首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parathyroid hormone (PTH) is a principle regulator of bone and calcium metabolism and PTH analogs hold great promise as a therapy for metabolic bone diseases such as osteoporosis. PTH acts principally through the type IPTH/PTH-related peptide receptor (PTH1R), a G protein coupled receptor (GPCR). GPCRs are a family of seven transmembrane cell surface receptors that share conserved structural, functional, and regulatory properties. Recent studies demonstrate that the complex metabolic effects induced by PTH1R stimulation are not entirely a consequence of conventional GPCR signaling. β-arrestins, in addition to their GPCR desensitizing actions, also serve as multifunctional scaffolding proteins linking the PTH1R to signaling molecules independent of the classic G protein coupled second messenger-dependent pathways. In vitro, D-Trp(12),Tyr(34)-bPTH(7-34) (PTH-βarr), a β-arrestin selective biased agonist for the PTH1R, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, intermittent administration of, PTH-βarr to mice, induces anabolic bone formation, completely independent of classic G protein-coupled signaling mechanisms. While both PTH-βarr and the conventional agonist PTH(1-34) stimulate anabolic bone formation in mice, unlike PTH(1-34), which activates G protein coupling, PTH-βarr does not induce hypercalcemia or increase markers of bone resorption. This newly recognized ability of β-arrestins to serve as signal transducers for the PTH1R represents an innovative paradigm of receptor signaling which can be targeted to induce a subset of physiologic responses in bone. Exploitation of β-arrestin biased agonism may offer therapeutic benefit for the treatment of metabolic bone diseases such as osteoporosis.  相似文献   

2.
The vβ3 integrin is a non-covalent, heterodimeric, cell-surface protein that is expressed with varying density on numerous cell types, including osteoclasts, vascular smooth muscle cells, endothelial cells and a variety of tumour cells. Functionally, vβ3 mediates a diverse range of biological events including the adhesion of osteoclasts to bone matrix, smooth muscle cell migration and angiogenesis. Specifically, there has been significant attention focused on the preparation of inhibitors of vβ3 for use as inhibitors of bone resorption, in recognition of the medical need for improved prevention and treatment of osteoporosis. Herein, we summarise the pertinent chemistry and biological advances in the medicinal design and biological evaluation of peptide and small molecule vβ3 antagonists as inhibitors of bone resorption.  相似文献   

3.
4.

Background and purpose of the study

Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers.

Methods

In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months.

Result

31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α). Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029)

Conclusion

In conclusion, the findings of this study indicate that Semelil (Angipars®) had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered.  相似文献   

5.
Bone homeostasis is controlled by the balance between osteoblastic bone formation and osteoclastic bone resorption. Excessive bone resorption is involved in the pathogenesis of bone-related disorders such as osteoporosis, arthritis and periodontitis. To obtain new antiresorptive agents, we searched for natural compounds that can inhibit osteoclast differentiation and function. We found that harmine, a β-carboline alkaloid, inhibited multinucleated osteoclast formation induced by receptor activator of nuclear factor-κB ligand (RANKL) in RAW264.7 cells. Similar results were obtained in cultures of bone marrow macrophages supplemented with macrophage colony-stimulating factor and RANKL, as well as in cocultures of bone marrow cells and osteoblastic UAMS-32 cells in the presence of vitamin D(3) and prostaglandin E(2). Furthermore, harmine prevented RANKL-induced bone resorption in both cell and bone tissue cultures. Treatment with harmine (10 mg/kg/day) also prevented bone loss in ovariectomized osteoporosis model mice. Structure-activity relationship studies showed that the C3-C4 double bond and 7-methoxy group of harmine are important for its inhibitory activity on osteoclast differentiation. In mechanistic studies, we found that harmine inhibited the RANKL-induced expression of c-Fos and subsequent expression of nuclear factor of activated T cells (NFAT) c1, which is a master regulator of osteoclastogenesis. However, harmine did not affect early signaling molecules such as ERK, p38 MAPK and IκBα. These results indicate that harmine inhibits osteoclast formation via downregulation of c-Fos and NFATc1 induced by RANKL and represses bone resorption. These novel findings may be useful for the treatment of bone-destructive diseases.  相似文献   

6.
The Cl? channel/transporter ClC7 is crucial for osteoclastic bone resorption and might become a therapeutic target for osteoporosis. In this study, we raised anti-ClC7 polyclonal antibodies against three different peptide sequences, including G215, P249, and R286, which are the mutation regions found in autosomal dominant osteopetrosis type II patients and examined the effects of these antibodies on the ClC7 Cl? current induced by extracellular acidification (acid-activated Cl? current) using the whole-cell patch clamp technique and bone resorption activity in mouse osteoclasts. Intracellular dialysis of osteoclasts with antibodies to intracellular G215 (Ab-G215) and extracellular application of antibodies to extracellular P249 (Ab-P249) or R286 (Ab-R286) inhibited the acid-activated Cl? current. These antibodies also suppressed the acid-activated Cl? current in ClC7 overexpressing Raw264.7 cells; however, Cl? currents evoked by hypotonic stimulation and the inherent inwardly rectifying K+ currents in mouse osteoclasts were unaffected by these antibodies. Furthermore, extracellularly applied Ab-P249 and Ab-R286 also reduced bone resorption activity. Our results demonstrate that these antibodies specifically block ClC7 in mouse osteoclasts. Thus, anti-ClC7 antibodies have potential promise for treatment of osteoporosis.  相似文献   

7.
8.
Because of numerous indications and high availability, non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed and used medicines in the world. However, long-term therapy with and improper use of NSAIDs may lead to gastrointestinal damage. Therefore, improving the therapeutic index of the existing drugs has become a priority over the past decades. Considerable attention in the field has been concentrated on metal complexes of non-steroidal anti-inflammatory drugs. The aim of this study is to evaluate the effect of complexation with zinc on the anti-inflammatory and ulcerogenic effects of ibuprofen and naproxen after single and triple intragastric administration to rats. The anti-inflammatory effect was assessed in carrageenan-induced inflammatory edema in the hind paw of male albino Wistar rats. The mucosal lesions were inspected and evaluated for gross pathology. Single administration of both the investigated complexes, namely zinc–ibuprofen and zinc–naproxen (20 mg/kg equivalent to ibuprofen and naproxen, respectively) and their parent drugs and physical mixtures with zinc hydroaspartate (ZHA doses: 16.05 and 14.37 mg/kg), caused a significant reduction of the edema after the same time from the carrageenan injection in comparison to the control groups. However, no statistically significant differences between the investigated drugs were observed after their single administration. The mean ulceration score for the mixture of ibuprofen and ZHA was statistically lower than the mean score achieved in rats after treatment with ibuprofen alone. On the other hand, triple intragastric administration of the ZHA–ibuprofen and ZHA–naproxen combination showed substantial enhancement of the anti-inflammatory activity against control groups, as well as against the parent NSAIDs. The most potent anti-inflammatory activity was demonstrated after 2 h from the carrageenan injection in animals receiving ZHA together with naproxen. The edema growth was reduced in these animals by 80.9% as compared to the control group. This result was significantly higher than the results achieved in animals receiving zinc–naproxen (50.2%) or naproxen alone (47.9%). Both NSAID complexes with zinc and mixtures with ZHA alleviated ulcerations caused by parent NSAIDs; however, the mixtures of both ibuprofen and naproxen with ZHA after triple administration were the least damaging. In view of the above results, zinc supplementation during NSAID therapy may have a beneficial effect on ulcer prevention and healing by reducing the effective dose of the parent drug and increasing its potency.  相似文献   

9.
Metastatic bone disease is a serious clinical complication for the treatment of patients with advanced cancer, but few therapeutic options are currently available. Bisphosphonates are an established standard care for these patients, but new treatments are now emerging, including the use of monoclonal antibodies targeting the RANK ligand. In this issue of the BJP, Reuter et al. provide evidence that thiocolchicoside, a semi-synthetic derivative of the naturally occurring colchicoside, extracted from the seeds of Gloriosa superba (Liliaceae), prevented osteoclactogenesis by suppressing RANK ligand-mediated NF-κB activation. Thiolcolchicoside may thus represent an attractive therapeutic option for the management of bone metastatic disease.

LINKED ARTICLE

This article is a commentary on Reuter et al., pp. 2127–2139 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2011.01702.x  相似文献   

10.
11.
Aluminum (Al) can accumulate in bone and cause bone diseases. Few studies have investigated molecular mechanism of Al-induced bone diseases. Thus, in this study, rats were orally exposed to 0 (control group) and 0.4 g/L aluminum trichloride (AlCl3) (treatment group) for 30, 60, 90 or 120 days, respectively. The Al content of femora and serum, bone histological structure, bone mineral density (BMD) of the distal and proximal femoral metaphysis and Wnt/β-catenin signaling pathway (the mRNA expressions of Wnt3a, Fzd2, LRP-5, β-catenin, Tcf4, cyclin D1 and c-Myc, the protein levels of Wnt3a and β-catenin, the activities of Fzd2 and LRP-5) in rat femora were determined on day 30, 60, 90 or 120, respectively. The results showed that the Al contents of femora and serum were increased, the BMD of the distal and proximal femoral metaphysis were decreased, the femora histological structure were disrupted, the mRNA expressions of Wnt3a, Fzd2, LRP-5, β-catenin, Tcf4, cyclin D1 and c-Myc, the protein levels of Wnt3a and β-catenin, the activities of Fzd2 and LRP-5 were all decreased in the treatment group compared with the control group with time prolonged. These results indicated that AlCl3 impaired femora by inhibiting the Wnt/β-catenin signaling pathway in young growing rats.  相似文献   

12.
  1. Aminobisphosphonates (aminoBPs), potent inhibitors of bone resorption, have been reported to induce inflammatory reactions such as fever and an increase in acute phase proteins in human patients, and to induce the histamine-forming enzyme, histidine decarboxylase, in mice. In the present study, we examined the effect of aminoBP, 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid (AHBuBP), on the production of the pro-inflammatory cytokines, IL-1 and TNFα, in mice.
  2. Intraperitoneal injection of AHBuBP did not itself produce detectable levels of IL-1 (α and β) and TNFα in the serum. However, the elevation of serum IL-1 induced by lipopolysaccharide (LPS) was greatly augmented in mice injected with AHBuBP 3 days before the LPS injection, whereas the LPS-induced elevation of serum TNFα was almost completely abolished.
  3. Spleen and bone marrow cells taken from mice injected with AHBuBP produced IL-1β in vitro spontaneously, and the production was augmented following the addition of LPS. Cells that accumulated in the peritoneal cavity in response to AHBuBP produced a particularly large amount of IL-1β. However, AHBuBP treatment of mice did not lead to an impairment of the in vitro production of TNFα by these three types of cells.
  4. Liposomes encapsulating dichloromethylene bisphosphonate (a non-amino BP) selectively deplete phagocytic macrophages. When an intraperitoneal injection of these liposomes was given 2 days after an injection of AHBuBP, there was a marked decrease in the LPS-induced elevation of serum IL-1 (α and β) (LPS being injected 3 days after the injection of AHBuBP).
  5. These results indicate that AHBuBP has contrasting effects on the in vivo LPS-induced production of IL-1 and TNFα in mice, enhancing the production of IL-1 by phagocytic macrophages and suppressing the production of TNFα, although underling mechanisms remain to be clarified.
  相似文献   

13.
Puerarin is an isoflavone extracted from Radix Puerariae, a traditional Chinese herb used to treat many diseases such as osteoporosis. In this study, puerarin was shown to stimulate alkaline phosphatase (ALP) activity, type I collagen (Col I) secretion, and mineralized nodules formation of primary osteoblasts. Whereas the estrogen receptor (ER) antagonist ICI 182780 was able to reduce the increase in ALP activity and Col I secretion induced by puerarin. Furthermore, puerarin was shown to elevate levels of phospho-p38 mitogen-activated protein kinase (MAPK) and β-catenin proteins in a time-dependent manner. Pretreatment of osteoblasts with ICI 182780 can reduce this elevation, whereas pretreatment with p38 MAPK inhibitor SB 203580 did not affect the increase of β-catenin protein. Meanwhile, intragastric administration of puerarin protected against reduction in bone mineral density and bone mineral content in ovariectomized rats, and improved femur trabecular bone structure. Taken together, ER, p38 MAPK, and Wnt/β-catenin pathways were involved in puerarin-stimulated osteoblasts differentiation and bone formation.  相似文献   

14.
15.
AIM: To investigate if vitamin D receptor (VDR) gene Apa I polymorphism and estrogen receptor-alpha (ER-alpha) gene Pvu II, Xba I polymorphisms are related to bone mineral density (BMD), bone mineral content (BMC) and bone size in premenopausal Chinese women. METHODS: The VDR Apa I genotype and ER-alpha Pvu II, Xba I genotype were determined by PCR-restriction fragment length polymorphism (RFLP) in 493 unrelated healthy women aged 20-40 years of Han nationality in Shanghai city. BMD (g/cm(2)), BMC (g), and bone areal size (BAS, cm(2) ) at lumbar spine 1-4 (L(1-4)) and proximal femur (femoral neck, trochanter and Ward's triangle) were measured by duel-energy X-ray absorptionmetry. RESULTS: All allele frequencies did not deviate from Hardy-Weinberg equilibrium. After phenotypes were adjusted for age, height, and weight, a significant association was found between VDR Apa I genotype and BMC variation at L(1-4) and Ward's triangle (P<0.05), but not in BMD or BAS at lumbar spine and proximal femur. ER-a Pvu II, Xba I genotype was not related to BMC, BMD, and BAS at all sites. CONCLUSION: The study suggested that Apa I polymorphism in VDR gene may influence on attainment and maintenance of peak bone mass in premenopausal Chinese women.  相似文献   

16.
Osteoporosis and osteoarthritis cause serious problems to the mobility, and therefore to the quality of life, of aged people. This is due to the fact that both diseases result from irreversible loss of quality or function of the tissues; i.e., bone and articular cartilage. Recent progress in molecular biology and developmental biology, however, have contributed a great deal to our understanding of the mechanisms regulating growth and differentiation of osteoblasts and chondrocytes, the cells responsible for producing bone and cartilage, respectively. In vivo studies using animals including humans also shed light on the mechanism underlying these biological events as well as diseases and provide ideas for possible interventions for treating these disease states. This review will deal with these new developments in the field and discuss possibility to develop new potential strategies for treating patients with those disorders.  相似文献   

17.
AIM: To investigate if vitamin D receptor (VDR) gene Apa I polymorphism and estrogen receptor-α (ER-α) gene Pvu II, Xba I polymorphisms are related to bone mineral density (BMD), bone mineral content (BMC) and bone size in premenopausal Chinese women. METHODS: The VDR Apa I genotype and ER-α Pvu II, Xba I genotype were determined by PCR-restriction fragment length polymorphism (RFLP) in 493 unrelated healthy women aged 20-40 years of Han nationality in Shanghai city.…  相似文献   

18.
Resorption and loss of alveolar bone leads to oral dysfunction and loss of natural or implant teeth. Biomimetic delivery of growth factors based on stem cell recruitment and osteogenic differentiation, as the key steps in natural alveolar bone regenerative process, has been an area of intense research in recent years. A mesoporous self-healing hydrogel(DFH) with basic fibroblast growth factor(bFGF) entrapment and transforming growth factor β3(TGFβ3)-loaded chitosan microspheres(CMs) was develope...  相似文献   

19.
20.
We investigated the effect of galangin, a natural flavonoid, on osteoclastic bone destruction in collagen-induced arthritis and examined the molecular mechanisms by which galangin affects osteoclastogenesis in bone marrow derived macrophages. In mice with collagen-induced arthritis, administration of galangin significantly reduced the arthritis clinical score, edema and severity of disease without toxicity. Interestingly, galangin treatment during a later stage of collagen-induced arthritis, using mice with a higher clinical arthritis score, still significantly slowed the progression of the disease. Extensive cartilage and bone erosive changes as well as synovial inflammation, synovial hyperplasia and pannus formation were dramatically inhibited in arthritic mice treated with galangin. Furthermore, galangin-treated arthritic mice showed a significant reduction in the concentrations of IL-1β, TNF-α and IL-17 . We found that galangin inhibited osteoclastogenic factors and osteoclast formation in bone marrow-derived macrophages and osteoblast co-cultured cells, and increased osteoprotegerin (OPG) levels in osteoblasts. Galangin and NF-κB siRNA suppressed RANKL-induced phosphorylation of the c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), but not AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Also, the JNK inhibitor SP600125 and p38 inhibitor SB203580 reduced RANKL-induced expressions of phospho-c-Jun, c-fos and NFATc1 genes during osteoclast development. In addition, galangin suppressed RANKL-induced phosphorylation of NF-κB, phospho-IκBα, inflammatory cytokines and osteoclast formation in bone marrow-derived macrophages. Our data suggest that galangin prevented osteoclastic bone destruction and osteoclastogenesis in osteoclast precursors as well as in collagen-induced arthritis mice without toxicity via attenuation of RANKL-induced activation of JNK, p38 and NF-κB pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号