首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stick-typed long lasting device for both transdermal and topical drug delivery has been developed. Ketotifen fumarate (KT) was used as a model drug. The effect of a variety of permeation enhancers was investigated using hairless mouse skin in vitro. Polyoxyethylene oleyl ether (POE), among the enhancers used, most enhanced the skin permeation of KT. The permeation enhancement was mainly due to the increase in the drug solubility in the stratum corneum and the resulting increase in the partition coefficient. The rate of skin permeation of KT was approximately proportional to the loading dose of the drug.  相似文献   

2.
The aim of this paper was to evaluate the effect of vehicle, chemical enhancer and iontophoresis on the skin accumulation of clobetasol propionate (CP) and mometasone furoate (MF). In vitro permeation experiments were performed using pig ear skin as barrier and HPLC as quantification method. The formulations tested were chitosan gels, sodium-deoxycholate gels and commercial creams of CP and MF. The results obtained indicate that Na-DOC gel had an enhancing effect on the skin accumulation of both active agents. This effect was more evident with CP especially in the stratum corneum and epidermis which are the target sites of topical steroidal treatment. Two terpene derivatives (d-limonene and nerolidol) and Transcutol® P were evaluated as chemical penetration enhancers. Nerolidol produced considerable increase in the amount of CP and MF accumulated without any permeation across the skin. The application of electric current (anodal iontophoresis) to the gels improved the accumulation of MF while it did not effect the accumulation of CP. Due to the best accumulation results of nerolidol, the enhancement effect in combination with iontophoresis was also investigated. It was shown that, the combination of anodal iontophoresis and chemical enhancer (nerolidol) produced no further enhancement for both active agents.  相似文献   

3.
Measurement of the water content of stratum corneum plays an important role in physiological and therapeutic inquiries in dermatology. There are many techniques available for non-invasive determination of skin hydration such as measurement of electrical, mechanical, thermal and spectroscopic properties of the skin. Most techniques, however, suffer from the fact that they do not employ a direct measurement of water content rather a property caused by skin hydration. Recently, Potts et al., (Arch. Derm. Res. 277, 489-495, 1985) developed an FT-IR method for the determination of water content of the skin both in vitro and in vivo. The method employed attenuated total reflectance infrared (ATR-IR) to measure a weak O-H stretch formed by the presence of water at 2100 cm-1. This absorbance is distant from interferences due to skin and most topically applied substances and therefore may be used in the quantitation of skin water content (hydration). This report describes the use of this technique in an investigation into the effect of occlusion on the water content of the skin. Method development and validation employing an in vitro system is also discussed.  相似文献   

4.
The effect of three lasers (i.e., the ruby, erbium:YAG, and CO2) on the ability to enhance and control skin permeation of 5-fluorouracil (5-FU) was studied in vitro. Light microscopic and ultrastructural (scanning electron microscopic) changes in the nude mouse skin were also compared for these lasers. The histological observations and permeation profiles of each laser differed because the three lasers produce different physical and physiologic effects when striking the skin. The skin permeation of 5-FU could be moderately promoted by a single photomechanical wave generated by the ruby laser (at 4.0 and 7.0 J/cm(2)) without adversely affecting the viability or structure of the skin. The stratum corneum (SC) layer in the skin was partly ablated by an erbium:YAG laser, resulting in a greater enhancement effect on skin permeation of 5-FU. The flux of 5-FU across erbium:YAG laser-treated skin was 53-133-fold higher than that across intact skin. Both SC ablation and a thermal effect may contribute to the effect of the CO2 laser on skin structure. Lower energies of the CO2 laser did not modulate 5-FU permeation. A 36-41-fold increase in 5-FU flux was observed after exposure to higher fluences (4.0 and 7.0 J/cm(2)) of the CO2 laser. Histological changes induced by both the erbium:YAG and CO2 lasers had completely recovered within 4 days.  相似文献   

5.
The percutaneous absorption of topically applied jet fuel hydrocarbons (HC) through skin previously exposed to jet fuel has not been investigated, although this exposure scenario is the occupational norm. Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different HC consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-dJP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-dJP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from naive skin may not be optimal to predict the toxic potential for repeated exposures. For certain compounds, persistent absorption may occur days after the initial exposure.  相似文献   

6.
Numerous reports on the enhancement effect of cyclodextrins (CDs) on the skin permeation of dermally applied drugs exist, the majority of which is based on in vitro diffusion cell studies. The specific experimental setup of such studies may skew the obtained results, which is rarely discussed in the context of CD studies. Thus, the aim of this work was to conduct a systematic in vitro investigation of the permeation enhancement potential of γ-CD on a steroidal drug from a nanoemulsion. The role of critical diffusion cell parameters such as the dose of application, occlusive conditions, the nature of the receptor medium and the skin thickness were investigated. The results showed that significantly enhanced skin permeation rates of fludrocortisone acetate were indeed caused by 1% (w/w) of γ-CD at both finite and infinite dose conditions. At 0.5% (w/w) of γ-CD, significant enhancement was only achieved at infinite dose application. Additional in vitro tape stripping experiments confirmed these tendencies, but the observed effects did not reach statistical significance. It may be concluded that the full permeation enhancement potential of the CD as observed in the franz-cell setup can only be realised at infinite dose conditions while preserving the formulation structure.  相似文献   

7.
The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing (3)H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose. In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h receptor fluid value. However, the receptor fluid value from the 72-h extended study may be used in a worst-case exposure estimate. In conclusion, in vivo skin absorption studies can be useful in determining whether to include material in the in vitro skin reservoir as absorbable material in estimates of systemic absorption.  相似文献   

8.
To improve the drug permeation into and/or across the skin, essential oils extracted from Alpinia oxyphylla (AO) were evaluated using in vitro and in vivo permeation techniques with Wistar rats as the animal model. Hydrocarbons and oxygenated sesquiterpenes were the major components in the lower-polarity fraction (AO-1) and higher-polarity fraction (AO-2), respectively. Permeation of indomethacin was significantly enhanced after treatment with AO-1 and AO-2 in the in vitro and in vivo studies. AO-2 generally showed a higher ability to promote drug permeation compared to AO-1. The increment of skin/vehicle partitioning may be the predominant mechanism for this enhancing activity. Both transepidermal water loss (TEWL) and colorimetric evaluation showed limited irritation to skin by AO essential oils at the macroscopic level. Human skin fibroblasts were used to investigate the in vitro screening of skin toxicity. AO-1 slightly increased prostaglandin E(2) (PGE(2)) formation from skin fibroblasts. A striking result was observed with AO-2, which greatly inhibited the release of PGE(2). Moreover, both AO essential oils had no statistically significant effect on PGE(2) release by human lung epithelial cells. The results of this study indicate that skin disruption and inflammation do not necessary correspond to the enhancing efficiency of the enhancers tested.  相似文献   

9.
The effect of moxibustion on the in vitro and in vivo skin permeation of salicylate was evaluated in rats. First, the effect of moxibustion pretreatment on the elimination pharmacokinetics of salicylate after i.v. injection in rats was determined: no clear difference was observed in the plasma profiles of salicylate (SA) with or without moxibustion pretreatment. However, much higher skin and muscle concentrations of salicylate were observed after its i.v. injection. Next, an in vitro skin permeation study of SA was performed after moxibustion pretreatment. Moxibustion pretreatment increased the skin permeation of SA, and the extent of the increase in SA skin permeation was related to the strength of moxibustion ignition. More intense treatments produced higher skin permeation. A similar enhancement effect on the skin permeation of SA was observed in in vivo studies. Interestingly, the skin/plasma and muscle/plasma ratios of SA were markedly increased by moxibustion pretreatment. These results were due to the induction of enhanced skin permeation and lower clearance into the cutaneous vessels by moxibustion ignition. Combination treatment involving moxibustion and the topical application of drugs such as NSAID may be useful for increasing local pharmaceutical effects by enhancing the drug concentration in the skin and muscle underneath the topical application site.  相似文献   

10.
The permeability of compromised skin barrier was investigated in vitro using acetone-disrupted hairless mouse skin as a model membrane. The effect of compound lipophilicity was studied using sucrose, caffeine, hydrocortisone, estradiol, and progesterone as model compounds. The results demonstrated that permeability barrier disruption by acetone treatment significantly enhanced the permeability of the skin to both hydrophilic and amphipathic compounds, including sucrose, caffeine and hydrocortisone. This effect was more prominent with caffeine and hydrocortisone at different transepidermal water loss (TEWL) levels. Acetone treatment, however, didn't appear to alter the percutaneous penetration of highly lipophilic compounds, such as estradiol and progesterone. The characteristics of skin permeability were described by parabolic relationships between log P(WS) (permeability coefficient of whole skin) and log K(O/W) (octanol/water partition coefficient) at different degrees of permeability barrier disruption. The optimal log K(O/W) of compounds for skin penetration appeared to decrease with an increase in TEWL levels. The maximal permeability achieved was similar through skin displaying different TEWL levels. In an attempt to explore the underlying mechanisms for the changes in skin permeability, the stratum corneum/normal saline partition coefficients of water, caffeine, and hydrocortisone either decreased or remained unaffected with an increase in TEWL. Electron microscopic examinations have revealed reductions in stratum corneum lipid content and alterations in intercellular membrane structures as a result of acetone treatment, whereas negligible changes in the number of horny layers were observed by safranin staining of the stratum corneum. We have concluded that the enhancement in skin permeability to both hydrophilic and amphipathic compounds by acetone treatment arose mainly because of the increase in stratum corneum diffusivity at higher TEWL levels. The results imply the possibility of using both TEWL and drug lipophilicity to predict alterations in skin permeability and hence the dose adjustment of topically applied medication for patients with impaired skin barrier function.  相似文献   

11.
本文考察了某些渗透促进剂如月桂氮Zhuo酮(AZ)、油酸(OA)、泊洛沙姆(POL)和丙二醇(PG)等对胰岛素体外经皮离子导入渗透性的影响。结果表明AZ对离子导入具有协同作用,PG能够增强这种作用,三者并用对胰岛素的经皮渗透具有特别显著的促渗效果。5%AZ/PG与离子导入并用后,较单独离子导入处理组的促渗因子为2.75。OA不能增强离子导入的作用,离子导入与某些渗透促进剂并用为胰岛素等大分子多肽类药物的透皮给药提供了新的思路和可能。  相似文献   

12.
There is a growing need for in-depth research into new skin- and environment-friendly surfactants, such as alkylpolyglucosides. The aim of this study was to assess whether, to which extent and by what mechanism the two commonly used hydrophilic excipients, propylene glycol (PG) and glycerol (GL), affect the colloidal structure of emulsions formed by a natural mixed emulsifier, cetearyl glucoside and cetearyl alcohol. Furthermore, the study was concerned with the effect of these changes on in vitro permeation profiles of two model drugs (diclofenac sodium and caffeine) and in vivo skin performance of the test samples. The results have shown that the emulsion vehicles consisted of a complex colloidal structure of lamellar liquid crystalline and lamellar gel crystalline type. PG addition produced a stronger hydrophilic lamellar gel phase than GL, which was independent on the model drug used. PG-containing vehicles have revealed a considerable amount of interlamellar PG/water mixture, with incorporated drug. In vitro permeation data obtained using artificial skin constructs (ASC) confirmed the relationship between rheological profiles of vehicles and the extent of skin delivery. Higher permeation profiles of both drugs from PG-containing formulations coincided with a higher increase in transepidermal water loss observed in in vivo study on human volunteers, which confirms the penetration/permeation enhancer effect of PG. It also indicates the existence of the vehicle/ASC interactions analogous to those between the vehicle and the skin, thus affirming the use of ASC as a reliable tool for permeation studies. Contrary to the effect of PG, the results obtained with GL suggest that it may have a permeation-retarding rather than a permeation-enhancing effect in topical vehicles of this type.  相似文献   

13.
The effect of jet propellant-8 (JP-8) fuel exposure on the biophysical, macroscopic and microscopic changes in vitro in porcine skin has been investigated. Fourier transform infrared (FTIR) spectroscopy was employed to investigate the biophysical changes in stratum corneum (SC) lipid and protein. FTIR results showed that the treatment of the SC with JP-8 to increasing exposure time caused correspondingly greater percent decrease in the peak heights and areas under the absorbance curve of methylene and amide absorbances, suggesting greater loss of lipid and protein from SC layers. In vitro transepidermal water loss (TEWL) studies allowed an investigation into the macroscopic barrier properties of the skin. TEWL results were in consonance with that of FTIR. There was a significant increase (P<0.05) in TEWL through 8 and 24 h JP-8 exposed skin in comparison to the control. Light microscopy provided direct, corroborative, visual evidences of epidermal and dermal alterations. Epidermal swelling, dermal matrix granulation, mast cell granules, shortened collagen fibers were observed in the skin exposed with JP-8. Thus, it is concluded that JP-8 exposure causes appreciable biophysical and histological changes along with increased TEWL values in vitro in pig skin which may lead to skin irritation and dermal toxicity in vivo.  相似文献   

14.
We have studied the effect of polyethylene glycols (PEGs) on the iontophoretic flux of acetaminophen (AAP) using conventional in vitro iontophoresis methodology. A series of PEGs with average molecular weight (MW) ranging from about 100 to 1,500 was studied. The results were analyzed to explain how PEGs affect the electroosmosis and flux through skin. As a marker molecule for the direction and magnitude of electroosmotic volume flow (EVF), AAP was used. PEG decreased both anodal and cathodal AAP flux markedly. The magnitude of this decrease in flux increased as the MW and the concentration of PEG increased. From the Helmholtz–Smoluchowski equation, it was expected that the increase in viscosity and the decrease in dielectric constant are thought to be the main reason for the decrease in EVF and the flux. The large increase in solubility of AAP in PEG solution may also play an important role, because this increase lowers the partition of AAP into the stratum corneum. When 30 % diethylene glycol solution was used, the magnitude of EVF was estimated to be about 1.5 μl/cm2 h, and it decreased as the MW of the PEG increased. These results and discussions clearly suggest that the incorporation of organic solubilizers and penetration enhancers into the iontophoretic formulation should be carefully decided after a thorough understanding of their effect on flux. Overall, these results provide further mechanistic insights into the role of electroosmosis in flux through skin, and how they can be modulated by PEG and their MW.  相似文献   

15.
The skin is the largest organ in the human body and has the potential to come into contact with a variety of xenobiotics both intentionally (e.g., drugs and cosmetics) or accidentally (e.g., agrochemicals and industrial chemicals). These chemicals may then cross the skin barrier (the stratum corneum) and enter into the systemic circulation where they may produce a desired or an undesired effect, or even no systemic effect at all. Tetrabromodiphenyl ether (TeBDE) is one congener in a mixture of polybrominated diphenyl ethers that makes up a flame-retardant commercial product called pentabromodiphenyl ether (PeBDE). TeBDE was used as a surrogate to assess the potential dermal absorption of this product. The physicochemical properties, including lipophilicity, of TeBDE and PeBDE are similar. Operator exposure of PeBDE product to human skin is possible during production and use. However, during these activities, operators wear protective clothing to protect from or minimize exposure. This study was designed to assess the rate and extent of absorption of [14C]-tetrabromodiphenyl ether ([14C]-TeBDE) through human and rat skin in vitro. [14C]-TeBDE was applied to human and rat split thickness skin membranes in vitro in a single test preparation: [14C]-TeBDE in acetone (ca. 20%, w/v). Dermal delivery and absorbed dose of TeBDE applied to human skin was 3.13% (313 microg equiv/cm(2)) and 1.94% (194 microg equiv/cm(2)) of the applied dose, respectively. Dermal delivery and absorbed dose of TeBDE applied to rat skin was 17.94% (1804 microg equiv/cm(2)) and 14.81% (1489 microg equiv/cm(2)) of the applied dose, respectively. These results confirm that the risk of systemic exposure due to external dermal exposure of the PeBDE product is low in the human. Consequently, based on the toxicological profile of these materials, the potential for undesirable effects is also quite low. The results also confirm that the rat is a conservative model overpredicting human absorption about eight fold.  相似文献   

16.
Bicelles are discoidal aggregates formed by a flat dimyristoyl-glycero-phosphocholine (DMPC) bilayer, stabilized by a rim of dihexanoyl-glycero-phosphocholine (DHPC) in water. Given the structure, composition and the dimensions of these aggregates around 10-50 nm diameter, their use for topical applications is a promising strategy. This work evaluates the effect of DMPC/DHPC bicelles with molar ratio (2/1) on intact skin. Biophysical properties of the skin, such as transepidermal water loss (TEWL), elasticity, skin capacitance and irritation were measured in healthy skin in vivo. To study the effect of the bicellar systems on the microstructure of the stratum corneum (SC) in vitro, pieces of native tissue were treated with the aforementioned bicellar system and evaluated by freeze substitution applied to transmission electron microscopy (FSTEM). Our results show that bicelles increase the TEWL, the skin elastic parameters and, decrease skin hydration without promoting local signs of irritation and without affecting the SC lipid microstructure. Thus, a permeabilizing effect of bicelles on the skin takes place possibly due to the changes in the phase behaviour of the SC lipids by effect of phospholipids from bicelles.  相似文献   

17.
The development of non-animal methods for skin sensitization testing is an urgent challenge. Some of the most promising in vitro approaches are based on the analysis of phenotypical and functional modifications induced by sensitizers in dendritic cell models. In this work, we evaluated, for the first time, a fetal skin-derived dendritic cell line (FSDC) as a model to discriminate between sensitizers and irritants, through analysis of their effects on CD40 and CXCR4 protein expression. The chemicals concentrations were chosen based on a slight cytotoxicity effect (up to 15%). Protein levels were evaluated by Western blot and immunocytochemistry, after stimulation with the skin sensitizers 2,4-dinitrofluorobenzene (DNFB), 1,4-phenylenediamine (PPD) and nickel sulphate (NiSO(4)), the non-sensitizer 2,4-dichloronitrobenzene (DCNB), and the irritants sodium dodecyl sulphate (SDS) and benzalkonium chloride (BC). All sensitizers tested increased CD40 and CXCR4 levels. In contrast, irritants decreased both proteins levels, with a more pronounced effect on CXCR4. In agreement with these results, dendritic cells derived from human peripheral blood monocytes-derived dendritic cells (MoDC) showed a similar response pattern to the skin sensitizer and irritant tested, PPD and SDS, respectively. In conclusion, evaluation of CD40 and CXCR4 proteins in chemical-treated FSDC may represent a useful tool in a future in vitro test for sensitizing assessment.  相似文献   

18.
The in vitro iontophoretic transdermal delivery of chlorpromazine (CPZ) across pig skin was investigated. Anodal iontophoresis considerably increased CPZ skin penetration and accumulation compared with the passive controls. The effect of CPZ concentration in the donor solution was studied (1.4-8.2 mM). A higher penetration was observed with an increase of the concentration. In addition, the effect of NaCl concentration was also studied (154-200 mM). As expected, CPZ iontophoretic transport decreased with NaCl content. Finally, the influence of the current density (0.20-0.50 mA/cm(2)) was investigated. The iontophoretic transport of CPZ tends to increase with current density, although this effect was not statistically significant between 0.35 and 0.5 mA/cm(2). On the whole, this work shows that iontophoresis may be used to improve the transdermal delivery of CPZ for the treatment of chronic psychosis.  相似文献   

19.
Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.  相似文献   

20.
The in vivo and the in vitro correlation of the effects of low-frequency ultrasound (low-frequency sonophoresis, LFS) on the percutaneous penetration of mannitol, a model hydrophilic permeant, was investigated using three in vitro skin models (including full-thickness and split-thickness pig skin, and heat-stripped human cadaver skin) and in vivo pig as the animal model. The central objective of this article was to identify the relevant in vitro skin models and ultrasound conditions that may be used in in vitro LFS studies to predict the effects of LFS in vivo on the transdermal delivery of hydrophilic permeants. In this article, by conducting comparative studies of the in vivo pig skin and of the three in vitro skin models under two LFS protocols (a constant ultrasound energy dose protocol, and a constant skin electrical resistance protocol), we demonstrated that: (1) under a constant ultrasound energy dose protocol (protocol A, 5 min LFS), no good correlation was observed between the in vivo skin and the in vitro skin models in terms of the measured skin permeabilities to mannitol. Moreover, the effects of LFS on the barrier functions of the in vivo pig skin, as measured by the enhancement ratio of the skin permeation rate of mannitol and by the reduction of the skin electrical resistance, are much more pronounced than those observed with the excised skin models in vitro; (2) under a constant skin electrical resistance protocol (protocol B) of LFS, a good correlation was found between the skin permeability to mannitol measured using the three in vitro skin models and that of the in vivo pig skin. This result indicates that by utilizing the skin electrical resistance as a quick indicator of the skin permeabilization state due to LFS, the three in vitro skin models can be utilized to predict the transport rate of mannitol across the in vivo skin during LFS; (3) by applying a recently developed skin porous-pathway theory, we demonstrated that within the range of LFS conditions examined, the three in vitro skin models exhibit similar transport properties to mannitol and similar skin effective pore radius values, and hence, represent equivalent skin models for the in vitro LFS studies in the case of hydrophilic permeants; (4) histological studies revealed that the LFS protocol that was shown to be efficacious in enhancing the skin penetration rate of mannitol across the in vivo pig skin, and was also utilized for the in vivo/in vitro skin comparative studies, is safe for the living skin; and (5) through measuring the skin concentration of mannitol in the presence and in the absence of the LFS treatment, we found that the LFS-induced flux enhancement outweighs the enhancement of the skin concentration of mannitol during the LFS studies both in vivo and in vitro. This result suggests that LFS represents a good method of enhancing the systemic absorption of hydrophilic permeants, while it does not significantly alter the vehicle-to-skin partition coefficient for the same class of permeants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号