首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Achard CS  Laybutt DR 《Endocrinology》2012,153(5):2164-2177
Chronically elevated fatty acids contribute to insulin resistance through poorly defined mechanisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mechanism required for cell adaptation and survival. We aimed to distinguish the adaptive and deleterious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepatocytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signaling. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmitate exposure induces an adaptive UPR that enhances insulin signaling and protects against the effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to insulin resistance and metabolic dysregulation.  相似文献   

2.

Aims/hypothesis

Although the substitution of saturated fatty acids with oleate has been recommended in the management of type 2 diabetes mellitus, the mechanisms by which oleate improves insulin resistance in skeletal muscle cells are not completely known. Here, we examined whether oleate, through activation of AMP-activated protein kinase (AMPK), prevented palmitate-induced endoplasmic reticulum (ER) stress, which is involved in the link between lipid-induced inflammation and insulin resistance.

Methods

Studies were conducted in mouse C2C12 myotubes and in the human myogenic cell line LHCN-M2. To analyse the involvement of AMPK, activators and inhibitors of this kinase and overexpression of a dominant negative AMPK construct (K45R) were used.

Results

Palmitate increased the levels of ER stress markers, whereas oleate did not. In palmitate-exposed cells incubated with a lower concentration of oleate, the effects of palmitate were prevented. The induction of ER stress markers by palmitate was prevented by the presence of the AMPK activators AICAR and A-769662. Moreover, the ability of oleate to prevent palmitate-induced ER stress and inflammation (nuclear factor-kappa B [NF-κB] DNA-binding activity and expression and secretion of IL6) as well as insulin-stimulated Akt phosphorylation and 2-deoxyglucose uptake was reversed in the presence of the AMPK inhibitor compound C or by overexpression of a dominant negative AMPK construct. Finally, palmitate reduced phospho-AMPK levels, whereas this was not observed in oleate-exposed cells or in palmitate-exposed cells supplemented with oleate.

Conclusions/interpretation

Overall, these findings indicate that oleate prevents ER stress, inflammation and insulin resistance in palmitate-exposed skeletal muscle cells by activating AMPK.  相似文献   

3.
Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.  相似文献   

4.
Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme human 8-oxoguanine DNA glycosylase/(apurinic/apyrimidinic) lyase (hOGG1) to mitochondria in L6 myotubes. After palmitate exposure, we evaluated mtDNA damage, mitochondrial function, production of mitochondrial reactive oxygen species, apoptosis, insulin signaling pathways, and glucose uptake. Protection of mtDNA from palmitate-induced damage by overexpression of hOGG1 targeted to mitochondria significantly diminished palmitate-induced mitochondrial superoxide production, restored the decline in ATP levels, reduced activation of c-Jun N-terminal kinase (JNK) kinase, prevented cells from entering apoptosis, increased insulin-stimulated phosphorylation of serine-threonine kinase (Akt) (Ser473) and tyrosine phosphorylation of insulin receptor substrate-1, and thereby enhanced glucose transporter 4 translocation to plasma membrane, and restored insulin signaling. Addition of a specific inhibitor of JNK mimicked the effect of mitochondrial overexpression of hOGG1 and partially restored insulin sensitivity, thus confirming the involvement of mtDNA damage and subsequent increase of oxidative stress and JNK activation in insulin signaling in L6 myotubes. Our results are the first to report that mtDNA damage is the proximal cause in palmitate-induced mitochondrial dysfunction and impaired insulin signaling and provide strong evidence that targeting DNA repair enzymes into mitochondria in skeletal muscles could be a potential therapeutic treatment for insulin resistance.  相似文献   

5.
Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg.min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 +/- 0.1 to 2.5 +/- 0.3 mM, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance.  相似文献   

6.
Aims/hypothesis Stearoyl CoA desaturase 1 (SCD1) is implicated in mediating obesity and insulin resistance. Paradoxically, SCD1 converts saturated fatty acids, the lipid species implicated in mediating insulin resistance, to monounsaturated fatty acids. The aim of the present study was to assess the molecular mechanisms that implicate SCD1 in the aetiology of fatty acid-induced insulin resistance.Methods SCD1 protein was transiently decreased or increased in rat L6 skeletal muscle myotubes using SCD1 short interfering RNA (siRNA) or liposome-mediated transfection of pcDNA3.1/Hygro-mSCD1, respectively.Results Reducing SCD1 protein resulted in marked esterification of exogenous fatty acids into diacylglycerol (DAG) and ceramide. Insulin-stimulated Akt activity and phosphorylation and 2-deoxyglucose uptake were reduced with SCD1 siRNA. Exposure of L6 myotubes to palmitate abolished insulin-stimulated glucose uptake in both control and SCD1 siRNA myotubes. Overexpression of SCD1 resulted in triacylglycerol esterification but attenuated ceramide and DAG accumulation and protected myotubes from fatty acid-induced insulin resistance.Conclusions/interpretation SCD1 protects from cellular toxicity in L6 myotubes by preventing excessive accumulation of bioactive lipid metabolites.Electronic supplementary material Supplementary material is available for this article at and is accessible to authorised users.  相似文献   

7.
Recent studies suggest that the serine/threonine kinase protein kinase B (PKB or Akt) is involved in the pathway for insulin-stimulated glucose transporter 4 (GLUT4) translocation and glucose uptake. In this study we examined the components of the Akt signaling pathway in skeletal muscle and adipose tissue in vivo from C57BL/KsJ-Lepr(db/db) mice (db/db), a model of obesity, insulin resistance, and type II diabetes. There were no changes in the protein levels of GLUT4, p85alpha, or Akt in tissues from db/db mice compared with non-diabetic littermate controls (+/+). In response to acute insulin administration, GLUT4 recruitment to the plasma membrane increased twofold in muscle and adipose tissue from +/+ mice, but was significantly reduced by 42-43% (P<0.05) in both tissues from db/db mice. Insulin increased Akt-Ser(473) phosphorylation by two- to fivefold in muscle and adipose tissue from all mice. However, in db/db mice, maximal Akt-Ser(473) phosphorylation was decreased by 32% (P<0.05) and 69% (P<0.05) in muscle and adipose tissue respectively. This decreased phosphorylation in db/db mice corresponded with a significant decrease in maximal Akt kinase activity using a glycogen synthase kinase-3 fusion protein as a substrate (P<0.05). The level of insulin-stimulated tyrosine phosphorylation of p85alpha from phosphatidylinositol 3 (PI 3)-kinase, which is upstream of Akt, was also reduced in muscle and adipose tissue from db/db mice (P<0.05); however, there was no change in extracellular signal-regulated kinase-1 or -2 phosphorylation. These data implicate decreased insulin-stimulated Akt kinase activity as an important component underlying impaired GLUT4 translocation and insulin resistance in tissues from db/db mice. However, impaired insulin signal transduction appears to be specific for the PI 3-kinase pathway of insulin signaling, while the MAP kinase pathway remained intact.  相似文献   

8.
Sweeney G  Keen J  Somwar R  Konrad D  Garg R  Klip A 《Endocrinology》2001,142(11):4806-4812
Obesity is a major risk factor for the development of insulin resistance, characterized by impaired stimulation of glucose disposal into muscle. The mechanisms underlying insulin resistance are unknown. Here we examine the direct effect of leptin, the product of the obesity gene, on insulin-stimulated glucose uptake in cultured rat skeletal muscle cells. Preincubation of L6 myotubes with leptin (2 or 100 nM, 30 min) had no effect on basal glucose uptake but reduced insulin-stimulated glucose uptake. However, leptin had no effect on the insulin-induced gain in myc-tagged glucose transporter 4 (GLUT4) appearance at the cell surface of L6 myotubes. Preincubation of cells with leptin also had no effect on insulin-stimulated tyrosine phosphorylation of insulin receptor, IRS-1 and IRS-2, phosphatidylinositol 3-kinase activity, or Akt phosphorylation. We have previously shown that insulin regulates glucose uptake via a signaling pathway sensitive to inhibitors of p38 MAP kinase. Here, leptin pretreatment reduced the extent of insulin-stimulated p38 MAP kinase phosphorylation and phosphorylation of cAMP response element binder, a downstream effector of p38 MAP kinase. These results show that high leptin levels can directly reduce insulin-stimulated glucose uptake in L6 muscle cells despite normal GLUT4 translocation. The mechanism of this effect could involve inhibition of insulin-stimulated p38 MAP kinase and GLUT4 activation.  相似文献   

9.
Omapatrilat (OMA), a vasopeptidase inhibitor (VPI), presently being tested in clinical trials for its antihypertensive properties, inhibits both angiotensin-converting enzyme and neutral endopeptidase, and raises tissue bradykinin levels. Recent studies from our laboratory and those of others have demonstrated that VPIs enhance muscle glucose uptake in animal models, and this effect is mediated by the bradykinin-nitric oxide pathway. The mechanism of the effect of OMA on muscle glucose uptake, however, is presently unknown. To investigate the effect of OMA on insulin signaling, soleus muscle was isolated 2 or 5 min after an i.v. bolus of insulin or saline from male Zucker fatty rats (8-10 weeks of age), following a 5-day treatment period of oral OMA (15 mg/kg per day) or drug vehicle (placebo). OMA resulted in significantly lower systolic blood pressure compared with the placebo-treated group (84.4+/- 7.52 mmHg in OMA vs 112+/-2.18 mmHg in controls, P<0.01). Immunoprecipitation and Western blot analysis of insulin receptor substrate 1 (IRS-1) revealed no changes in protein mass with OMA treatment. OMA did not enhance basal or insulin-stimulated IRS-1 tyrosine phosphorylation or its subsequent association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. Under basal and insulin-stimulated conditions, OMA treatment did not alter the protein mass or the phosphorylation of Akt/protein kinase B, p42/44 extracellular signal-regulated kinase or adenosine monophosphate-activated protein kinase, or GLUT4 protein expression. We conclude that the ability of OMA to enhance whole body and specifically muscle glucose uptake in Zucker fatty rats is not mediated by enhancing insulin or AMPK signaling. Future studies should examine whether hemodynamic effects of the drug, independent of insulin signaling, enhance glucose uptake in insulin-resistant skeletal muscle.  相似文献   

10.
Fediuc S  Gaidhu MP  Ceddia RB 《Endocrinology》2006,147(11):5170-5177
The aim of this study was to investigate the effects of 5-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-induced AMP-activated protein kinase activation on glycogen metabolism in soleus (slow twitch, oxidative) and epitrochlearis (fast twitch, glycolytic) skeletal muscles. Isolated soleus and epitrochlearis muscles were incubated in the absence or presence of insulin (100 nM), AICAR (2 mM), and AICAR plus insulin. In soleus muscles exposed to insulin, glycogen synthesis and glycogen content increased 6.4- and 1.3-fold, respectively. AICAR treatment significantly suppressed ( approximately 60%) insulin-stimulated glycogen synthesis and completely prevented the increase in glycogen content induced by insulin. AICAR did not affect either basal or insulin-stimulated glucose uptake but significantly increased insulin-stimulated ( approximately 20%) lactate production in soleus muscles. Interestingly, basal glucose uptake was significantly increased ( approximately 1.4-fold) in the epitrochlearis muscle, even though neither basal nor insulin-stimulated rates of glycogen synthesis, glycogen content, and lactate production were affected by AICAR. We also report the novel evidence that AICAR markedly reduced insulin-induced Akt-Thr308 phosphorylation after 15 and 30 min exposure to insulin, which coincided with a marked reduction in glycogen synthase kinase 3 (GSK)-3alpha/beta phosphorylation. Importantly, phosphorylation of glycogen synthase was increased by AICAR treatment 45 min after insulin stimulation. Our results indicate that AICAR-induced AMP-activated protein kinase activation caused a time-dependent reduction in Akt308 phosphorylation, activation of glycogen synthase kinase-3alpha/beta, and the inactivation of glycogen synthase, which are compatible with the acute reduction in insulin-stimulated glycogen synthesis in oxidative but not glycolytic skeletal muscles.  相似文献   

11.
Resveratrol (RSV) has various metabolic effects, especially with relatively high-dose therapy. However, the ability of RSV to modulate insulin signaling has not been completely evaluated. Here, we determined whether RSV alters insulin signaling in insulin-responsive cells and tissues. The effects of RSV on insulin signaling in 3T3-L1 adipocytes under both insulin-sensitive and insulin-resistant states and in insulin-sensitive tissues of high fat-fed diet-induced obese (DIO) mice were investigated. Insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation (Y612) was suppressed in RSV-treated adipocytes compared with untreated adipocytes, as was the insulin-stimulated Akt phosphorylation (Ser473). However, under an insulin-resistant condition that was made by incubating 3T3-L1 adipocytes in the conditioned medium from lipopolysaccharide-stimulated LAW264.7 cells, RSV reduced inducible nitric oxide synthase expression and IκBα protein degradation and improved insulin-stimulated Akt phosphorylation (Ser473). In DIO mice, relatively low-dose RSV (30 mg/kg daily for 2 weeks) therapy lowered fasting blood glucose level and serum insulin, increased hepatic glycogen content, and ameliorated fatty liver without change in body weight. The insulin-stimulated Akt phosphorylation was decreased in the liver and white adipose tissue of DIO mice, but it was completely normalized by RSV treatment. However, in the skeletal muscle of DIO mice, insulin signaling was not improved by RSV treatment, whereas the phosphorylation of adenosine monophosphate-activated protein kinase α (Thr172) was improved by it. Our results show that RSV enhances insulin action only under insulin-resistant conditions and suggest that the effect of RSV may depend on the type of tissue being targeted and its metabolic status.  相似文献   

12.
Zhou Q  Du J  Hu Z  Walsh K  Wang XH 《Endocrinology》2007,148(12):5696-5705
Illnesses associated with insulin resistance exhibit increases in whole-body protein degradation and amino acid oxidation. However, the mechanisms stimulating muscle catabolism under these conditions are not clear. Because insulin resistance is associated with accumulation of lipids in muscle, we measured protein degradation in muscles of mice fed a high-fat diet. Muscle protein catabolism was accelerated on the high-fat diet, and this was associated with an increase in plasma free fatty acid and a decrease in plasma levels of the adipocyte-derived cytokine adiponectin. To evaluate how free fatty acids influence adiponectin-mediated changes in muscle protein breakdown we examined C2C12 skeletal muscle cells exposed to free fatty acids. Both saturated fatty acids (palmitate) and unsaturated fatty acids (oleate) increased protein degradation (25 and 18%, respectively) in part by activating the E3 ubiquitin ligases. Adenovirus-mediated overexpression of adiponectin blocked fatty acid-induced protein degradation in C2C12 cells. Palmitate activated the E3 ubiquitin ligases by suppressing insulin receptor substrate-1/Akt signaling in the C2C12 muscle cells, whereas adiponectin attenuated the E3 ubiquitin ligase activation by increasing both insulin receptor substrate-1 tyrosine phosphorylation and Akt Ser473 phosphorylation. In related experiments, adiponectin overexpression decreased TNFalpha and IL-6 expression in 3T3-L1 adipocytes, whereas exposure to free fatty acids had the opposite effect. We conclude that the balance between free fatty acids and adiponectin impacts muscle proteolysis in insulin-resistant conditions and suggest a role for adipose tissue-muscle cross talk in diabetes and obesity.  相似文献   

13.
Li G  Barrett EJ  Barrett MO  Cao W  Liu Z 《Endocrinology》2007,148(7):3356-3363
Chronic inflammation contributes to vascular insulin resistance and endothelial dysfunction. Systemic infusion of TNF-alpha abrogates insulin's action to enhance skeletal muscle microvascular perfusion. In skeletal muscle TNF-alpha induces insulin resistance via the p38 MAPK pathway. To examine whether p38 MAPK also regulates TNF-alpha-induced vascular insulin resistance, bovine aortic endothelial cells (bAECs) were incubated+/-TNF-alpha (5 ng/ml) for 6 h in the presence or absence of SB203580 (p38 MAPK specific inhibitor, 10 microM) after serum starvation for 10 h. For the last 30 min, cells were treated+/-1 nM insulin, and insulin receptor substrate (IRS)-1, Akt, endothelial nitric oxide synthase (eNOS), p38 MAPK, ERK1/2, c-Jun N-terminal kinase, and AMP-activated protein kinase (AMPK) phosphorylation, and eNOS activity were measured. TNF-alpha increased p38 MAPK phosphorylation, potently stimulated IRS-1 serine phosphorylation, and blunted insulin-stimulated IRS-1 tyrosine and Akt phosphorylation and eNOS activity. TNF-alpha also potently stimulated the phosphorylation of ERK1/2 and AMPK. Treatment with SB203580 decreased p38 MAPK phosphorylation back to the baseline and restored insulin sensitivity of IRS-1 tyrosine and Akt phosphorylation and eNOS activity in TNF-alpha-treated bAECs without affecting TNF-alpha-induced ERK1/2 and AMPK phosphorylation. We conclude that in cultured bAECs, TNF-alpha induces insulin resistance in the phosphatidylinositol 3-kinase/Akt/eNOS pathway via a p38 MAPK-dependent mechanism and enhances ERK1/2 and AMPK phosphorylation independent of the p38 MAPK pathway. This differential modulation of TNF-alpha's actions by p38 MAPK suggests that p38 MAPK plays a key role in TNF-alpha-mediated vascular insulin resistance and may contribute to the generalized endothelial dysfunction seen in type 2 diabetes mellitus and the cardiometabolic syndrome.  相似文献   

14.
Insulin signaling pathways potentially involved in regulation of skeletal muscle glycogen synthase were compared in differentiated human muscle cell cultures from nondiabetic and type 2 diabetic patients. Insulin stimulation of glycogen synthase activity as well as phosphorylation of MAPK, p70 S6 kinase, and protein kinase B (Akt) were blocked by the phosphatidylinositol 3-kinase inhibitors wortmannin (50 nM) and LY294002 (10 microM). In contrast to lean and obese nondiabetic subjects, where there were minimal effects (15-20% inhibition), insulin stimulation of glycogen synthase in muscle cultures from diabetic subjects was greatly diminished ( approximately 75%) by low concentrations of wortmannin (25 nM) or LY294002 (2 microM). This increased sensitivity of diabetic muscle to impairment of insulin-stimulated glycogen synthase activity occurs together with diminished insulin-stimulation (by 40%) of IRS-1-associated phosphatidylinositol 3-kinase activity in the same cells. Protein expression of IRS-1, p85, p110, Akt, p70 S6 kinase, and MAPK were normal in diabetic cells, as was insulin-stimulated phosphorylation of Akt, p70 S6 kinase, and MAPK. These studies indicate that, despite prolonged growth and differentiation of diabetic muscle under normal metabolic culture conditions, defects of insulin-stimulated phosphatidylinositol 3-kinase and glycogen synthase activity in diabetic muscle persist, consistent with intrinsic (rather than acquired) defects of insulin action.  相似文献   

15.
Burn injury is associated with inflammatory responses and metabolic alterations including insulin resistance. Impaired insulin receptor substrate-1 (IRS-1)-mediated insulin signal transduction is a major component of insulin resistance in skeletal muscle following burn injury. To further investigate molecular mechanisms that underlie burn injury-induced insulin resistance, we study a role of inducible nitric oxide synthase (iNOS), a major mediator of inflammation, on burn-induced muscle insulin resistance in iNOS-deficient mice. Full-thickness third-degree burn injury comprising 12% of total body surface area was produced in wild-type and iNOS-deficient C57BL/6 mice. Insulin-stimulated activation (phosphorylation) of IR, IRS-1, and Akt was assessed by immunoblotting and immunoprecipitation. Insulin-stimulated glucose uptake by skeletal muscle was evaluated ex vivo. Burn injury caused induction of iNOS in skeletal muscle of wild-type mice. The increase of iNOS expression paralleled the increase of insulin resistance, as evidenced by decreased tyrosine phosphorylation of IR and IRS-1, IRS-1 expression, insulin-stimulated activation of phosphatidylinositol 3-kinase and Akt/PKB, and insulin-stimulated glucose uptake in mouse skeletal muscle. The absence of iNOS in genetically engineered mice significantly lessened burn injury-induced insulin resistance in skeletal muscle. In wild-type mice, insulin tolerance test revealed whole-body insulin resistance in burned mice compared with sham-burned controls. This effect was reversed by iNOS deficiency. Unexpectedly, however, blood glucose levels were depressed in both wild-type and iNOS-deficient mice after burn injury. Gene disruption of iNOS ameliorated the effect of burn on IRS-1-mediated insulin signaling in skeletal muscle of mice. These findings indicate that iNOS plays a significant role in burn injury-induced skeletal muscle insulin resistance.  相似文献   

16.
Insulin resistance is a pivotal feature in the pathogenesis of type 2 diabetes, and it may be detected 10-20 y before the clinical onset of hyperglycemia. Insulin resistance is due to the reduced ability of peripheral target tissues to respond properly to insulin stimulation. In particular, impaired insulin-stimulated muscle glycogen synthesis plays a significant role in insulin resistance. Glucose transport (GLUT4), phosphorylation (hexokinase) and storage (glycogen synthase) are the three potential rate-controlling steps regulating insulin-stimulated muscle glucose metabolism, and all three have been implicated as being the major defects responsible for causing insulin resistance in patients with type 2 diabetes. Using (13)C/(31)P magnetic resonance spectroscopy (MRS), we demonstrate that a defect in insulin-stimulated muscle glucose transport activity is the rate-controlling defect. Using a similar (13)C/(31)P MRS approach, we have also demonstrated that fatty acids cause insulin resistance in humans due to a decrease in insulin-stimulated muscle glucose transport activity, which could be attributed to reduced insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, a required step in insulin-stimulated glucose transport into muscle. Furthermore, we have recently proposed that this defect in insulin-stimulated muscle glucose transport activity may be due to the activation of a serine kinase cascade involving protein kinase C theta and IKK-beta, which are key downstream mediators of tissue inflammation. Finally, we propose that any perturbation that leads to an increase in intramyocellular lipid (fatty acid metabolites) content such as acquired or inherited defects in mitochondrial fatty acid oxidation, defects in adipocyte fat metabolism or simply increased fat delivery to muscle/liver due to increased energy intake will lead to insulin resistance through this final common pathway. Understanding these key cellular mechanisms of insulin resistance should help elucidate new targets for treating type 2 diabetes.  相似文献   

17.
Aims/hypothesis Debate exists regarding the role of resistin in the pathophysiology of insulin resistance. The aim of this study was to directly assess the effects of resistin (0–24 h) on basal and insulin-stimulated glucose uptake and metabolism in skeletal muscle cells and to investigate the mechanisms responsible for the effects of resistin. Methods We used L6 rat skeletal muscle cells and examined [3H]2-deoxyglucose uptake, GLUT4 translocation and GLUT protein content. We assessed glucose metabolism by measuring the incorporation of D-[U-14C]glucose into glycogen, 14CO2 and lactate production, as well as the phosphorylation level and total protein content of insulin signalling proteins, including insulin receptor β-subunit (IRβ), insulin receptor substrate (IRS), Akt and glycogen synthase kinase-3β (GSK-3β). Results Treatment of L6 rat skeletal muscle cells with recombinant resistin (50 nmol/l, 0–24 h) reduced levels of basal and insulin-stimulated 2-deoxyglucose uptake and decreased insulin-stimulated GLUT4myc content at the cell surface, with no alteration in the production of GLUT4 or GLUT1. Resistin also decreased glycogen synthesis and GSK-3β phosphorylation. Insulin-stimulated oxidation of glucose via the Krebs cycle was reduced by resistin, whereas lactate production was unaltered. Although insulin receptor protein level and phosphorylation were unaltered by resistin, production of IRS-1, but not IRS-2, was downregulated and a decreased tyrosine phosphorylation of IRS-1 was detected. Reduced phosphorylation of Akt on T308 and S473 was observed, while total Akt and Akt1, but not Akt2 or Akt3, production was decreased. Conclusions/interpretation Our data show that resistin regulates the function of IRS-1 and Akt1 and decreases GLUT4 translocation and glucose uptake in response to insulin. Selective decreases in insulin-stimulated glucose metabolism via oxidation and conversion to glycogen were also induced by resistin. These observations highlight the potential role of resistin in the pathophysiology of type 2 diabetes in obesity.  相似文献   

18.
Hindlimb suspension (HS) of rats is a model of simulated weightlessness and induces dynamic alterations in insulin action. In the present study, the effect of acute (1-day) HS on whole-body glucose tolerance and insulin action on skeletal muscle glucose transport was assessed in juvenile, female Sprague-Dawley rats. Compared to weight-bearing control rats, 1-day HS animals displayed significantly decreased glucose tolerance and diminished whole-body insulin sensitivity. Glucose transport activity in the 1-day unweighted soleus muscle was significantly decreased (P <.05) compared to weight-bearing control muscles both in the absence and presence of insulin (2 mU/mL). Insulin-mediated glucose transport activity in the extensor digitorum longus (EDL) muscles also tended (P =.09) to be lower. There was no change in the protein expression of insulin receptor beta-subunit (IR-beta), insulin receptor substrate-1 (IRS-1), IRS-2, the p85 subunit of phosphatidylinositol-3 kinase (PI3-kinase), Akt, and glucose transporter protein 4 (GLUT-4). The activities of these proteins were also unchanged, as insulin-stimulated IR-beta tyrosine phosphorylation, IRS-1 tyrosine phosphorylation, IRS-1-associated p85, and Akt serine phosphorylation were similar to controls. However, basal Akt phosphorylation was significantly depressed (P <.05) in the 1-day HS soleus. In addition, the protein expression and basal phosphorylation of the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) were significantly elevated (P <.05) in the 1-day unweighted soleus. These results indicate that the development of insulin resistance in the 1-day unweighted soleus is not due to impaired functionality of elements involved in the IR/IRS-1/PI3-kinase/Akt signaling pathway. However, activation of p38 MAPK may play a role in this response.  相似文献   

19.
Aims/hypothesis The serine/threonine kinase Akt/protein kinase B (PKB) is required for the metabolic actions of insulin. Controversial data have been reported regarding Akt defective activation in the muscle of type 2 diabetic patients. Because three Akt isoforms exist, each having a distinct physiological role, we investigated the contribution of isoform-specific defects to insulin signalling in human muscle. Methods The phosphorylation pattern and kinase activity of each Akt isoform were compared in primary myotubes from healthy control participants and type 2 diabetic patients. Phosphorylation of Ser473 and of Thr308 in each isoform was determined after immunoprecipitation in myotubes treated or not with insulin. Results Muscle cells from diabetic patients displayed defective insulin action and a drastic reduction of insulin-stimulated activity of all Akt isoforms. This was associated with specific defects of their phosphorylation pattern in response to insulin, with impaired Akt2- (and to a lower extent Akt3-) Ser473 phosphorylation, and with altered Akt1-Thr308 phosphorylation. These defects were not due to faulty phosphoinositide-dependent protein kinase 1 (PDK1) production or activation. Rather, we found higher levels of the Akt2-Ser473-specific protein phosphatase PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) in muscle from diabetic patients, which may contribute to the alteration of Akt2-Ser473 phosphorylation. Conclusions/interpretation These results suggest that several mechanisms affecting Akt isoforms, including deregulated production of PHLPP1, could underlie the alterations of skeletal muscle insulin signalling in type 2 diabetes. Taking into account the recently described isoform-specific metabolic functions of Akt, our results provide mechanistic insight that may contribute to the defective regulation of glucose and lipid metabolisms in the muscle of diabetic patients.  相似文献   

20.
Overactivity of glycogen synthase kinase 3 (GSK-3) is associated with insulin resistance of skeletal muscle glucose transport in prediabetic and type 2 diabetic rodent models. However, limited information is available concerning the potential molecular mechanisms underlying the role GSK-3 plays in the etiology of insulin resistance in the male Zucker Diabetic Fatty (ZDF) rat, a model of type 2 diabetes mellitus. Therefore, we assessed the functionality of proximal and distal insulin signaling elements in isolated type I (slow-twitch oxidative) soleus muscles of ZDF rats after in vitro exposure to a selective GSK-3 inhibitor (1 micromol/L CT98014, K(i) <10 nmol/L for GSK-3alpha and GSK-3beta). Moreover, Ser307 phosphorylation of insulin receptor substrate 1 (IRS-1), which has been implicated in the development of insulin resistance, was also determined in the absence or presence of this GSK-3 inhibitor. Maximally insulin-stimulated (5 mU/mL) GSK-3beta serine phosphorylation was significantly less (35%, P < .05) in soleus muscle of ZDF rats compared with insulin-sensitive lean Zucker rats, indicating GSK-3 overactivity. In the absence of insulin, no effects of GSK-3 inhibition were detected. GSK-3 inhibition led to significant enhancement (28%) of insulin-stimulated glucose transport activity that was associated with significant up-regulation of tyrosine phosphorylation of IR (52%) and IRS-1 (50%), and with enhanced Akt Ser473 phosphorylation (48%) and GSK-3beta Ser9 phosphorylation (36%). Moreover, the selective GSK-3 inhibitor induced a significant reduction in the phosphorylation of IRS-1 Ser307 (26%) and c-jun N-terminal kinases 1 and 2 (31%), a mediator of IRS-1 Ser307 phosphorylation. These results indicate that selective inhibition of GSK-3 activity in type I skeletal muscle from overtly diabetic ZDF rats enhances IRS-1-dependent insulin signaling, possibly by a decrease in c-jun N-terminal kinase activation and a diminution of the deleterious effects of IRS-1 Ser307 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号