC class II. Nonetheless, the relative contribution of these APC in IC-facilitated antigen-presentation for MHC class II in vivo is not known. Here we show that, in mice, both macrophages and DC, but not B cells, efficiently capture IC. However, only DC, but not macrophages, efficiently activate antigen-specific MHC class II restricted CD4(+) T cells. These results indicate that mainly DC and not other professional APC, despite expressing FcgammaR and MHC class II, contribute significantly to IC-facilitated T cell activation in vivo under steady-state conditions.  相似文献   

11.
Tumor-specific immunosuppression is frequently observed in tumor-bearing hosts. Exosomes are nano-sized, endosomal-derived membrane vesicles secreted by most tumor and hematopoietic cells and have been shown to actively participate in immune regulation. We previously demonstrated that antigen-specific immunosuppressive exosomes could be isolated from the blood plasma of antigen-immunized mice. Here, we demonstrate that plasma-derived exosomes isolated from mice bearing OVA-expressing tumors were able to suppress OVA-specific immune responses in a mouse delayed-type hypersensitivity model. Enrichment of tumor-derived exosomes in the plasma of mice bearing subcutaneous melanoma was not detected using an exosome-tagging approach. Instead, depletion of MHC class II(+) vesicles from plasma-derived exosomes or using plasma-derived exosomes isolated from MHC class II-deficient mice resulted in significant abrogation of the suppressive effect. These results demonstrate that circulating host-derived, MHC class II(+) exosomes in tumor-bearing hosts are able to suppress the immune response specific to tumor antigens.  相似文献   

12.
One of the factors that may influence the cytokine secretion profile of a T cell is the antigen-presenting cell (APC). Since activated human T cells have been described to express major histocompatibility complex (MHC) class II molecules as well as costimulatory molecules for T cell activation, like e.g. ICAM-1, LFA-3 and B7, they might play a role as APC and be involved in the regulation of T-T cell interactions. To define further the role of T cells as APC we tested their capacity to induce proliferation and cytokine production in peptide- or allospecific T cell clones and compared it with conventional APC, like B lymphoblasts (B-LCL) or HTLV-1 - transformed T cells, or with non-classical APC, like activated keratinocytes or eosinophils. CD4+, DP-restricted T cell clones specific for a tetanus toxin peptide (amino acids 947-967) and CD4+, DR-restricted allospecific Tcell clones produced interleukin (IL)-2, IL-4, tumor necrosis factor-α and interferon-γ (IFN-γ) after phorbol 12-myristate 13-acetate and ionomycin stimulation and a more restricted cytokine pattern after antigen stimulation. Dose-response curves revealed that the antigen-presenting capacity of activated, MHC class II+, B7+ T cells was comparable to the one of B-LCL. Both APC induced the same cytokine profile in the T cell clones despite a weaker proliferative response with T cells as APC. Suboptimal stimulations resulted in a lower IFN-γ/IL-4 ratio. Cytokine-treated, MHC class II+ keratinocytes and eosinophils differed in the expression of adhesion molecules and their capacity to restimulate T cell clones. The strongly ICAM-1-positive keratinocytes induced rather high cytokine levels. In contrast, eosinophils, which express only low densities of MHC class II and no or only low levels of adhesion molecules (B7, ICAM-1 and LFA3), provided a reduced signal resulting in a diminished IFN-γ/IL-4 ratio. We conclude that non-classical APC differ in their capacity to restimulate T cell clones, whereby the intensity of MHC class II and adhesion molecules (B7, ICAM-1) expressed seems to determine the efficacy of this presentation.  相似文献   

13.
Major histocompatibility complex (MHC) class II molecules expressed by thymic epithelial cells are involved in positive selection of CD4 T cells, whereas the high-avidity interaction of T cell receptors with the endogenous peptide : MHC class II complexes expressed on bone marrow (BM)-derived antigen-presenting cells (APC) and, to a lesser extent, on thymic epithelial cells mediate negative selection. To understand better the generation of the CD4 T cell repertoire both in the thymus and in the periphery we analyzed relative levels of expression of specific endogenous peptide: MHC class II complexes in thymic epithelial cells (TEC) and peripheral APC. Expression of Eα52–68: I-Ab and class II-associated invariant chain peptide (CLIP): I-Ab complexes in thymic epithelial cells and in the bone-marrow derived splenic APC, i.e. B cells, was studied using YAe and 30-2 monoclonal antibodies which are specific for the corresponding complexes. To distinguish between expression of both complexes in radioresistant thymic epithelial elements and radiation sensitive BM-derived APC, radiation BM chimeras were constructed. Using immunohistochemical and immunochemical approaches we demonstrated that the level of expression of Eα52–68:I-Ab complexes in thymic epithelial cells is approximately 5–10 % of that seen in splenic cells whereas total class II levels were comparable. In contrast, CLIP: I-Ab complexes are expressed at substantially higher levels in TEC vs. splenic APC. This result demonstrates quantitative differences in expression of distinct peptide: MHC class II complexes in thymic epithelial cells and peripheral splenic APC.  相似文献   

14.
Here, we have investigated if targeting of T cell epitopes to chemokine receptors results in improved CD4+ T cell responses. Mouse monoclonal antibodies (mAb) with kappaL chains were targeted to various chemokine receptors expressed on human monocytes or immature dendritic cells (DC), and proliferation of cloned human, DR4-restricted CD4+ T cells specific for mouse Ckappa(40-48) was measured. When using monocytes as antigen-presenting cells, mAb specific for CCR1, CCR2, CCR5, and CXCR4 were 100-10,000-fold more efficient at inducing T cell proliferation when compared to isotype-matched control mAb on a per molecule basis. Targeting of immature DC was less effective and was only seen with anti-CCR1 and anti-CXCR4 mAb. Anti-chemokine receptors mAb required to be processed by the conventional endosomal MHC class II presentation pathway. The mAb did not induce signaling through the chemokine receptors as they failed to induce mobilization of cytosolic Ca2+ and actin polymerization. They also failed to induce APC maturation. The results strongly suggest that chemokine receptors channel antigen into the endocytic pathway for presentation on MHC class II molecules. Targeting T cell epitopes to chemokine receptors by recombinant antibody should be a useful vaccine strategy for the induction of strong CD4+ T cell responses.  相似文献   

15.
Presentation of antigen to T cells is generally restricted by MHC type but the mixed leukocyte reaction (MLR) was thought to involve direct stimulation by dendritic cells (DC) of allogeneic T cells. However, here we showed that DC bearing allogeneic MHC class II acted synergistically with responder-type DC. Removal of residual DC from 'purified' responder T cell populations was achieved using treatment with DC-specific antibody and complement. These DC-depleted cells showed a significantly reduced response to allogeneic DC which was restored by addition of DC syngeneic with responder T cells. The studies support the concept that a major component of the MLR is the secondary presentation of alloantigens acquired from stimulator DC by DC of responder type. To investigate the reasons why DC and not other cells stimulate an MLR, synergy between DC and other cell types was investigated. Synergy was found exclusively between DC; macrophages, B cells or L cells transfected with MHC class II molecules did not contribute. When allogeneic DC were mixed in culture, transfer of MHC molecules between DC was observed as assessed by flow cytometry. Freshly obtained cell-free supernatants from cultured DC contained MHC class II and stimulated primary allogeneic MLR. DC of responder type acquired allogeneic MHC molecules from the supernatants and stimulated proliferation in syngeneic T cells. The capacity of DC both to shed and to acquire MHC molecules may contribute to their potency in stimulating primary responses, and could explain why passenger DC within allografts provide a potent stimulus for graft rejection.  相似文献   

16.
Interleukin-12 is a key regulatory cytokine produced by antigen-presenting cells (APC) which drives the development of interferon-γ (IFN-γ)-producing cells and promotes cell-mediated immunity. Following subcutaneous immunization with protein antigen in adjuvant, dendritic cells (DC) but not small nor large B cells in immune lymph nodes express antigenic complexes and secrete substantial amounts of bioactive IL-12 p75 upon antigen-specific interaction with T cells. We have analyzed secretion of IL-12 p40 and p75 by cell populations enriched in DC, macrophages or B cells in response to nonspecific stimulation or to interaction with antigen-specific CD4+ cells. These APC populations do not produce IL-12 constitutively but, upon stimulation with heat-fixed Staphylococcus aureus and IFN-γ, IL-12 p40 and p75 are secreted by DC and macrophages, whereas B cells fail to produce IL-12. B cells also fail to secrete IL-12 in response to stimulation with LPS and IFN-γ. Co-culture with CD4+ T hybridoma cells and antigen induces IL-12 secretion by DC. Up-regulation of IL-12 secretion by interaction with antigen-specific CD4+ T cells is abrogated by anti-class II monoclonal antibodies (mAb), by soluble CD40 molecules and by anti-CD40 ligand mAb, demonstrating a positive feedback between T cells and DC mediated by TCR-peptide/class II and by CD40-CD40 ligand interactions. Expression of class II and CD40 molecules is comparable in B cells and DC, and both APC types activate CD4+ T cells. Yet, even upon interaction with antigen-specific T cells, B cells fail to secrete IL-12. The capacity of B cells to present antigen but not to secrete IL-12 may explain their propensity to selectively drive T helper type 2 cell development.  相似文献   

17.
Antigen-driven interaction of dendritic cells (DC) with CD4(+) T(h) cells results in the exchange of bidirectional activating signals. Cross-linking of TCR by MHC class II-bound antigen activates T(h) cells, resulting in their up-regulation of CD40 ligand. Here we show that MHC class II molecules, in addition to their passive role in DC-T(h) cell interaction, can also actively induce DC maturation. Cross-linking of MHC class II molecules on human monocyte-derived DC results in the up-regulation of the surface expression of CD83, CD80, CD86, CD54, CD1a and CD40 molecules, the typical DC maturation-associated markers. It also promotes a rapid homotypic aggregation of DC paralleled by the up-regulation of such adhesion molecules as VLA-4, tissue transglutaminase, CD54 and CD11c. The impact of MHC class II cross-linking upon DC was context dependent. The outcome of MHC class II signaling depends on the maturation status of DC. While the cross-linking of MHC class II on immature DC promoted their maturation, the dominant effect upon the DC that were previously matured was the induction of DC apoptosis. Our current observations indicate that, in addition to the previously reported negative impact of MHC class II-mediated signaling on DC function, it also promotes DC maturation, participating in the enhancement of DC stimulatory function. Importantly, MHC class II-induced DC maturation and apoptosis are mediated by different signaling pathways, sensitive to different sets of inhibitors. This opens the possibility of differential regulation of each of these events in immunotherapy.  相似文献   

18.
We have investigated the ability of various antigen-presenting cell (APC) types to induce primary anti-viral cytotoxic T lymphocyte (CTL) responses by single in vitro stimulation. Of these APC types, only dendritic cells (DC) and RMA-S lymphoma cells could induce primary CTL responses, but by divergent mechanisms. DC were capable of generating primary virus-specific CTL, either by presenting viral peptide or processed infectious virus. In contrast, RMA-S cells could not present endogenous antigen, e.g. after virus infection, but this cell line very efficiently presented exogenous viral peptides to induce primary virus-specific CTL in vitro. Spleen cells, lipopolysaccharide-induced B cell blasts or the non-mutated RMA cells did not have the ability to trigger unprimed T cells by single in vitro stimulation. We have investigated several characteristics important for primary CTL response induction by DC and RMA-S cells (summarized in Fig. 6). Primary CTL response induction by DC or RMA-S cells was blocked by anti-LFA-1 or anti-CD8 monoclonal antibodies (mAb). DC rapidly aggregated with unprimed T cells, which was independent of LFA-1 and CD8 molecules. RMA-S cells did not form conjugates with unprimed T cells. Despite their abundant major histocompatibility complex (MHC) class I cell-surface expression, DC did not bind much exogenously added viral peptide. In contrast, the MHC class I molecules on RMA-S cells bound a large quantity of exogenously administered peptide. Powerful adhesion by DC and high expression of relevant MHC/peptide complexes on RMA-S cells are important features in the initial contact with unprimed T lymphocytes. In a later stage of contact, both DC and RMA-S cells activate LFA-1 (and CD8) molecules at the T cell surface to strengthen and maintain the contact between T cell and APC.  相似文献   

19.
A monoclonal antibody (mAb) specific for the 93-104 segment of pigeon cytochrome c (cyt) was shown to block interleukin 2 production and proliferation by pigeon cyt-specific T cells in response to the pigeon cyt 81-104 peptide using either the LK35.2 B cell hybridoma or normal splenocytes as antigen-presenting cells (APC). The mAb inhibited the response to soluble peptide antigen presented by metabolically inactive paraformaldehyde-fixed APC but not the response to APC that were pre-pulsed with Ag. These results suggest that the mAb blocked the formation of peptide-major histocompatibility complex (MHC) class II molecule complexes at the cell surface but did not displace the peptide once bound to the MHC class II molecule. As determined by direct binding experiments using labeled peptide, the major means of free peptide association with live APC was fluid-phase endocytosis. No free peptide associated directly with the MHC class II molecule at the cell surface near 0 degrees C since APC pulsed with peptide on ice did not activate cyt-specific T cells. The mAb enhanced the association of the radiolabeled peptide with APC at 4 degrees C apparently by binding of the peptide-mAb complex to Fc receptors. By stripping molecules from the LK35.2 cell surface using a nonspecific protease it was shown that the peptide-mAb complexes were not internalized either at 4 degrees C or 37 degrees C. Since the mAb was found to stably bind the peptide at pH levels below that of endosomes (pH 5.5-6.2) even if the peptide-mAb complexes were taken up by fluid-phase endocytosis, it is likely that the peptide would not be able to associate with MHC class II molecules inside the APC. This mAb appears to inhibit T cell activation by blocking the formation of peptide-MHC class II molecule complexes at the cell surface and by interfering with uptake of the peptide into endosomes. Therefore, it is different from other antibodies that have been reported to block T cell receptor recognition of preformed peptide/MHC class II molecule complexes.  相似文献   

20.
The role of T-lymphocytes as antigen-presenting cells (APCs) for other T cells was investigated. Activated rabies-virus-specific human T-cell clones were shown to present peptide to class II major histocompatibility complex (MHC)-restricted T cells of a different fine specificity, resulting in lymphokine production and cell proliferation. Furthermore, purified and activated antigen-specific T cells could produce lymphokines and proliferate as a result of the addition of antigenic peptide in the absence of APC. The functional response of T cells to peptide in the absence of APC was amplified by the addition of phorbol ester (PMA) and was inhibited with antibodies specific to class II MHC or to the CD2 molecule. Experiments performed in single-cell suspension cultures using semisolid medium prepared with 1% agar demonstrate that T-cell proliferative and lymphokine responses to peptide both in the presence and absence of APC require the interaction of T-cell antigen receptor (TCR) molecules with class II MHC-peptide complexes on different cell surfaces (cell-cell contact). On the other hand, peptide self-presentation, which occurs by the binding of TCR with class II MHC-peptide complexes on the same cell surface (at the single-cell level), resulted in T-cell activation (i.e., high expression of surface CD2, CD25, and HLA-DR molecules), without proliferation or lymphokine secretion, a pattern observed in the induction of T-cell anergy by antigen. The results are discussed in terms of the role of class II MHC molecules on activated T-lymphocytes, which enable these cells to function as "professional APC" in the development of T-cell regulatory networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号