首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的探讨脑室内神经干细胞移植修复成年小鼠谷氨酸神经毒性损伤的可能性。方法从15日小鼠胚胎脑组织分离神经干细胞,采用免疫细胞化学技术检测细胞Nestin抗原表达;通过免疫荧光染色观察所移植神经干细胞在体内的存活及定位。除对照组外,所有小鼠均以谷氨酸单钠(每天4.0 g/kg)灌胃,连续10天。灌胃后第1 天和10 天,谷氨酸加神经干细胞移植组行神经干细胞脑室内移植(1× 105细胞 /鼠),对照组和谷氨酸组注射DMEM 液。末次移植后第 11天进行Y迷宫试验,试验结束后进行小鼠脑病理检查,以分析谷氨酸引起的脑功能和形态学上的改变。结果所分离细胞呈Nestin阳性表达;移植10天后所移植神经干细胞在小鼠脑中呈区域特异性存活;脑室内移植神经干细胞能明显促进成年小鼠脑谷氨酸兴奋性毒性损伤的修复。结论脑室内移植神经干细胞可用于疾病或损伤脑组织的修复。  相似文献   

2.
神经干细胞修复中枢神经系统损伤研究进展   总被引:3,自引:0,他引:3  
利用神经干细胞(neural stem cells ,NSCs)修复中枢神经系统(CNS)损伤存在巨大潜力。NSCs可在多种哺乳动物胎脑或成年个体的脑组织中分离得到,也可以从小鼠和人的胚胎干细胞诱导产生。这些细胞可在体外长期增殖并保持多向分化潜能。NSCs被移植入成年CNS后,在无神经组织发生的区域主要分化为胶质细胞。移植入损伤的脑和脊髓后,NSCs的正常分化明显受到抑制。植入的NSCs和谱系限制性的前体细胞(lineage—committed preeur-sors)可在宿主CNS中存活并迁移。  相似文献   

3.
神经干细胞移植治疗大鼠脑缺血再灌注损伤的实验研究   总被引:2,自引:0,他引:2  
目的探讨胎鼠皮质培养的神经干细胞移植治疗大鼠脑缺血再灌注损伤的可行性及疗效。方法取孕龄15d Sprague-Dawley(SD)胎鼠皮质细胞培养为神经干细胞;用线栓法制备大鼠脑缺血再灌注损伤模型;将24只健康SD大鼠分为假手术组、缺血对照组、缺血移植组,在移植后2周、4周依据Garcia的18分评分法对各组大鼠的神经功能进行评分;行脑灌注固定取材,免疫组化染色观察移植后神经干细胞的分化、迁移和整合情况。结果用胎鼠皮质培养的细胞nestin表达阳性;缺血移植组大鼠的神经功能评分明显高于缺血对照组(P<0.05);缺血移植组免疫组织化学染色能够检测到存活的BrdU阳性细胞,移植后4周时可见移植细胞向周围迁移、分化、参与血管形成,并可见梗死区边缘微血管明显增生;缺血移植组大鼠脑GFAP阳性细胞数较缺血对照组明显增多(P<0.05)。结论分离、培养胎鼠皮质细胞Nestin表达阳性,即是大鼠的神经干细胞;移植体外培养的神经干细胞能在脑缺血大鼠脑内存活、迁移、分化,并且对脑梗死大鼠的神经功能修复起到了积极作用。  相似文献   

4.
目的 观察小鼠神经干细胞在猫全脑缺血再灌注损伤模型中的存活、迁移及分化。方法 参照四血管阻塞法建立猫全脑缺血再灌注损伤模型,将原代培养的小鼠神经干细胞移植入模型动物脑中。一个月后,以免疫荧光技术检测移植干细胞的存活、迁移及分化情况。结果 缺血再灌注损伤模型制作成功7例,成功率70%;免疫荧光法检测小鼠神经干细胞移植到猫前脑后一个月仍有大量存活,部分细胞分化为神经元或神经胶质细胞,并向脑组织中迁移。结论 小鼠神经干细胞在猫全脑缺血再灌注损伤模型中能够存活、迁移并分化。  相似文献   

5.
目的观察大鼠胚胎神经干细胞移植到局灶性脑缺血大鼠脑室内的迁移和分化。方法实验于2003年5月~2004年10月在哈尔滨医科大学附属二院动物实验中心完成。孕龄8~10d Wistar大鼠仔鼠神经干细胞体外扩增后用免疫组织化学的方法分别检测神经干细胞及其分化后代的特异性标志蛋白-巢蛋白、胶质纤维酸性蛋白和神经元特异性烯醇化酶的表达,健康Wistar大鼠大脑中动脉闭塞后40只随机分成A、B、C、D四组,A组为梗塞后24小时脑室内移植神经干细胞组,B组为梗塞后24小时梗塞中心移植神经干细胞组,C组为梗塞后4周脑室内移植神经干细胞组,D组为梗塞后4周梗塞中心移植神经干细胞组,各实验组均有仅移植生理盐水的空白对照。比较神经干细胞不同移植部位和不同移植时间神经干细胞存活、增殖和迁移的差异。结果实验大鼠40只均进入结果分析。从胎鼠中成功培养出悬浮生长的可表达巢蛋白的神经球,含血清条件下可分化为表达胶质纤维酸性蛋白的胶质细胞和神经元特异性烯醇化酶的神经元,移植后可见移植细胞存活至少8周以上,A组可见移植细胞大量存活,穿过室管膜向脑组织迁移,特别是向缺血周边区迁移;B组细胞主要聚集在梗塞中心移植区域,也有大量细胞存活,充填梗塞区,少量细胞可穿过胼胝体向健侧迁移;C组仅见少量Brdu阳性细胞存活,但细胞增殖分裂较A组不明显,且存活细胞主要仍在移植部位;D组存活移植细胞也较B组明显减少。结论大鼠胚胎神经干细胞移植到局灶性脑缺血大鼠脑室内可长期存活并广泛迁移,不同移植部位不影响细胞存活,脑室内移植细胞向脑缺血区域迁移,缺血后24小时移植较缺血后4周移植其迁移趋向性更强。  相似文献   

6.
神经干细胞移植治疗小鼠机械性脑损伤的实验研究   总被引:2,自引:0,他引:2  
目的探讨神经干细胞移植后的体内存活、增殖与分化,及其对小鼠机械性脑损伤的治疗作用。方法运用牙科钻制作小鼠运动区皮质机械性损伤模型。48只清洁级昆明小鼠,雌雄不拘,体质量为18~20g,按体质量编号随机分为4组:神经干细胞移植组(损伤后原位移植经鉴定确认的原代培养的小鼠神经干细胞)、3T3移植组(损伤后原位移植3T3细胞)、单纯损伤组(损伤后不行神经干细胞移植)和空白对照组(仅施行麻醉),每组12只小鼠。于伤后第3天进行行为学检测;第10、30天行损伤区脑组织nestin及NF200免疫荧光染色,观察神经干细胞生长、分化情况。结果损伤后,获得原代培养的神经干细胞在移植早期贴附于损伤区域且向周边组织呈浸润生长;移植后期Hoechst33342及NF200染色显示损伤区附近可见分化形成的神经元。单纯损伤组小鼠出现偏瘫症状;而神经干细胞移植组小鼠植入神经干细胞后则症状减轻,运动功能明显改善,与其他各组相比差异有显著性意义(P<0.001)。结论神经干细胞移植能够改善小鼠机械性脑损伤后的神经功能状态。  相似文献   

7.
神经干细胞移植治疗缺氧缺血性脑损伤的实验研究   总被引:23,自引:4,他引:19  
目的 研究神经干细胞移植治疗缺氧缺血性脑损伤的可行性。方法 取孕龄为12-16天的母鼠,从胎脑中分离神经细胞,进行培养、鉴定。用出生7天的SD大鼠的新生鼠制作缺氧缺血性脑损伤的动物模型,7天后接受神经干细胞移植(移植组,n=16只),同时设置对照组,只注射磷酸缓冲液(对照组,n=8只),8-10周后,作Y迷宫实验检测大鼠的学习能力和记忆能力。取脑组织作免疫组织化学检查。结果 从大鼠胎脑中成功培养出神经干细胞,培养条件下呈悬浮状态生长,形成神经球,绝大多数的细胞表达神经干细胞的标志物神经巢蛋白(nestin)。接爱神经干细胞移植组大鼠的学习能力、记忆能力和对照组相比,有明显提高,差异具有显著性(P<0.05)。接受神经干细胞移植大鼠组织中可见存活的移植细胞,并和宿主脑组织融合在一起。结论 在体外培养条件下,可从胎脑组织中培养出神经干细胞,移植到缺氧缺血性脑损伤大鼠脑内后,细胞与宿主的脑组织融合在一起,动物的学习、记忆能力有改善。移植神经干细胞是治疗缺氧缺知性脑损伤的有效方法之一。  相似文献   

8.
背景:小鼠非黏附骨髓间充质干细胞在体外可以不断形成成纤维细胞集落形成单位,并且可诱导分化为脂肪细胞、成骨细胞和软骨细胞,表现出一定的多分化潜能。 目的:探讨小鼠非黏附骨髓间充质干细胞移植到缺血损伤脑内后分化为神经细胞的能力。 方法:取β-Gal转基因小鼠,分离双侧股骨、胫骨,全骨髓法分离总骨髓细胞,采用反复转移非黏附的骨髓细胞培养法收集纯化后的第5代非黏附骨髓间充质干细胞,调整细胞浓度为1×1012 L-1备用。两组C57BL/6J小鼠均建立大脑中动脉阻塞模型,造模后7 d,细胞移植组将第5代非黏附骨髓间充质干细胞悬液3 μL定向移植到小鼠脑损伤处,模型组注射等量生理盐水。移植8周后观察供体细胞在缺血脑内微环境中的存活、分布及分化能力。 结果与结论:LacZ组织化学染色发现,8周后供体细胞仍可以表达β-Gal蛋白,在缺血侧供体细胞能够存活。免疫组织化学单染和双染后发现,在缺血模型的坏死区及坏死边缘区均可检测到β-Gal阳性的供体细胞,部分细胞还同时表达神经细胞特异性蛋白NeuN及神经胶质细胞特异性标记GFAP。提示小鼠非黏附骨髓间充质干细胞在缺血动物模型的脑内能够存活、迁移,部分细胞还能分化为成熟的神经元样细胞或神经胶质细胞,参与脑损伤修复。  相似文献   

9.
中枢神经系统疾病的细胞替代治疗   总被引:1,自引:3,他引:1  
中枢神经系统的自我修复能力非常有限,主要是因为成熟的神经细胞缺乏再生的能力,尽管成年脑内有神经干细胞存在,但不足以弥补损伤神经元的缺失。由于这些原因,人们希望通过移植新的细胞以代替那些因为损伤或疾病而丢失的细胞,从而修复神经系统功能。在大多数情况下,移植的神经元或神经干细胞发挥治疗作用多依赖于它们在组织和功能上与宿主脑组织的融合。只有当神经元处于发育阶段(成熟前期)时植入脑内,它们才会存活和良好生长。它们和宿主脑组织建立起交互联系(reciprocal connectivity)的能力也依赖于宿主的年龄,宿主处于胚胎阶段时这种能力最大,随宿主年龄的增大,这种能力逐渐减弱。尽管如此,在成年脑组织中,移植的神经元也能建立起相应的功能联系,并且当宿主神经通路受损时这种能力明显增加,提示神经元分化和建立交互联系的机制在发  相似文献   

10.
背景:对新生动物进行脑内神经干细胞移植,所植入神经干细胞的增殖、迁移、分化、轴突形成以及髓鞘化等能力,均远远高于成年动物。 目的:对经脑室植入神经干细胞在脑室周围白质软化新生大鼠脑内的迁移分化功能进行观察,探讨神经干细胞移植对治疗早产儿脑室周围白质软化的可行性。 方法:2日龄脑室周围白质软化新生大鼠在建模后72 h进行经脑室神经干细胞移植。外源性神经干细胞用PKH26荧光素标记。脑立体定位仪下经脑室穿刺部位:前-后=1.5 mm,中线-外侧=-2 mm,深度=1.5 mm;移植细胞浓度为5×1010 L-1;移植总量为2 μL;移植速度0.5 μL/min。应用激光共聚焦显微镜分别对植入神经干细胞于植入后1,2,3,7,14,21 d进行动态观察。并分别进行各分化细胞的免疫荧光分析。 结果与结论:应用激光共聚焦显微镜对植入神经干细胞进行动态观察,证实经脑室植入的外源性神经干细胞在脑内具有良好的迁移能力,3 d内大部分移行至脑室周围区域,并分布在损伤严重部位。2周左右,神经干细胞在脑室周围区域主要分化为OL前体,部分分化为神经元及星形胶质细胞。提示经脑室神经干细胞移植对早产儿脑室周围白质软化具有很大的治疗潜力。  相似文献   

11.
Stem cell biology of the central nervous system   总被引:25,自引:0,他引:25  
Neural stem cells (NSCs) are multipotential progenitor cells that have self-renewal activities. A single NSC is capable of generating various kinds of cells within the central nervous system (CNS), including neurons, astrocytes, and oligodendrocytes. Because of these characteristics, there is increasing interest in NSCs and neural progenitor cells from the aspects of both basic developmental biology and therapeutic applications to the damaged brain. This special issue, dedicated to understanding the nature of the NSCs present in the CNS, presents an introduction to several avenues of research that may lead to feasible strategies for manipulating cells in situ to treat the damaged brain. The topics covered by these studies include the extracellular factors and signal transduction cascades involved in the differentiation and maintenance of NSCs, the population dynamics and locations of NSCs in embryonic and adult brains, prospective identification and isolation of NSCs, the induction of NSCs to adopt particular neuronal phenotypes, and their transplantation into the damaged CNS.  相似文献   

12.
Mutant mice deficient in the myelin-associated glycoprotein (MAG) and the nonreceptor-type tyrosine kinase Fyn are characterized by a severely hypomyelinated central nervous system (CNS) and morphologically abnormal myelin sheaths. Despite this pronounced phenotype, MAG/Fyn-deficient mice have a normal longevity. In the present study, we took advantage of the normal life expectancy of this myelin mutant and grafted neural stem cells (NSCs) into the CNS of MAG/Fyn-deficient mice to study in short- and long-term experiments the fate of NSCs in adult dysmyelinated brains. Neural stem cells were isolated from spinal cords of transgenic mouse embryos ubiquitously expressing enhanced green fluorescent protein. Cells were expanded in vitro in the presence of mitogens for up to 5 weeks before they were grafted into the lateral ventricles or injected into white matter tracts. Analysis of mutant brains 3-15 weeks after intracerebroventricular transplantation of NSCs revealed only limited integration of donor cells into the host brains. However, injection of NSCs directly into white matter tracts resulted in widespread distribution of donor cells within the host tissue. Donor cells survived for at least 15 weeks in adult host brains. The majority of grafted cells populated white matter tracts and differentiated into oligodendrocytes that myelinated host axons. Results suggest that intraparenchymal transplantation of NSCs might be a strategy to reconstruct myelin in dysmyelinated adult brains.  相似文献   

13.
H Okano 《Clinical neurology》2001,41(12):1036-1040
Neural stem cells (NSCs) are multipotential progenitor cells that have self-renewal activities. A single NSC is capable of generating various kinds of cells within the CNS, including neurons, astrocytes, and oligodendrocytes. Because of these characteristics, there is an increasing interest in NSCs and neural progenitor cells from the aspects of both basic developmental biology and therapeutic applications to the damaged brain. By understanding of nature of NSCs present in CNS, extracellular factors and signal transduction cascades involved in the differentiation and maintenance of NSCs, population dynamics and localizations of NSCs in embryonic and adult brains, prospective identification and isolation of NSCs, and induction of NSCs into particular neuronal phenotypes, which will be introduced in this review, it would be possible to develop a feasible strategy to manipulate cells in situ to treat the damaged brain.  相似文献   

14.
Cell therapy is thought to have a central role in restorative therapy, which aims to restore function to the damaged nervous system. The purpose of this study was to establish an autologous neural stem cell (NSC) transplantation model using adult rats and to compare survival, migration, and differentiation between this system and allogeneic NSC transplantation. Furthermore, we compared the immunologic response of the host tissue between autologous and allogeneic transplantation. NSCs were removed from the subventricular zone of adult Fischer 344 rats using stereotactic methods. NSCs were expanded and microinjected into normal hippocampus in the autologous brain. Allogeneic NSC (derived from adult Wistar rats) transplantation was performed using the same procedure, and hippocampal sections were analyzed immunohistologically 3 weeks post-transplantation. The cell survival and migration rate were higher for autologous transplantation than for allogeneic transplantation, and the neuronal differentiation rate in the autologous transplanted cells far exceeded that of allogeneic transplantation. Furthermore, there was less astrocyte and microglia reactivity in the host tissue of the autologous transplantation compared with allogeneic transplantation. These findings demonstrate that immunoreactivity of the host tissue strongly influences cell transplantation in the CNS as the autologous transplantation did not induce host tissue immunoreactivity; the microenvironment was essentially maintained in an optimal condition for the transplanted cells.  相似文献   

15.
Neural stem cell (NSC) transplantation has been investigated and developed in areas such as brain injury, stroke and neurodegenerative diseases. Recently, emerging evidence suggest that many of clinical symptoms observed in psychiatric disease are likely related to neural network disruptions including neurogenesis dysfunction. In the present study, we transplanted NSCs into a model of fetal alchol effects (FAE) for the purpose of investigating the possibility of regenerative therapy for the FAE. We labeled NSCs with fluorescent dye and radioisotope which were transplanted into FAE rats by intravenous injection. The transplanted cells were detected in wide areas of brain and were greater in number in the brains of the FAE group compared to the control group. Furthermore NSC transplantation attenuated behavioral abnormalities in FAE animals. These results suggest NSC transplantation as a potental new therapy for human FAE.  相似文献   

16.
Neural stem cells (NSCs) ar self-renewing, multipotential progenitor cells. A single NSC can give rise to a wide variety of CNS cells, including neurons, astrocytes, and oligodendrocytes. Because of these characteristics, there is an increasing interest in NSCs and neural progenitor cells, both from a basic developmental biology perspective and from a clinical one that is aimed at developing therapeutic applications for the damaged brain. Current research into the nature of the NSCs present in the CNS includes the study of the extracellular factors and signal transduction cascades involved in their differentiation and maintenance, their population dynamics, and their localization in the embryonic and adult brain. These lines of research, combined with other studies intended to permit the prospective identification and isolation of NSCs, and their induction into particular neuronal phenotypes--which will be introduced in my talk--should lead to the development of feasible strategies for manipulating NSC cells in situ to treat the damaged brain and spinal cord injury.  相似文献   

17.
Recent studies suggest that adult neurogenesis can contribute significantly to recovery from brain damage. As a result, there is strong interest in the field in identifying potentially therapeutic factors capable of promoting increased expansion of endogenous neural stem cell (NSC) populations and increased neurogenesis. In the present study, we have investigated the effects of PACAP on the NSC populations of the embryonic and adult forebrain. Our results demonstrate that the PACAP receptor, PAC1-R, is expressed by both embryonic and adult NSCs. The activation of PACAP signaling in vitro enhanced NSC proliferation/survival through a protein kinase A (PKA)-independent mechanism. In contrast, PACAP promoted NSC self-renewal and neurogenesis through a mechanism dependent on PKA activation. Finally, we determined that the intracerebroventricular infusion of PACAP into the adult forebrain was sufficient to increase neurogenesis significantly in both the hippocampus and the subventricular zone. These results demonstrate PACAP is unique in that it is capable of promoting NSC proliferation/survival, self-renewal, and neurogenesis and, therefore, may be ideal for promoting the endogenous regeneration of damaged brain tissue.  相似文献   

18.
Multipotent neural stem/progenitor cells (NSCs) from the embryonic hippocampus are potentially useful as donor cells to repopulate the degenerated regions of the aged hippocampus after stroke, epilepsy, or Alzheimer's disease. However, the efficacy of the NSC grafting strategy for repairing the injured aged hippocampus is unknown. To address this issue, we expanded FGF-2-responsive NSCs from the hippocampus of embryonic day 14 green fluorescent protein-expressing transgenic mice as neurospheres in vitro and grafted them into the hippocampus of 24-month-old F344 rats 4 days after CA3 region injury. Engraftment, migration, and neuronal/glial differentiation of cells derived from NSCs were analyzed 1 month after grafting. Differentiation of neurospheres in culture dishes or after placement on organotypic hippocampal slice cultures demonstrated that these cells had the ability to generate considerable numbers of neurons, astrocytes, and oligodendrocytes. Following grafting into the injured aged hippocampus, cells derived from neurospheres survived and dispersed, but exhibited no directed migration into degenerated or intact hippocampal cell layers. Phenotypic analyses of graft-derived cells revealed neuronal differentiation in 3%-5% of cells, astrocytic differentiation in 28% of cells, and oligodendrocytic differentiation in 6%-10% cells. The results demonstrate for the first time that NSCs derived from the fetal hippocampus survive and give rise to all three CNS phenotypes following transplantation into the injured aged hippocampus. However, grafted NSCs do not exhibit directed migration into lesioned areas or widespread neuronal differentiation, suggesting that direct grafting of primitive NSCs is not adequate for repair of the injured aged brain without priming the microenvironment.  相似文献   

19.
背景:目前判断神经干细胞移植后向脑损伤部位的迁移需要处死受体动物行脑切片检查,且不能进行多点、动态的观察。 目的:探讨用MRI活体示踪移植磁化标记成人神经干细胞在创伤性脑损伤模型大鼠脑内迁移和分布的可行性。 方法:建立大鼠脑部左侧半球创伤性脑损伤模型,超顺磁性氧化铁体外标记成人神经干细胞。模型建立后2周将标记成人神经干细胞立体定向移植入大鼠脑部右侧半球。在移植后1 d、3 d、1周和2周分别行大鼠头部MRI。2周后处死大鼠取脑,用普鲁士蓝染色法进行染色,观察标记神经干细胞的迁移。 结果与结论:超顺磁性氧化铁体外标记成人神经干细胞的成功率约为85%。移植后行头颅MRI可见位于右侧半球的移植部位FSE T2WI和GRE T2序列呈环形低信号。随时间推移,创伤性脑损伤后移植标记干细胞组大鼠头颅MRI可见脑内有一低信号线,指向对侧脑挫伤部位,而创伤性脑损伤后移植未标记干细胞组,正常大鼠移植标记干细胞组无信号线。MRI显像结果与脑切片普鲁士蓝染色观察到的结果是相符合的。 结果提示用MRI活体示踪移植磁化标记成人神经干细胞在创伤性脑损伤模型大鼠脑内迁移和分布可行、有效。  相似文献   

20.
Neural stem cell (NSC) transplantation has emerged as a promising approach for the treatment of neurological disorders such as cerebral ischemia. As the majority of newly generated cells from exogenous NSCs fail to integrate into the ischemic brain and establish functional synaptic networks, NSC transplantation for ischemic stroke experiences limited neurological function recovery. Augment of endogenous neurite growth in the process of NSC differentiation is an avenue to promote synaptic networks. Phosphatase and tensin homolog (PTEN), a tumor suppressor, has been established to regulate axon growth in the adult central nervous system. The aim of this study was to explore the role of PTEN on neurite growth during NSC differentiation. Our results revealed that the protein expression of PTEN was significantly increased during NSC differentiation, whereas the expression of phosphorylated S6 ribosomal (p-S6R) was markedly decreased. Small interfering RNA knockdown of PTEN in NSCs can accelerate neurite outgrowth during NSC differentiation. These results indicated a remarkable effect of PTEN inhibition on neuronal process after NSC differentiation, and identified a novel route to promote endogenous neurite growth in differentiated NSCs, which may facilitate the application of NSC transplantation in ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号